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To solve the problem of scoliosis recognition without a labeled dataset, an unsupervised method is proposed by combining the
cascade gentle AdaBoost (CGAdaBoost) classifier and distance regularized level set evolution (DRLSE). -e main idea of the
proposed method is to establish the relationship between individual vertebrae and the whole spine with vertebral centroids.
Scoliosis recognition can be transferred into automatic vertebral detection and segmentation processes, which can avoid the
manual data-labeling processing. In the CGAdaBoost classifier, diversified vertebrae images and multifeature descriptors are
considered to generate more discriminative features, thus improving the vertebral detection accuracy. After that, the detected
bounding box represents an appropriate initial contour of DRLSE to make the vertebral segmentation more accurate. It is helpful
for the elimination of initialization sensitivity and quick convergence of vertebra boundaries. Meanwhile, vertebral centroids are
extracted to connect the whole spine, thereby describing the spinal curvature. Different parts of the spine are determined as
abnormal or normal in accordance with medical prior knowledge. -e experimental results demonstrate that the proposed
method cannot only effectively identify scoliosis with unlabeled spine CT images but also have superiority against other state-of-
the-art methods.

1. Introduction

Scoliosis is a common spinal abnormality, and it seriously
endangers the people’s health [1]. Scoliosis recognition is an
important premise for preventing the spinal curve from
getting worse. Computer-aided diagnosis (CAD) [2] has
been a powerful tool to identity scoliosis by analyzing
medical imaging. In scoliosis recognition, scoliosis curvature
[3] is the most valuable spinal parameter, which can provide
the decision value of the normal or abnormal condition.
Due to unclear boundaries and degenerative disorders of
CT spine images, it is difficult to extract effective scoliosis
features from available diagnostic images. A specially designed
computer-aided method for accurate scoliosis recognition has
a significant research meaningful.

Until recently, many methods have been developed for
diagnosing the scoliotic deformity [4–6]. Zhang et al. [7]
proposed a semiautomatic scoliosis measurement method to

reduce the assessment variability. Hough transform and
snake model are integrated together with a shape prior, thus
improving the performance and reliability. Little user
judgments are still needed. Zukić et al. [8] adopted the
Viola–Jones algorithm with candidate filtering to identify
scoliosis. Geometric diagnostic features are deduced by
detecting vertebral centers. -is method extracts the key
pathological features, which can further increase robustness
of the algorithm, but the optimal parameter largely depends
on a manually segmented dataset. Korez et al. [9] presented
an automated vertebral detection and segmentation
framework with interpolation theory and shape-constrained
deformable model. All local optima that correspond to
candidate vertebral locations are detected, thereby pre-
serving the vertebral shape. Nonetheless, when severe dis-
orders occur in the CT spine image, the segmentation
accuracy will be decreased. Pinheiro et al. [10] proposed
a novel computerized methodology with genetic algorithm
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optimization to evaluate the scoliotic deformity. -e ellipse
that best fits to the spine curve is introduced. -is method
can reproduce scoliotic curvatures using the geometric
parameters of the underlying ellipses.

To intelligently diagnose scoliosis using machine
learning, Glocker et al. [11] developed an approach com-
bining the supervised classification forest and dense prob-
abilistic centroid estimation. Pathological vertebrae images
are considered into the discriminative centroid classier.
Consequently, the minimum of an estimated centroid lo-
cation error of 4.4mm and the detection rate of 86% are
obtained. In [12], the authors developed a computer-aided
Cobb angle method using deep neural network (DNN) for
scoliosis assessment. Enough vertebral patches are needed in
the training dataset to automatically determine the slope of
the vertebrae. -is solution shows a promising result owing
to more training data. In [13], a novel BoostNet architecture
was designed to estimate vertebral landmarks for adolescent
idiopathic scoliosis assessment. Convolutional neural net-
work with statistical theory is used as robust feature ex-
traction. -e effectiveness of BoostNet is verified on plenty
of spinal X-ray images. In practice, a large amount of high-
quality labeled data are crucial to build a better classifier,
while the data-labeling processing is very expensive and
time-consuming. Additionally, the neighboring vertebrae
have similar morphological appearance, which makes them
difficult to be distinguished.-erefore, the feature mining of
unlabeled CT images is a significant challenge in the scoliosis
recognition without manual annotation.

