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Objective. This study is aimed at exploring the association between autophagy and tumor immune infiltration (TII) in colorectal
cancer (CRC). Methods and Materials. We downloaded the transcriptome profiling and clinical data for CRC from The Cancer
Genome Atlas (TCGA) database and obtained the normal colon transcriptome profiling data from Genotype-Tissue
Expression Project (GTEx) database. The list of autophagy-related signatures was obtained from the Human Autophagy
Database. We isolated the autophagy-related genes from the CRC gene expression matrix and constructed an autophagy-
related prognostic (ARP) risk model. Then, we constructed a multiROC curve to validate the prognostic ability of the ARP risk
model. CIBERSORT was used to determine the fractions of 22 immune cells in each CRC sample, and the association between
these TII cells and CRC clinical variables was further investigated. Finally, we estimated the association of 3 hub-ARP
signatures and 20 different types of TII cell distribution. Results. We classified 447 CRC patients into 224 low-risk and 223
high-risk patients using the median ARP risk score. According to the univariate survival test results, except for gender
(P = 0:672), age (P = 0:008), cancer stage, and pathological stage T, M, and N were closely correlated with the prognosis of
CRC patients (P < 0:001). Multivariate survival analysis results indicate that age and rescore were the only independent
prognostic indicators with significant differences (P < 0:05). After merging the immune cell distribution (by CIBERSORT) with
the CRC clinical data, the results indicate that activated macrophage M0 cells exhibited the highest clinical response, which
included cancer stage and stage T, N, and M. Additionally, six immune cells were closely associated with cancer stage,
including regulatory T cells (Tregs), gamma delta T cells, follicular helper T cells, activated memory CD4 T cells, activated NK
cells, and resting dendritic cells. Finally, we evaluated the correlation of ARP signatures with TII cell distribution. Compared
with the other correlation, NRG1 and plasma cells (↑), risk score and macrophage M1 (↑), NRG1 and dendritic cell activated
(↑), CDKN2A and T cell CD4 memory resting (↓), risk score and T cell CD8 (↑), risk score and T cell CD4 memory resting
(↓), and DAPK1 and T cell CD4 memory activated (↓) exhibited a stronger association (P < 0:0001). Conclusions. In summary,
we explored the correlation between the risk of autophagy and the TII microenvironment in CRC patients. Furthermore, we
integrated different CAR signatures with tumor-infiltrating immune cells and found robust associations between different levels
of CAR signature expression and immune cell infiltrating density.
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1. Introduction

According to global cancer statistics from 2018 [1], colorec-
tal cancer (CRC) represents the third most commonly diag-
nosed cancer (6.1% of the total cases) and the second highest
cause of cancer-associated death (9.2% of the total cancer
deaths) throughout the world. Due to its highly aggressive
nature, the rate of distant metastasis in advanced CRC is as
high as 70%-80% [2], which is responsible for the high
mortality among CRC patients [3]. Therefore, a better
understanding of the progression, invasion, and metastasis
of CRC is important for its clinical diagnosis, prognosis,
and molecular targeted therapy. However, although the
pathological mechanism of CRC is well studied, the complex
regulatory mechanisms of CRC [4] limit the ability of
research into a single molecule or a single pathway to reveal
the bioregulatory landscape of CRC. Accordingly, an
approach using multiple different mechanisms/phenotype
coanalysis of CRC through the crosstalk of different pheno-
types may provide a more reliable and accurate regulatory
biomarker, which can be considered a hub of therapeutic
signatures. Moreover, this hub of therapeutic signatures
can potentially be utilized as predictive and therapeutic
targets for CRC treatment [5, 6].

The genomic results of CRC indicate that [7, 8] com-
pared with adjacent normal samples, as excessive tumor
cell proliferation is associated with autophagy, which is
involved in modification of the tumor immune microenvi-
ronment, CRC tissues exhibit greater activation of abnor-
mal autophagy and immune infiltration. Thus, a systemic
research focus on the biofunction of autophagy-related sig-
natures in tumor immune infiltration (TII) could provide
novel insight and targets for precision treatment of CRC,
especially the identification of potential novel immuno-
therapy targets in CRC.