To address this problem, this paper proposes a scoliosis
recognition method in the unsupervised setting with un-
labeled CT images. -e cascade gentle AdaBoost (CGAda-
Boost) classifier with multifeature descriptors and distance
regularized level set evolution (DRLSE) model are combined
into the centroids method. -e main contributions of this
paper are presented as follows. First, the relationship be-
tween individual vertebrae and the whole spine is established
using vertebral centroids, which is beneficial to reduce the
data-labeling burden on medical staff. Second, three dif-
ferent descriptors are fully combined to achieve more ef-
fective features for the CGAdaBoost classifier. Moreover,
detected bounding boxes are used as an initial contour of
DRLSE to segment vertebral bodies without manual in-
teraction. Our work can provide a feasible and effective
scoliosis recognition method for medical intelligence
diagnosis.

-e remainder of this paper is organized as follows. In
Section 2, the gentle AdaBoost classifier and edge-based level
set method are briefly introduced. Section 3 describes the
proposed method in detail. Section 4 focuses on experi-
mental results and discussion, followed by the conclusion
and future work in Section 5.

2. Related Basic Knowledge

In general, the detection and segmentation of the object are
important processes of the recognition task. To achieve
a reliable detection result, learning-based technique has been
extensively adopted to detect the vertebrae [6, 14–17].

Besides, the vertebral body segmentation exerts a tremen-
dous influence on the extracted centroid result. Level set
model is an effective contour evolution method using the
image gradient to converge on the object boundary.

2.1. Gentle AdaBoost Classifier. Gentle AdaBoost [17] is
a type of probability detector with strong robustness. In the
aspect of detection accuracy, gentle AdaBoost outperforms
discrete and real AdaBoost classifiers owing to a unique
weighting update way. Furthermore, a small number of
features are only required in the gentle AdaBoost classifier.
-ere is a lower computational complexity. Using the small
decision tree as weak classifiers is to improve the general-
ization ability. -e training process of the gentle AdaBoost
classifier is described as follows:

Step 1. -ere is a given training dataset S �

(x1, y1), . . . , (xn, yn)􏼈 􏼉. yi � 0 and yi � 1 represent negative
and positive samples, respectively.

Step 2. Initialize the weight wi of the training sample, that is,
the initial probability distribution of the sample i.

wi �

1
2m

, yi � 0,

1
2l

, yi � 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where m and l denote numbers of negative and positive
samples, respectively.

Step 3. Perform t-stage (t � 1, . . . , T) training on the clas-
sifier. T is the maximum iteration number. Set
wt,i⟵wt,i/􏽐

n
j�1wt,j, and renormalize weight such that wt is

a probability distribution. For each feature j, the weak
classifier hj is trained according to the weight distribution
wt. -e minimum error εt is got by constructing the error εj

with weight wt.

εj � 􏽘
i

wi ∣ hj xi − yi( 􏼁. (2)

Step 4. Update the weight wt+1,i⟵wt,iβ
1−ei

t and
βt � εt/(1− εt). If xi is classified correctly, ei will be equal to
zero. Otherwise, ei is equal to one.

Step 5. -e final strong classifier is output as follows:

h(x) �

1, 􏽘
T

t�1
αtht(x)≥

1
2

􏽘

T

t�1
αt,

0, otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3)

where the coefficient αt is set as αt � log 1/βt.
-e weight of each sample is constantly adjusted to form

the strongest classifier, thus improving the performance of
the classifier and avoiding the overfitting. Hence, the gentle
AdaBoost classifier with high efficiency is suitable for the
vertebral detection.
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2.2. Edge-Based Level Set Model. Level set based on edge
information [18] constructs an edge detecting function to
drive the evolving contour to the desired boundary. Given
the initial contour C � (x, y) ∈ Ω|ϕ(x, y) � 0􏼈 􏼉,
ϕ : Ω⟶ R is a level set function (LSF) defined on a do-
main Ω. For the edge distribution of the image, an edge
indicator function g is defined by

g ≜
1

1 + ∇Gσ ∗ I
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2, (4)

where I represents an image. Gσ is a Gaussian kernel with
standard deviation σ. ∗ denotes a convolution operation to
reduce the image noise. -e function g ∈ [0, 1] should take
smaller values at object boundaries than other locations. -e
basic energy function for ϕ can be defined as

ε(ϕ) � length(ϕ) + area(ϕ), (5)

where length(ϕ) is the length term of the initial contour.
Area(ϕ) represents the energy of the area inside the contour
C. Here, both the length term and area term rely on the edge
information of the image. -ese two energy terms can be
given as follows:

length(ϕ � 0) � 􏽚
Ω

gδ(ϕ)|∇ϕ| dx,

area(ϕ≥ 0) � 􏽚
Ω

gH(ϕ) dx,

(6)

where

H(x) �
1 if x> 0,

0 if x< 0.
􏼨 (7)

H(x) is the Heaviside function. And δ(x) is a Dirac delta
smoothing function defined by

δ(x) �

1
2ε

1 + cos
πx

ε
􏼒 􏼓􏼔 􏼕, |x|< ε,

0, |x|> ε.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

3. The Proposed Method

-e motivation of this paper is to accurately recognize
scoliosis from unlabeled CT images. For convenience, the
proposed method is called as CGAdaBoost-DRLSE. Figure 1
depicts an overview of the CGAdaBoost-DRLSE method.
-e proposed method is comprised of three main stages.-e
first stage is the automated vertebrae detection, including
training and testing processes. Diversified training samples
and multifeature descriptors are considered to train the
CGAdaBoost classifier and detect all vertebral bodies in the
CT spine image. -e second stage is the vertebral region
segmentation. DRLSE strongly depends on a relatively ac-
curate initialization. Consequently, the detected bounding
boxes are used as the initial contours of DRLSE. Acquired
segmentation results further serve for vertebral centroids
extraction. Vertebral centroids are extracted to connect the
whole spine, which canmake scoliotic deformity recognition

more accurate. After spinal curve fitting, calculating the
angle between two tangents is to measure the spinal cur-
vature angle, thereby diagnosing spinal abnormalities.

3.1. Vertebrae Detection. We make the first attempt to use
the cascade gentle AdaBoost detector with multifeature
fusion to detect vertebrae. -e classifier with the cascade
structure is essentially a degenerated decision tree, which
arranges a series of strong AdaBoost classifiers from simple
to complex [19]. By continuously training, each strong
classifier will have a higher detection rate and lower false-
positive rate. Figure 2 illustrates the basic schematic of
a cascade classifier.

In the training process, only positive samples of the
previous classifier will be transmitted into the next classifier
to continue learning. -en, some subwindows belonging to
positive samples in each classifier are output as the detected
vertebrae. On the contrary, subwindows belonging to
negative samples will be rejected directly. Obviously, the
cascade classifier can overcome the problem of the imbal-
anced sample and significantly improve the efficiency of the
detector. -e training process of the CGAdaBoost classifier
is briefly described, as shown in Algorithm 1.

3.2. Multifeature Fusion. Currently, Haar-like [20], local
binary pattern (LBP) [21], and histogram of oriented gra-
dients (HOG) [22] descriptors have become the most useful
digital image feature methods in object recognition. Among
them, Haar-like descriptor is used to describe the image
intensity differences. LBP is suitable for describing the local
texture feature of the image. HOG descriptor can better
describe appearance and shape of the object, that is, the local
gradient or the distribution of the edge direction.

Scoliotic deformity recognition process
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Figure 1: -e overview of the CGAdaBoost-DRLSE method.
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Although each single descriptor is highly efficient, the
extracted features are difficult to accurately distinguish
vertebral and nonvertebral regions from spine CT images
with low contrast. -erefore, to make full use of the ad-
vantage of each feature descriptor, we present a multifeature
fusion way. HOG, LBP, and Haar-like features will be
combined together to construct a feature vector, thus
generating the optimal feature set. Before fusing, these
features will be normalized for the facility of computation.
-e final feature set Ffinal is formally expressed as

Ffinal � FHaar + FLBP + FHOG. (9)

Haar-like adopts the black-and-white feature template to
perform sliding detection on the image.-e integral graph is
employed to realize the fast summation of subregions. And
the sum of the pixel in the white region subtracts the sum of
the pixel in the black region as feature value FHaar, which can
be described as

FHaar � sum Rwhite( 􏼁− sum Rblack( 􏼁. (10)

For the LBP descriptor, the image is divided into several
subregions. -en, the LBP feature of each pixel in the
subregion is extracted. -e statistical histogram of each
subregion constitutes the texture feature vector of the whole
image. A mathematical description of the LBP can be given
as follows:

FLBP � 􏽘
P−1

p�0
2p

s fp −fc􏼐 􏼑 �
􏽘

P−1

p�0
2p

, if fp ≥fc,

0, else,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(11)

where p is the pth pixel of the subregion.fp and fc represent
the gray value of the neighboring pixel and central pixel,
respectively.