According to previous reports, the inhibition of autoph-
agy in TNBC cell lines induces the secretion of the macro-
phage migration inhibitory factor (MIF), thereby
promoting breast cancer invasion and immunomodulation
[9]. Although the autophagy of B cells remains poorly
understood in tumor pathogenesis, B cell activation is
induced by tumor-derived autophagosomes (Dribbles),
which sequester various tumor antigens in a TLR4/
MYD88-dependent manner [10]. Accordingly, autophagy-
TII research has introduced a new pathway that illustrates
the association between autophagy and the TII microenvi-
ronment. Therefore, it is essential to confirm the relation-
ship of specific biomarkers of autophagy and CRC. Based
on the landscape of the CRC immune microenvironment,
the correlation between these autophagy-related hub DEGs
and TII cells is also required for research into the molecular
mechanism by which autophagy-TII provides a theoretical
basis for CRC clinical diagnosis and treatment. It is also pos-
sible to further regulate the downstream immune response
upstream of CRC onset through autophagy-related targets,
thus improving the level of immune tolerance and escape
caused by disordered autophagy. This sheds new light into
CRC immunotherapy and further improves the clinical
treatment effect in CRC patients.

In the present study, we screened the autophagy-
related risk signatures for CRC based on a bioinformatics
analysis from The Cancer Genome Atlas (TCGA) and
Genotype-Tissue Expression Project (GTEx) database and
then evaluated the clinical value of these signatures based
on multivariate Cox regression results. Next, we estab-
lished an autophagy-related prognostic (ARP) risk model
and conducted a correlation analysis between this risk
model and its predictive efficacy in CRC. To further inves-
tigate the potential mechanisms between autophagy and
TII based on TCGA, we obtained 22 types of TII cell pro-
files using the CIBERSORT tool. We then conducted a
series of correlation analyses and evaluated the association
between these TII cells and the clinical characteristics of
CRC. Finally, we analyzed the correlation between propor-
tion of TII cells and hub-ARP signatures. Therefore, we
revealed the relationship between autophagy and TII regu-
latory characteristics of CRC and the effect of different
ARP signatures in the tumor microenvironment.

2. Materials and Methods

2.1. Data Acquisition and Processing. The CRC genome
expression data was downloaded from TCGA database
(https://portal.gdc.cancer.gov/), which included 473 tumor
samples and 41 matched normal samples. To increase the
sample size, we enrolled another 384 normal colon tissue
profiles from the GTEx database (https://www.gtexportal
.org/). We merged the gene expression and clinical profiles
of these 898 CRC patients by perl, thereby establishing the
genomic and clinical database for further research. A list of
autophagy-related signatures was obtained from the Human
Autophagy Database (http://www.autophagy.lu/clustering/
index.html), which provided an available resource for
autophagy research.

2.2. Exploration of Autophagy in CRC Patients. First, we nor-
malized the CRC gene expression data using Limma package
by screening the abnormally expressed genes in the tumor
versus normal samples. Then, we obtained the autophagy-
related genes from CRC gene expression matrix by perl.
The ggplot2, ggrepel, ggthemes, gridExtra, pheatmap, and
ggpubr packages were used to conduct a series differential
analyses (illustrated by volcano, heat map, and box figures),
in which the expression differences were characterized by
FDR < 0:05 and ∣logFC ∣ >1. Finally, we transferred the gene
symbol with entrez ID and conducted Gene Ontology (GO)
and KEGG analyses using the clusterProfiler, org.Hs.eg.db,
enrichplot, and ggplot2 packages with P ≤ 0:05.

Then, we merged the futime, fustat, and gene expression
matrix using perl and performed a univariate Cox regression
analysis (by survival package). With the selected significant
signatures (P ≤ 0:05), we conducted a multivariate Cox anal-
ysis and constructed the ARP risk model (using survival
package). The ARP risk model was calculated as ∑ðβi ∗ Ex
piÞ, where βi represented the weight of the respective signa-
tures and Expi represented the expression value. Accord-
ingly, we calculated the risk score of each patient using the
median value as the cutoff value and classified patients into
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either a high- or low-risk group. Using the reshape2,
ggplot2, scales, and cowplot packages, we established the
CRC patients’ vital status distribution and the expression
of autophagy-related signatures in the two risk groups.

In order to assess the associations of the ARP risk model
with clinical variables, we conducted the univariate and mul-
tivariate Cox regression analyses with survival and forestplot
packages, with a Wilcoxon rank-sum test (two groups’ com-
parison) or Kruskal-Wallis test (when dealing with three or
more groups) results by survival and forestplot packages;
we investigate the underlying relationships between the
ARP risk score and clinical features (i.e., age, gender, patho-
logical stage, and TNM stage). Then, to validate the prog-
nostic ability of the ARP risk model, we constructed a
multiROC curve to illustrate the OS prediction via survival-
ROC package, and AUC value was utilized to determine the
predictive effect of the ARP risk score on the clinical fea-
tures. A Kaplan-Meier analysis with a log-rank test was used
to assess the survival differences between the two risk
groups. Finally, beeswarm package was used to validate the
prognostic ability of the hub-ARP signatures in relation to
the clinical variables. We classified the clinical variables into
two groups (age: ≤65 vs. >65, gender: female vs. male, stage:
stage I-II vs. stage III-IV, T: T1-2 vs. T3-4, M: M0 vs. M1,
and N: N0 vs. N1-2) and conducted a correlation analysis.
We presented the P value (P value < 0.05 was considered
to be statistically significant) of hub-ARP signature expres-
sion versus CRC clinical variables with beeswarm plots.