HOG descriptor also divides the image into several
small connected regions. -e gradient direction (or edge
direction) histogram of the pixels in each region is cal-
culated, thereby combining these histograms as a feature
vector. -e gradient vector of the HOG descriptor can be
obtained as

FHOG � ∇f(x, y) �

zf(x, y)

zx

zf(x, y)

zy

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

fx

fy

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦, (12)

where f(x, y) denotes a positive sample; fx and fy rep-
resent the gradient vectors of x and y directions, respectively.

3.3. Vertebral Body Segmentation. Vertebrae segmentation
is vitally important to extract centroids for scoliosis

Input: the cascade layer number K, the minimum detection rate d (D0 �1), the maximum false-positive rate f (F0 �1), the positive
sample set P, the negative sample set N, and the final false-positive rate Ft.
Output: subwindows of the image belonging to positive samples

(1) for i� 0:K, Fi> Ft do
(2) ++i; ni� 0; Fi � Fi−1;
(3) if Fi> f× Fi−1 then
(4) ++ni; train strong classifier with ni weak classifier using AdaBoost on P and N;
(5) Calculate the detection rate Di and false-positive rate Fi of the current classifier;
(6) if di< d×Di−1 then
(7) Reduce the threshold of the ith layer strong classifier;
(8) Calculate detection rate Di and false-positive rate Fi of the current classifier;
(9) end if
(10) end if
(11) N�Φ; use the current classifier to detect testing images and put the negative image into N; output and number subwindows

belonging to positive samples.
(12) end for
(13) return the detected results

ALGORITHM 1: -e training process of the cascade gentle AdaBoost classifier.
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Figure 2: Schematic of the cascade gentle AdaBoost detector.
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recognition. DRLSE [23] is an edge-based level set evolution
method. A distance regularization term is introduced into
the energy function as a penalty term. DRLSE can produce
a better effect of edge detection and avoid the reinitialization
process. Aiming at the low contrast and high noise of CT
image, it is necessary to employ a contrast limited adaptive
histogram equalization (CLAHE) method [24] to enhance
the vertebral region before segmenting.

To further reduce manual intervention, detected
bounding boxes are viewed as the initial contour C of
DRLSE. -e energy function is minimized by solving the
following gradient flow equation:

zϕ
zt

� μdiv dp(|∇ϕ|)∇ϕ􏼐 􏼑 + λδε(ϕ)div g
∇ϕ

|∇ϕ|
􏼠 􏼡 + αgδε(ϕ),

(13)

where the first term is the distance regularization term, and
μ> 0 is the coefficient of the distance regularization term; the
second term stands for the gradient flow of the length term,
and λ denotes the weighted coefficient of the length term; the
third term is the gradient flow of the area term, and α is the
weighted coefficient of the area term; and the div(·) is the
divergence operator.

In (13), the definition of dp is given by

dp(s) �
p′(s)

s
, (14)

where the potential function p(·) should have minimum
points at s� 0 and s� 1.-e flow in (13) has a diffusion effect
on the level set function ϕ. -is diffusion is termed as
forward-and-backward diffusion, which adaptively increases
or decreases∇ϕ to maintain the desired shape of the function
ϕ, thus avoiding the effect of bad edges.

A preferable potential function can keep the sign dis-
tance function smoothing in the distance regularization
term, which can be expressed as

p(s) �

1
2π2

(1− cos(2πs)), if s≤ 1,

1
2
(s− 1)

2
, if s≥ 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(15)

As a consequent, the vertebral body region is obtained by
evolving iteratively. It is noticed that the combination of
detection and segmentation solves not only the sensitivity of
initialization, but also quickly and accurately converges on
vertebral boundaries.

3.4. Scoliosis Recognition with the Medical Prior Knowledge.
To establish the relationship between the individual verte-
brae and the whole spine, we extract vertebral centroids as
a shared feature from the segmented result. -is work
highlights the importance of the vertebral centroid. Let
I(x, y) be a segmented binary mask, where its size is m× n.
-e centroid coordinate (k, l) of each vertebral body can be
expressed as

k �
􏽐

m
x 􏽐

n
yxI(x, y)

􏽐
m
x 􏽐

n
yI(x, y)

,

l �
􏽐

m
x 􏽐

n
yyI(x, y)

􏽐
m
x 􏽐

n
yI(x, y)

,

(16)

where I(x, y) �
1, (x, y) ∈ object,
0, (x, y) ∈ background.