2.3. Exploration of TII in CRC Patients. Given the impor-
tance of TII in the pathogenesis and progression of the
CRC microenvironment, we utilized CIBERSORT to deter-
mine the fractions of 22 immune cells in each sample. The
TII cell constitution was presented as a bar plot. Further-
more, we conducted a Wilcoxon rank-sum test to compare
the differential abundance of immune cells in the tumor
and normal samples via pheatmap package, where the
colors ranging from green to dark red represented low to
high infiltrating levels, respectively. Finally, we illustrated
the TII cell distribution in the tumor and normal samples
by a violin plot.

Since we obtained the TII cell distribution in the CRC
samples, we next sought to further investigate the associa-
tion between the TII cells and CRC clinical variables. First,
we merged the TII cell distribution with the CRC clinical
data and then conducted a Wilcoxon rank-sum test to com-
pare between two groups. A Kruskal-Wallis test was used to
compare three or more groups, and the results were illus-
trated using box plots. The strongly associated plots (P value
< 0.05) were selected via ggalluvial package, and we pre-
sented the significant correlations between the TII cells and
clinical variables using sankey plots.

2.4. Assessment of the Association between hub-ARP
Signatures and TII Cells. Given the important roles of TII
cells and autophagy in CRC, we estimated the association
between hub-ARP signatures and TII cells to construct
correlations between autophagy and TII and presented the
results as a series of scatter plots. We selected the plots for

which the statistical results were significant (P < 0:05) and
presented the relationship between these signatures and
TII cells via clusterProfiler, GOplot, tidyverse, data.table,
ggraph, and tidygraph packages. In this cycle plot, the node
size represents the |log P value| which was normalized to a
range of 0.5-80.

2.5. Statistical Analysis. All data were used to determine the
independent prognostic factors that could predict patient
survival status with R package (R software version 3.5.2).
GraphPad Prism 8.0 software was used to create plot graphs
containing the Kaplan-Meier survival curve. All statistical
analyses were performed using IBM SPSS 25.0 program.

Table 1: Baseline characteristics of 452 CRC patients included in
this study.

Variables Count Percentage (%)

Age (mean ± SD) 67:26 ± 13:02
Follow-up (y) 2:05 ± 1:98
Status

Alive 88 19.47

Dead 364 80.53

Gender

Male 238 52.65

Female 214 47.34

AJCC-T

T1 10 2.21

T2 77 17.04

T3 308 68.14

T4 56 12.39

Tis 1 0.22

AJCC-N

N0 269 59.51

N1 103 22.79

N2 80 17.70

AJCC-M

M0 334 73.89

M1 62 13.72

MX 49 10.84

Unknown 7 1.55

Pathological stage

I 76 16.81

II 178 39.38

III 125 27.65

IV 62 13.72

Unknown 11 2.43

Grade

G1 — —

G2 — —

G3 — —

G4 — —

Unknown 452 100.00

Abbreviations: AJCC: American Joint Committee on Cancer.
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Figure 1: Continued.
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Figure 1: Identification of hub autophagy signature in breast cancer. (a) Volcano plot was drawn to show the differentially expressed genes
in CRC versus normal samples. (b, c) The DEG expression in CRC versus normal samples was illustrated by box and heat map plots,
respectively.
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Student’s t-test (for equal variances) was performed to the
analyzed data, and a P value (two-sided test) less than 0.05
was considered to be significant with the purpose of ensur-
ing the reliability of the results.

3. Results

3.1. The Characteristics of the Autophagy in CRC and
Clinical Pathological Factors. The gene expression profiles of
898 CRC samples were downloaded from TCGA and GTEx
database, which included 473 tumor and 425 normal samples.
Based on the clinical data, we excluded patients with incom-
plete symptom data as described in Table 1 (n = 452). Merging
the CRC DEGs with a set of 232 autophagy-associated genes
resulted in an overlap of 207 CAR genes (89.22% of the total).
With a cutoff FDR value < 0:05, ∣logFC ∣ >1, we screened 72
CAR DEGs, as illustrated in a volcano plot (Figure 1(a)), in
which the blue dots represent downregulated gene probes
and the red dots represent upregulated gene probes. The
expression of the CAR DEGs is shown in Figures 1(b) and
1(c), which illustrates the comparison of the CAR DEGs
between cancer and normal samples. To evaluate the value
of these CARDEGs in the pathogenesis of CRC, we conducted
a series of functional enrichment analyses (Figure s1).
According to the GO functional enrichment results
(Figures s1A and s1B), these biosignatures participate in
macroautophagy, release of cytochrome c from
mitochondria [11], process utilizing autophagic mechanism,
and autophagy. These biosignatures also play a role in the
KEGG pathway in CRC autophagy (Figures s1C and s1D),
p53 signaling pathway [12], apoptosis [13], EGFR tyrosine
kinase inhibitor resistance [14], and the ErbB signaling
pathway. These results suggest that the screened DEGs can
be considered as hub signatures which participate in CRC-
associated autophagy.

To determine the association between the incidence and
prognosis of CRC, perl was used to merge the clinical data
based on the expression level of the hub autophagy DEGs
described above. A univariate Cox regression analysis was
used to identify the potential prognostic autophagy genes
according to pFilter = 0:05, and the prognostic features are
exhibited in Figure 2(a). Next, a multivariate Cox analysis

was performed and an ARP risk model was built according
to the weight of the respective signature (Table 2). Accord-
ing to the ARP risk score, the CRC patients enrolled in the
present study were classified into two groups consisting of
224 low-risk and 223 high-risk patients. Figures 2(b) and
2(c) show that the high-risk group exhibited a higher
survival risk. The hub signature expression data of the two
groups are shown in Figure 2(d).

To verify the predictive ability of this ARP risk model,
univariate and multivariate survival analyses were used to
evaluate the predictive ability of different clinical pathologi-
cal factors, including age, gender, cancer stage, and patho-
logical stage T, M, and N. The results of the univariate
survival tests (Figure 3(a)) indicated that except for gender
(P = 0:672), age (P = 0:008), cancer stage, and pathological
stage T, M, and N were closely correlated with the prognosis
of CRC patients (P < 0:001). Additionally, based on the mul-
tivariate survival analysis results (see Figure 3(b)), age and
rescore were the only independent prognostic indicators
with significant differences (P < 0:001). An ROC plot was
used to evaluate the ARP risk model regarding the different
clinical pathological factors. As shown in Figure s3C, the
area under the curve (AUC) ranged from 0.613 (age) to
0.726 (stage), except gender, which exhibited a poor
predictive ability (AUC = 0:446). Finally, we estimated the
correlation between the ARP hub signatures and CRC
clinical pathological factors by pFilter = 0:05. As shown in
Figure 4, cancer stage, stage N, and stage T were closely
associated with risk score and CDKN2A.

3.2. The Characteristics of the CRC Immune
Microenvironment and Correlation between TII Cells and
Clinical Pathological Factors. The TII profiles of the CRC

NRG1

CDKN2A

−1.0

−0.5

0.0

0.5

1.0
High−risk Low−risk

DAPK1

Genes
expression

(d)

Figure 2: Identification of CRC-autophagy prognosis signatures and construction of a prognostic risk score system in CRC. (a) Forest plot
visualizing hazard ratios of the expression level of the hub autophagy DEGs by performing univariate Cox regression analysis. (b) Patients’
survival data based on risk score, (c) risk score’s distribution curve, and (d) heat map of the PSI value of each prognostic signature.

Table 2: The detailed information of AUT signatures related to
overall survival in CRC patients (n = 447).

id coef HR HR.95L HR.95H P value

NRG1 -0.90036 0.406423 0.168212 0.981974 0.045459

DAPK1 0.264768 1.303129 1.002567 1.693797 0.047802

CDKN2A 0.21178 1.235876 1.001489 1.525118 0.048401
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Figure 3: Forest plot visualizing hazard ratios of significantly survival-related clinical pathological parameters including age, gender, cancer
stage, pathological stage T, M, and N, and risk score by performing (a) univariate and (b) multivariate survival analyses; and (c) an ROC plot
was used to evaluate the ARP risk model regarding these different clinical pathological factors.
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patients were obtained from TCGA database, and after
excluding samples with insufficient clinical data, we obtained
22 types of TII cell distribution in 898 samples via CIBER-
SORT (Figures s4A and s4B), including 425 normal
samples and 473 tumor samples. The correlation among
the CRC-TII cells is illustrated in Figure s2. Moreover, the
distributional difference of the TII cells between the
normal and tumor samples is illustrated in Figure 5. These
results indicate that compared with the normal tissue, the
tumor tissue exhibited a higher proportion of B cell naïve
(P = 0:002), T cell CD4 memory activated (P < 0:01), T cell
regulatory (Tregs) (P < 0:01), macrophage M0 (P < 0:01),