􏼨 All vertebral

centroids are computed by solving (16) iteratively.
After extracting vertebral centroids, the least squares

method [25] is adopted to construct the spinal curve. In
Figure 3, suppose that the spinal curve y � f(x) has a con-
tinuous derivative. And the points A and P represent an-
terior and posterior vertebral centroids, respectively. Δs
denotes the length of arc AP, and φ is the angle between two
tangents of the curve. -erefore, the curvature of y at the
point (x, y) is given by

k �
dφ
ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�

y″
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

1 + y′2􏼐 􏼑
3/2, (17)

where dφ � (y″/1 + y′2) dx. In centroid measurement
method, the spinal curvature angle is defined as the angle
between two tangents at centroid points of two terminal
vertebrae, which can be calculated as follows:

φ � 􏽚
b

a

y″

1 + y′2
dx. (18)

According to the prior medical treatment, viewed from
the coronal, the spinal curve looks like a straight line.
Generally, if the curvature angle is greater than ten degrees,
the spine will be diagnosed as scoliosis:

diagnosis result 1 �
scoliosis, if φ≥ 10°,

normal, if φ< 10°.
􏼨 (19)

In addition, viewed from the sagittal, the curve of the
spine is in “S” shape. -ere are three normal curvatures of
spine, including cervical lordosis (35° to 45°), thoracic ky-
phosis (20° to 45°), and lumbar lordosis (40° to 60°) [26]:

diagnosis result 2 �

cervical lordosis, if φ ∉ 35°, 45°[ ],

thoracic kyphosis, if φ ∉ 20°, 45°[ ],

lumbar lordosis, if φ ∉ 40°, 60°[ ]

⎧⎪⎪⎨

⎪⎪⎩

(20)

-e measurement from the coronal view is focused on
the diagnosis of scoliosis, while the measurement from the
sagittal view refers to the diagnosis of lumbar lordosis,
thoracic kyphosis, and cervical lordosis.

4. Experimental Results and Discussion

4.1. Data Description and Experimental Platform. To verify
the effectiveness and feasibility of the proposed method,
a variety of experiments are conducted on about 500 spine
CT images to automatically recognize scoliotic deformity.
-ese images are from 20 subjects (11 males and 9 females;

Computational and Mathematical Methods in Medicine 5



age range 18–56 years) of available spine CT volumes on the
publicity platform SpineWeb [27]. -e volume size is
512× 512× (100 – 240). -e view of the spine image is
limited to 5–20 vertebrae. Each dataset may include high-
grade scoliosis, kyphosis, and fractures, which is along with
ground-truth centroid of each vertebra. All experiments are
implemented in the Matlab 2014a platform, which run on
Microsoft Windows 7 64-bit operating system with
3.20GHz Intel® Xeon® CPU, 8Gbyte RAM.

4.2. Be Analysis of Experimental Results. In the vertebral
detection experiment, we only select the vertebral bodies as
positive samples without considering the spinal cord, ribs,
and sacrum. -e positive and negative samples are created
by the Training Image Labeler Toolkit of Matlab 2014a,
resulting in 520 positive samples and 1058 negative samples.
Figure 4 shows a part of positive and negative samples.

-e positive samples contain various parts (cervical,
thoracic, and lumbar) of the whole spine. Additionally,
vertebrae images with different views (sagittal and coronal),
arbitrary contrasts, and lesions are also considered as pos-
itive samples. We select nonvertebral regions from CT
images as negative samples. As far as possible to increase the
distinguishability of interclass samples, diverse features will
be provided for classifying.

For feature extraction, Figures 5 and 6 show extracted
results of HOG, LBP, and Haar-like from the same positive
sample. Here, the 8× 8 cell constitutes a HOG block. From
Figure 5(c), it can be seen that the HOG feature better
describes the edge gradient and shape information of the
vertebrae.

Figure 6(a) illustrates the texture image via LBP. -e
vertebral edge can be visualized clearly. However, Haar-like
is an effective method to reflect the change of image gray. In
Figure 6(b), two edge features, two center-surround features,
and four line features are extracted as the final Haar-like
feature. Furthermore, we have taken into account the
complete feature set for the classifier as only combining
HOG, LBP, and Haar-like descriptors. To do this, the in-
tensity, appearance, and shape of the individual vertebrae
can be fully expressed.

In the training process, the gentle AdaBoost classifier
built a powerful classifier with high accuracy through several
simple weak classifiers. Figure 7 shows the processes of
training weak classifiers and the optimal classifier. Red dots
and green boxes represent two classes. After numerous it-
erations, red dots and green boxes are classified into
two regions (white region and black region). Figures 7(a)
and 7(b) display weak classifiers with different false-positive
rates. Actually, the construction of the optimal classifier is to
find the appropriate classifier parameter. Hence, the clas-
sifier has the lowest false-positive rate of 0.03 for all samples,
which is as shown in Figure 7(c).