macrophage M1 (P < 0:01), dendritic cell resting (P < 0:01),
dendritic cell activated (P = 0:029), mast cell activated
(P < 0:01), and eosinophil neutrophils (P < 0:01) and a
lower proportion of B cell memory (P < 0:01), plasma cells
(P < 0:01), T cell follicular helper plasma cells (P < 0:01), T
cell gamma delta plasma cells (P < 0:01), NK cell resting
(P < 0:01), NK cell activated (P = 0:026), monocytes
(P < 0:01), macrophage M2 (P < 0:01), and mast cell
resting (P < 0:01). Since naïve CD4 T cells were checked in
only nine cases, these cells were not included in the analysis.

Next, we merged the immune cell distribution with the
CRC clinical data and further evaluated the correlation
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Figure 4: The close correlation between the ARP hub signatures and CRC clinical pathological factors (pFilter = 0:05).
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between the CRC immune microenvironment and clinical
specificity (Figures s3–s8). After screening the plots that
exhibited a significant correlation by pFilter = 0:05
(Figures 6(a)–6(o)), we analyzed the association between 7
hub-TII cells and CRC clinical pathological factors
(Figure 6(p)). The results indicated that activated memory
CD4 T cells exhibited the highest clinical response, which
included cancer stage and stage T, N, and M. Additionally,
six immune cells were closely associated with cancer stage,
including regulatory T cells (Tregs), gamma delta T cells,
follicular helper T cells, activated memory CD4 T cells,
activated NK cells, and resting dendritic cells. Thus, these
cells can be used for the clinical evaluation of CRC.

3.3. The Relationship between Autophagy and the TII
Microenvironment of CRC. It has been reported that in the
tumor microenvironment, abnormal TII cells are accompa-
nied by an abnormal autophagy phenotype [15]. Briefly,
the TII of CRC can affect the expression of a series of
autophagy-related signatures. In the present study, we built
up the association between the ARP hub signature expres-
sion, risk scores, and TII cell distribution (Figures s9–s12).
We evaluated the correlation of three ARP signatures and
risk score with 21 types of TII cell distribution. In the
following step, excluding the plots that P > 0:05, we

demonstrated the result in Table 3 and illustrated it by a
circle plot (Figure 7), where the nod size represents the
log10P value. According to the results of correlation
analysis: (1) 12 TII cells, including monocytes, macrophage
M1, plasma cells, T cell gamma delta, T cell follicular
helper, B cell memory, T cell CD8, T cell regulatory
(Tregs), T cell CD4 memory resting, neutrophils, T cell
CD4 memory activated, and dendritic cell activated
exhibited a close correlation to ARP hub signatures; (2)
compared with the other cells, macrophage M1 exhibited
the highest correlation with DAPK1 (↑, represents positive
correlation), NRG (↓, represents negative correlation), risk
score(↑) (P < 0:05). T cells CD4 memory resting are highly
correlation with CDKN2A (↓), NRG1 (↑), and risk score
(↓) (P < 0:05); and T cell CD8 exhibited the highest
correlation with CDKN2A (↑), DAPK1 (↑), and risk score
(↑) (P < 0:05). In contrast, B cell memory, dendritic cell
activated, monocytes, neutrophils, and T cell gamma delta
were only associated with the expression NRG1 (↓), NRG1
(↑), DAPK1 (↓), NRG1 (↑), and risk score (↑) (P < 0:05);
(3) in all ARP three signatures, NRG1 exhibited the most
correlation to the fractions of TII cells, including B cell
memory (↓), dendritic cell activated (↑), macrophage M1
(↓), neutrophils (↑), plasma cells (↑), and T cell CD4
memory resting (↑) as the ARP risk score is closely
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correlated with 8 TII cells, including macrophage M1 (↑),
plasma cells (↓), T cell CD4 memory activated (↓), T cell
CD4 memory resting (↓), T cell CD8 (↑), T cell follicular
helper (↑), T cell gamma delta (↑), and T cell regulatory
(Tregs) (↑) (P < 0:05); (4) compared with the other
correlation, NRG1 and plasma cells (↑), risk score and
macrophage M1 (↑), NRG1 and dendritic cell activated (↑),
CDKN2A and T cell CD4 memory resting (↓), risk score
and T cell CD8 (↑), risk score and T cell CD4 memory
resting (↓), and DAPK1 and T cell CD4 memory activated
(↓) exhibited a stronger association (P < 0:0001).

4. Discussion

CRC is the fourth most common malignancy [16] and lead-
ing cause of cancer-related death [1] worldwide. According
to Siegel et al. [17], there were 148,000 diagnosed CRC
patients and 53,000 deaths in the US in 2020. Irrespective
of age, the male morbidity rate of CRC is 44.4/100,000 and
34.4/100,000 in females [17]. Since mechanistic studies
may represent an important approach to clinical CRC treat-
ment and prognosis, several studies have concentrated on
the pathogenesis and progression of CRC. This research
has revealed that the pathogenesis and development of
CRC are a complex process that involves multiple pathways
and phenotypes [18]. Moreover, increasing evidence has
demonstrated that autophagy and TII play an important role
throughout the entire CRC process [19, 20]. As a biological
phenomenon, autophagy is ubiquitous in eucaryotes and
lysosomes are used to degrade damaged organelles and
bio-macromolecules [21]. The role of autophagy in cancer

has been found to be divergent [22]. First, autophagy may
exhibit tumor-suppressing properties due to the mainte-
nance of cell homeostasis via damage repair, removal of
harmful substances, and support of gene stability, thereby
inhibiting carcinogenesis. On the other hand, the autophagy
of damaged cancer cells can allow the tumor tissue to obtain
energy and nutrients for cellular growth, metabolism, and
proliferation. Previous studies focusing on the genetic land-
scape in human cancer have demonstrated that [23, 24]
autophagy overlaps with a series of cancer-related pheno-
types, and crosstalk genes can be regarded as a hub of bio-
signatures which could provide a target for the clinical
prediction and treatment of CRC.

Previous studies have shown that a deletion in
autophagy-related genes results in the promotion of tumor
inflammation [25, 26], whereas inhibiting autophagy stimu-
lates the activation of CD8+ T cells [27]. Moreover, autoph-
agy plays an important role in memory and effector memory
T cell differentiation [28]. A deficiency of tumor cells to
autophagy sensitivity could indicate a blockage of immune
checkpoints, which results in the resistance of tumor cells
to therapy [29]. These studies demonstrate that autophagy
participates deeply in the entire processes within a tumor
and plays a critical role in immune escape or drug resistance
of a tumor.

In the immune microenvironment of the normal tissue,
the immune system can recognize tumor-associated anti-
gens, secrete immune effector molecules caused by the acti-
vation of effector immune cells, and suppress tumor
growth and induce apoptosis of the tumor cells [30]. How-
ever, a cancer immune microenvironment consisting of
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Figure 6: The significant correlation between the CRC immune microenvironment and clinical specificity pathological factors
(pFilter = 0:05) is shown in (a–o), and (p) illustrates the association between 7 hub-TII cells and CRC clinical pathological factors.
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tumor-infiltrating lymphocytes (TILs), peripheral vessels,
and fibrocytes which aggregate immunosuppressive cells
and cytokines promotes immunosuppression and is associ-
ated with immune escape by cancer cells [31]. For example,
B7-H4 expressed by antigen-presenting cells may bind to the
B7-H4 ligand on donor T cells, block the proliferation and
differentiation of T cells, and secrete immunosuppressive
factors (e.g., IL10 and TGF-β) [32, 33]. Arginase-1 targets
the degradation of L(+)-arginine, thus inducing functional
unresponsiveness in T cells via the inhibition of IFN-γ gen-
eration by CD8+ T cells [34–36].

Based on the findings of these studies, we inferred that
the correlation between autophagy and TII may be consid-
ered to be a potential signature for the prognosis and
immune-therapeutic targets in CRC patients. With the esti-
mate of TII level in the CRC immune microenvironment
and the expression of APR genes, we established an
autophagy-TII risk model and evaluated the autophagy-TII
signatures to obtain a series of precise targets for immuno-
therapy in the future.