-e CGAdaBoost classifier captured the shape and
pathological features of the vertebrae. At the same time, the
vertebrae of sagittal and coronal views also are detected from
CT spine images. We obtain the optimal parameter of the
classifier after several experiments. To reduce the loss of the
vertebrae, the true-positive rate should be set to a larger
value. Likewise, the smaller the value of the false-positive
rate is, the less the number of the falsely detected vertebrae is.
As a result, TruePositiveRate (true-positive rate) is set to 0.9,
and FalseAlarmRate (false-positive rate) is set to 0.03. -e
number of the training stage (NumCascadeStages) is set to
10 according to the total number of samples. In our
implementation, the subwindow size is experimentally set to
90× 80. Only in this way, the initial contour of the DRLSE
method is closer to the edge of the vertebrae such that the
final segmentation results are more accurate to serve for
vertebral centroids extraction.

Various detection results with different feature de-
scriptors on sagittal and coronal planes are illustrated in
Figure 8. When the single HOG feature is used to detect the
vertebrae on the coronal view, there are undetected verte-
brae (red circle) and false detection vertebrae (green circle)
in Figure 8(a). In contrast, Figure 8(b) shows better the
detected result with multifeature fusion. To demonstrate the
diversity of our result, the detected result with multifeature
on the high-contrast coronal image is shown in Figure 8(c).
It can be seen from Figure 8(d) that in spite of vertebrae 7
having a complex shape deformation, it can still be detected.
Figure 9 shows the detected result after enhancing the image
of CLAHE. It is evident that the enhanced CT image can

P

A

Δs

φ

Figure 3: -e schematic diagram of the curvature angle.
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make detection more accurate and provide suitable initial
contours for the subsequent DRLSE model. It is worth
noting that the scanning order of the testing process is from
left to right and from top to bottom on the test image. -en,
the scanned subwindow belonging to the vertebrae will be

labeled using numbers. -e aim of numbering is to facilitate
different parts extraction from the whole spine.

We applied the DRLSE method to segment the vertebrae
from spine CT images without any user intervention. On the
basis of vertebral detected results, located bounding boxes

(a) (b)

(c)

Figure 5: -e result of the HOG descriptor: (a) CT vertebral image; (b) the visualization of HOG; (c) local amplification result.

(a) (b)

Figure 4: Parts of training samples: (a) positive samples; (b) negative samples.
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(a) (b) (c)

Figure 7: -e training process of the optimal classifier: (a) the weak classifier with false-positive rate 0.1; (b) the weak classifier with false-
positive rate 0.08; (c) the strong classifier with false-positive rate 0.03.
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(d)

Figure 8: Detection results of the CGAdaBoost classifier with FalseAlarmRate 0.03 and TruePositiveRate 0.9: (a) the detection result with
single feature on the coronal view (a red circle for the undetected vertebrae and a green circle for the false detected vertebrae); (b) the
detection result with multifeature on the coronal view; (c) the detection result with multifeature on the high-contrast coronal view; (d) the
detection result with multifeature on the sagittal view.

(a) (b)

Figure 6: Results of LBP and Haar-like descriptors: (a) the visualization of LBP; (b) Haar-like feature with edge features, center-surround
features, and line features.
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are regarded as the initial contour C to eliminate the
sensibility of initialization of DRLSE. In the segmenta-
tion experiment, we set the appropriate coefficient μ � 0.04
of the distance regularization term. -e weighted co-
efficients of the length term λ and area term α are set to 5
and 1.5, respectively. Scale parameter ε in Gaussian kernel
is set to 1.5. To visualize the curve evolution process,
Figure 10 displays the evolution results of the initial and the
final level set functions. -e red curve represents a zero
level set function.

By adjusting appropriate parameters, Figures 11 and 12
show two spinal segmentation results. Figure 11(a) presents
the evolutionary result of 100 iterations on the sagittal view.
Figure 11(b) shows the evolution result of 200 iterations.
Figure 11(c) shows the binary segmentation result after 200
iterations. Figure 12 displays the segmented result on the

coronal view of the spine CT image. Obviously, it can be
observed that the initial contour can quickly converge on
vertebra boundaries to improve the segmentation accuracy.
In addition, less iteration is needed to obtain the final
converged result, thereby avoiding a larger displacement of
the initial contour.