Based on TCGA database, the present study identified
207 autophagy signatures and 72 DEGs related to CRC.
According to the results of the COX analysis, three signa-
tures (CDKN2A, DAPK1, and NRG1) were selected as the
ARP signatures and an ARP risk model was established for
CRC. Death-associated protein kinase 1 (DAPK1) belongs
to the DAPK family. CDKN2A (multiple tumor suppressor
l, MTS1 or P16) is a well-known classic tumor suppressor
and the loss of p16 may be an early event in cancer progres-
sion [37]. Shima et al. summarized the functions of

CDKN2A in colorectal cancers and confirmed that neither
CDKN2A promoter methylation nor loss of CDKN2A
(p16) was associated with colorectal cancer-specific mortal-
ity [38]. In Kong et al.’s research [39], CDKN2A could be
a reliable drug target of fenofibrate for colon cancer therapy.
As a serine/threonine protein kinase, DAPK1 is considered
to be a cancer suppressor gene, which is regulated by cal-
modulin (CaM) and is a positive regulator of IFN-γ-induced
apoptosis [40]. The hypermethylation of the CpG island in
the DAPK1 promoter region was examined in a series of
tumor tissue and cancer cells, such as cervical cancer [41],
gliomas [42], and colorectal cancer [43]. Moreover, several
studies indicate that DAPK1 is involved in tumor invasion
and metastasis, as the loss of DAPK1 enhanced tumor bud-
ding and increased the invasion capacity [44, 45]. The
increased expression of DAPK1 could suppress the metasta-
sis of lung cancer cells [46]. DAPK1 expression induced
autophagy and apoptotic activity in various cancers [47] by
causing autophagic cell death via reducing the interaction
between Beclin-1, Bcl-2, and Bcl-XL [48]. NRG1 gene was
considered as an important signature of Hirschsprung dis-
ease [49–51]. It can be speculated that NRG1 participate in
a series of colon disease; in the tumor microenvironment,
NRG1 could promote antiandrogen resistance in prostate
cancer [52]. NRG1 gene fusion takes part in the progression
of breast cancer [53] and lung adenocarcinoma [54].

As previously mentioned, autophagy plays a positive role
in the course of immune killing of tumor cells [25, 26]. In
pancreatic cancer [55], triple-negative breast cancer [56],
and non-small-cell lung cancer [57] immune treatment, the

Table 3: The association between ARP hub signature expression and TII cell distribution in CRC patients (P < 0:05).

Gene Cell P Cor Correlation

CDKN2A T cell CD4 memory resting 0.00004307 -0.192 Negative

CDKN2A T cell CD8 0.005 0.132 Positive

CDKN2A T cell follicular helper 0.009 0.124 Positive

DAPK1 Macrophage M1 0.023 0.107 Positive

DAPK1 Monocytes 0.046 -0.094 Negative

DAPK1 T cell CD4 memory activated 1:452E − 07 -0.246 Negative

DAPK1 T cell CD8 0.006 0.129 Positive

DAPK1 T cell regulatory (Tregs) 0.004 0.137 Positive

NRG1 B cell memory 0.008 -0.125 Negative

NRG1 Dendritic cell activated 0.00007818 0.186 Positive

NRG1 Macrophage M1 0.008 -0.126 Negative

NRG1 Neutrophils 0.001 0.155 Positive

NRG1 Plasma cells 0.0005104 0.164 Positive

NRG1 T cell CD4 memory resting 0.002 0.149 Positive

Risk score Macrophage M1 0.0001605 0.178 Positive

Risk score Plasma cells 0.017 -0.113 Negative

Risk score T cell CD4 memory activated 0.001 -0.151 Negative

Risk score T cell CD4 memory resting 0.000003698 -0.217 Negative

Risk score T cell CD8 0.00002072 0.2 Positive

Risk score T cell follicular helper 0.009 0.124 Positive

Risk score T cell gamma delta 0.012 0.119 Positive

Risk score T cell regulatory (Tregs) 0.002 0.144 Positive
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promotion of autophagy results in higher anticancer activity
of immune cells. In the present study, we utilized CIBER-
SORT to display the immune landscape of the infiltration
of 22 immune cells in CRC and further obtained the correla-
tion between these immune cells and CRC clinical features.
Our results show that seven types of immune cells inferred
the cancer stage, stage T, stage N, and stage M, in which acti-
vated memory CD4 T cells contributed the greatest rele-
vance, including cancer stage, stage T, stage N, and stage
M. Previous research indicates that [58] Tax2 is linked to

memory CD4 T cells and autophagy in adult T cell leuke-
mia/lymphoma (ATL). However, limited research has estab-
lished a correlation between the immune response of
activated memory CD4 T cell and autophagy in CRC.
Clearly, compared with the other immune cell types, acti-
vated memory CD4 T cells can be considered the most
important immune cell type during CRC pathogenesis and
progression. On the other hand, the level of immune cells
was closely correlated with cancer stage, which infers that
the TII level is closely correlated with CRC severity. To
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further disentangle the direct correlation between autophagy
and TII, we performed a series of correlation analyses
between AUT-related signatures and TII cells.