-e final goal of our method is to represent the detailed
shape of the spinal curve using the centroid method. It
should be pointed out that we would select the appropriate
CT slice of the spine image in order to extract vertebral
centroids. Figure 13 shows a comparison result between the
extracted centroid and ground-truth centroid. It can be seen
that all extracted centroids of CGAdaBoost-DRLSE with
multifeature fusion are nearly consistent with the ground
truth. Only less extracted centroid has a larger error because
of the severe vertebral fracture, which is seen in Figure 13(b).

(a) (b)

Vertebrae 2
Vertebrae 1

Vertebrae 3

Vertebrae 4

Vertebrae 5

Vertebrae 6

Vertebrae 7
Vertebrae 8

(c)

Figure 9: Another detected result: (a) original CT image; (b) the enhanced image by the CLAHE method; (c) the final detected result.
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Figure 10: -e evolution result of DRLSE: (a) the initial level set function; (b) the final level set function.
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Furthermore, we extract the lumbar vertebrae, cervical
vertebrae, and thoracic vertebrae from the whole spine.-e
corresponding spinal curve is calculated by the least
squares method. Figure 14 displays the curve fitting results
of various parts of the whole spine. -e curve of the lumbar
(i.e., from L1 to L5) on the sagittal view is presented in
Figure 14(a). -e curve of the lumbar (i.e., from T12 to L5)
on the coronal view is given in Figure 14(b). Figures 14(c)
and 14(d) show the curves of the lumbar on the coronal
view.-e severe scoliosis curve of the thoracic (i.e., from T1
to T12) on the coronal view is shown in Figure 14(e). -e
curve of the cervical (i.e., from C1 to C7) on the coronal
view is shown in Figure 14(f ). Specially, from Figure 14(c),
we can see that, even if there are some distorted vertebrae

(indicated by the arrow), it has no influence on the whole
spinal curvature.

After curve fitting, the angle between two tangents to the
curve is determined as the spinal curvature angle. Table 1
lists a part of spinal abnormalities diagnostic results in
Figure 13. Comparing the spinal curvature angle with the
prior medical treatment, the spine is decided as normal or
abnormal. By analyzing the above results, our method shows
promising scoliosis recognition results and also can be
applicable to other image patterns. Meanwhile, this method
also diagnoses lordosis and kyphosis by observing the spinal
curvature from a sagittal view.-e resulting curvature of the
spine is not affected by bone lesions, without the need to
manually identify the endplate vertebrae.

(a) (b) (c)

Figure 11: -e segmentation result on the sagittal view: (a) the contour with 100 iterations; (b) the final contour with 200 iterations; (c) the
final segmentation result.

(a) (b) (c)

Figure 12: -e segmentation result on the coronal view: (a) the contour with 100 iterations; (b) the final contour with 200 iterations; (c) the
final binary segmentation result.
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(a) (b)

Figure 13: Comparison results of the extracted centroids (red solid point) with the ground-truth centroids (blue star): (a) the result without
the vertebral pathology case; (b) the result with the severe vertebral fracture case.

(a) (b) (c)

(d) (e) (f )

Figure 14: Curve fitting results of various parts in the whole spine: (a) sagittal lumbar curvature; (b)–(d) coronal lumbar curvature; (e)
coronal thoracic curvature; (f ) coronal cervical curvature.
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4.3. Be Assessment of Performance. To evaluate the per-
formance of the cascade gentle AdaBoost classifier, the re-
ceiver operator characteristic (ROC) is used as an evaluation
criterion. ROC intuitively shows the compromise between
true-positive rate and false-positive rate for the classification
model. Figure 15 compares the ROC curve of CGAdaBoost
with a single-feature and multifeature fusion. It is obvious
that the ROC of the multifeature fusion method is higher
than a single-feature method. -is further reveals that the
detected vertebrae are more accurate by the CGAdaBoost
classifier with multifeature fusion.

Additionally, to verify the credibility of the spinal curve
fitting, using two evaluation criteria is to comprehensively
assess the quality of curve fitting. One is the coefficient of
determination (R2). It is a statistic of goodness of fit. -e
value range is from 0 to 1. And the larger the value is, the
better the fitting effect is. -e other is root mean squared
error (RMSE) that is the relative deviation between the
predicted value and the real value. -e mathematical ex-
pressions of two criteria are given as follows:
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where v and v′ indicate the real value and the fitting value,
respectively, and v is the mean value of n samples. By cal-
culating the values of R2 and RMSE, the results of different
methods on twenty spine CT volumes are displayed in
Figures 16 and 17, respectively.

In Figure 16, we can see that no matter which method, it
gains relatively higher R2 on each volume. -e R2 of
multifeature fusion is closer to one. It reflects that the spine
curve fitting has better goodness of fit. Meanwhile, from
Figure 17, we clearly know that multifeature fusion out-
performs a single-feature method in terms of RMSE on
each dataset. It is because that better spine curve fitting may
depend on accurate vertebral centroids. -is also confirms
the effectiveness and quality of curve fitting in the proposed
method.

Furthermore, the detection accuracy rate and centroid
location error are employed to further assess the proposed
method. From the total 231 vertebrae, CGAdaBoost-
DRLSE with single feature detects 227 vertebrae, result-
ing in the detection accuracy rate of 98%. By contrast, the
multifeature fusion successfully detects 229 vertebrae and

has the detection accuracy rate of about 99%. -e centroid
location error is computed using the Euclidean distance
between extracted centroids and ground-truth centroids.
-e single-feature method achieves an average centroid
location error of 1.51mm. -e multifeature fusion method
has the mean centroid location error of 0.87mm. Two
related methods reported by Korez et al. [9, 11] use the
same database as our method for fair comparison. -e
performance comparison result is summarized in Table 2.

In Table 2, the proposed method is superior to other
competitive methods in terms of the detection accuracy rate.

Table 1: A part of diagnosis results.

Binary mask -e curvature angle -e diagnosis result
Figure 14(a) Sagittal lumbar 40.4° Normal
Figure 14(b) Coronal lumbar 30.5° Abnormal
Figure 14(c) Coronal lumbar 3.2° Normal
Figure 14(d) Sagittal lumbar 44.6° Normal
Figure 14(e) Coronal thoracic 55.2° Abnormal
Figure 14(f) Coronal cervical 2.6° Normal
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Figure 15: -e ROC curve on different methods.
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Figure 16: R2 of different methods on twenty subjects.
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-is is because that vertebral shape variations and patho-
logical features are fully fused. -us, effective vertebrae
features are trained to improve the detection accuracy. On
account of inadequate estimation using the dense proba-
bilistic centroid estimation method in [11], our method
potentially produces less centroid location error. By com-
pared with interpolation theory and shape-constrained
method [9], we found that CGAdaBoost-DRLSE with
multifeature is slightly superior to the result of [9], which is
most probably due to incorrect segmentation of some
smaller vertebrae. Overall, the proposed method can auto-
matically detect and segment vertebrae from CT images. In
particular, for a relatively small number of subjects with
some pathological vertebra, it can provide accurate spinal
curvature to recognize scoliosis deformity from unlabeled
CT images. Moreover, any manual landmark is not required.
-ese unknown CT images can be labeled as abnormal or
normal through this unsupervised method.

5. Conclusion

-is paper proposes an unsupervised scoliosis recognition
method with unlabeled CT images to improve the accuracy.
-e CGAdaBoost-DRLSEmethod consists of vertebral bodies’

detection, segmentation, and centroids extraction. Firstly,
diversified training samples and multifeature descriptors are
considered to achieve better detection results in the cascade
gentle AdaBoost classifier. -en, located bounding boxes
represent the initial contour of DRLSE to eliminate the sen-
sitivity of initialization and quickly converge on vertebral
boundaries. Finally, vertebral centroid extraction and curve
fitting are performed to compute the spinal curvature angle,
thereby recognizing scoliosis with the prior medical treatment.
Experimental results have demonstrated that the proposed
method can effectively and accurately diagnose scoliosis de-
formity and reduce the need for manual landmark. Besides,
the proposed method also is suitable for clinical work with
acceptable results and serves as a quick guideline for non-
experts. In future work, we will extend the proposedmethod to
the three-dimensional case by introducing spatial information
of CT spine volume and classify various vertebral fractures by
the designed multiclass classifier.

Data Availability

-e experimental datasets analysed during this study are
available in the publicity platform SpineWeb, (http://
spineweb.digitalimaginggroup.ca/dataset.html).
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Figure 17: RMSE of different methods on twenty subjects.

Table 2: -e performance comparison of our methods and other related works.

Methods
Evaluation
criteria

Supervised classification
forests [11]

Interpolation theory + shape-
constrained [9]

Single-feature
+CGAdaBoost-DRLSE

Multifeature
+CGAdaBoost-DRLSE

Detection
accuracy rate 86% 97% 98% 99%

Centroid
location error 4.4mm 1.1mm 1.51mm 0.87mm
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