Based on the results of this study, these three signatures
are strongly correlated with the TII level in CRC. 12 immune
cell types are closely related to the signatures selected,
because neutrophils could enhance the migratory ability of
circulating tumor cells (CTCs) via the release of various spe-
cial messenger substances (e.g., cytokines) [59]. The present
study demonstrates that neutrophils are involved in the pro-
cess of CRC initiation, development, and metastasis through
autophagy. Moreover, the AUT risk score is closely associ-
ated with eight immune cell types (Table 3). Clearly, the
degree of these immune cell types in the CRC immune
microenvironment was dominated by autophagy. Finally,
in all three AUT signatures, NRG1 exhibited a strong corre-
lation with TII, both quantitatively (six types) and qualita-
tively (dendritic cell activated and plasma cells). These
results suggest that NRG1 is the most important biosigna-
ture crosstalk in both autophagy and TII of CRC.

Taken together, the present study carried out a Cox
multivariate analysis to develop the risk score model. We
then identified and validated the AUT-related signatures
according to an AUT risk scoring system and identified a
connection between the AUT risk and prognosis of CRC
patients. We conducted a correlation analysis according to
the survival outcome of the patients, and the correlation
between TII and AUT was evaluated. Finally, we constructed
the association between five AUT-related signatures and 20
TII cells. These selected genes can also provide novel signa-
tures that target both the autophagy signaling pathway and
immune regulation for CRC immunotherapy.

Compared with the traditional study of CRC biomark-
ers, our study analyzed a large number of clinical samples
and focused on the characteristics of autophagy in TII. We
investigated the relationship between the regulation of
AUT-related genes to TII and the association of autophagy
and TII cells with the incidence and prognosis of CRC.

The present study utilized large TCGA database cohorts to
elucidate and validate relevant signatures of CRC risk, as well
as further evaluate their clinical characteristics. Next, with
CIBERSORT tools, we established the AUT-TII predication
model. This approach reduced the workload and thereby the
screening time; however, the results obtained in this study
were completely dependent on fitting and the accuracy
requires further verification with a prospective cohort. In addi-
tion, the signatures obtained need to be further investigated in
clinical studies with a greater number of patients. Therefore,
these findings confirm their biofunction and provide an exper-
imental basis for clinical treatment.

With the methods used in this research, we can utilize
public databases to systematically study the relationship
between autophagy and TII in CRC. Through the TII cell
landscape and autophagy characteristics, we evaluated the
correlation between five AUT signatures with the TII cell
profile, which further provides novel therapeutic targets for
CRC treatment. In addition to CRC, our study can provide
novel methods for further potential research on other
cancer-related studies.

Data Availability

The original data used to support the findings of this study
was obtained from public databases (TCGA, GTEx, and
Human Autophagy Database).

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

(I) Yu Bian-fang was responsible for conception and design.
(II) Wu Dong-ning and Shi Jian-yu were responsible for
administrative support. (III) Wang Shi-yi, Wang Ben-jun,
and Zhao Wen-wen were responsible for provision of study
materials or patients. (IV) Dong xin and Zhao Yan were
responsible for collection and assembly of data. (V) Wang
Qing-feng and Teng Dan were responsible for data analysis
and interpretation. (VI) All authors were responsible for
manuscript writing. (VII) All authors gave final approval
of the manuscript. Wu Dong-ning and Teng Dan are the
co-first authors.

Supplementary Materials

Figure s1: functional enrichment analysis results of differen-
tial autophagy genes in CRC. (A, B) Significantly enriched
Gene Ontology terms of differential autophagy genes in
CRC. BP: biological process; CC: cellular component; MF:
molecular function. (C, D) Significantly enriched Kyoto
Encyclopedia of Genes and Genomes pathways of differen-
tial autophagy genes in CRC. Figure s2: correlation between
tumor-infiltrating immune cells where red represented the
positive correlation while green represented the negative
correlation in CRC. Figure s3: the correlation between the
CRC immune microenvironment and fustat. Figure s4: the
correlation between the CRC immune microenvironment
and gender. Figure s5: the correlation between the CRC
immune microenvironment and pathological stage M.
Figure s6: the correlation between the CRC immune micro-
environment and pathological stage N. Figure s7: the corre-
lation between the CRC immune microenvironment and
cancer stage. Figure s8: the correlation between the CRC
immune microenvironment and pathological stage T. Figure
s9: the correlation of DAPK1 with 21 types of TII cell distri-
bution. Figure s10: the correlation of MAP1LC3C with 19
types of TII cell distribution. Figure s11: the correlation of
PELP1 with 19 types of TII cell distribution. Figure s12:
the correlation of risk score with 19 types of TII cell distribu-
tion. (Supplementary Materials)
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