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If life were created by intelligent 
design, we would indeed age from 

accumulation of molecular damage. 
Repair is costly and limited by ener-
getic resources, and we would allocate 
resources rationally. But, albeit elegant, 
this design is fictional. Instead, nature 
blindly selects for short-term benefits of 
robust developmental growth. “Quasi-
programmed” by the blind watch-
maker, aging is a wasteful and aimless 
continuation of developmental growth, 
driven by nutrient-sensing, growth-
promoting signaling pathways such as 
MTOR (mechanistic target of rapamy-
cin). A continuous post-developmental 
activity of such gerogenic pathways 
leads to hyperfunctions (aging), loss of 
homeostasis, age-related diseases, non-
random organ damage and death. This 
model is consistent with a view that 
(1) soma is disposable, (2) aging and 
menopause are not programmed and 
(3) accumulation of random molecular 
damage is not a cause of aging as we  
know it.

Introduction

“Natural selection, the blind, uncon-
scious, automatic process…has no 
purpose in mind. It has no mind and 
no mind’s eye. It does not plan for the 
future. It has no vision, no foresight, no 
sight at all. If it can be said to play the 
role of watchmaker in nature, it is the 
blind watchmaker.”1 Richard Dawkins, 
The Blind Watchmaker: Why the Evidence 
of Evolution Reveals a Universe without 
Design.
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The View from Intelligent Design

DNA, RNA, proteins, lipids, as well as 
structures containing these molecules can 
be damaged. Molecular damage constantly 
occurs. This must lead to aging. Molecular 
damage can be repaired. Yet, repair is 
energy-dependent and “expensive.” And 
the organism, anyway, does not last for-
ever, because it dies from extrinsic causes, 
such as predators, infections, starvation 
and accidents. Resource must be allocated: 
first to vital functions (such as brain respi-
ration) to avoid immediate death, second 
to growth and reproduction and, third, to 
repair molecular damage to avoid “aging.” 
And a truly intelligent designer will even 
calculate cost-effectiveness of anti-aging 
repair and design trade-off allocation 
between repair and reproduction to maxi-
mize reproductive success.

In the protected environment, where 
accidental causes of death are dimin-
ished, humans and laboratory/domesti-
cated animals would die from aging (see 
Footnote 1).

1	 Many advocates of programmed aging point out that 
some species of animals (especially, larger animals), 
live long enough in the wild to die from aging. Yes, 
some do (by the way, not Pacific Salmon, in which 
98% individuals died before spawning (see ref. 14 
for explanation); however, it does not mean that 
aging is either programmed or designed. It is still 
quasi-programmed. In natural “protected environ-
ments,” when extrinsic death rate is temporarily low, 
nature selects for slow aging and aging tolerance 
(see aging tolerance in refs. 16 and 20), until most 
individuals live longer to die from extrinsic causes 
again. Therefore, aging in the wild may predominate 
in some species once in a while, because a natural 
“protected environment” may emerge occasionally. 
This does not argue for “programmed nature” of 
aging.
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highway exits to a parking lot but contin-
ues to idle at full speed, as the accelerator 
is stuck. Importantly, even 50 mph will be 
too fast (see Footnote 2).

It is not BW, but starvation, scarce 
resources and stresses that de-activate the 
nutrient-sensing mTOR pathway, simply 
for mechanistic reasons not for the pur-
pose of slowing aging. Starvation slows 
developmental growth, delays reproduc-
tion and aging (Fig. 1A), because aging 
is just driven by the same M(o)TOR, and 
this is why CR extends lifespan and over-
eating shortens it14 (Fig. 1).

Both Models are Disposable Soma 
Theories (DST)

Soma is disposable by definition. 
Therefore, regardless of the mechanisms 
of aging, all models of aging are “dispos-
able soma theories.” For example, soma 
could be damaged by passive process, such 
as insufficient repair of molecular dam-
age. As emphasized, “the aging process is 
caused by the gradual buildup of a huge 
number of individually tiny faults—some 
damage to a DNA strand here, a deranged 
protein molecule there and so on.”15 Or 
it can be damaged by an active process: 
myocardial infarction and stroke as a con-
sequence of atherosclerosis, hypertension 
and thrombosis caused by MTOR-driven 
aging.6,16

It is misleading to call any one theory 
“simply” disposable soma theory (DST), 
implying that other theories are not 
DSTs.

DST One: Damage/Repair Theory

Known as “disposable soma theory 
(DST),” this theory postulates that: 
(1) accumulation of molecular dam-
age causes aging, and (2) repair is costly 
and limited by resources.15,17,18 Therefore, 
molecular damage is not repaired com-
pletely and eventually causes aging (in a 
protected environment). This is logical 
and intelligent. Actually, this is exactly 
what an intelligent designer would design. 
However, predictions of this model con-
tradict observations, experiments and 
medical practice. If repair is limited by 
resources, the prediction must be the 
less resources, the shorter lifespan. And 

growth programs driven by MTOR 
(and other related pathways). What 
for? Furthermore, MTOR is positively 
involved in reproduction. Also, the organ-
ism is likely to die from extrinsic causes 
anyway (Fig. 1). So nature is incapable 
of inhibiting MTOR just to prevent 
“future” aging. A hypothetical excep-
tion was discussed elsewhere.6,7 One can 
calculate the cost-effect, but not because 
anti-aging efforts are limited by resources, 
but because MTOR is pleiotropic: use-
ful early in life and harmful later. Later 
in life, MTOR causes cellular aging with 
inappropriate hyperfunction, an increased 
production of cytokines, resistance to sig-
nals, leading to loss of homeostasis, dis-
eases of aging, organ damage and death, 
as recently discussed.6

BW is reluctant to constrain mTOR 
just in order to delay “aging.” Survive right 
now is more important. The M(o)TOR is 
running, and the accelerator is stuck. By 
analogy, a car, running at 75 mph on the 

Blind Watchmaker

Unlike intelligent designer (ID), blind 
watchmaker (BW) cannot foresee aging. 
The BW is concerned with development, 
growth, reproduction and prevention of 
death from immediate causes: starvation, 
accidents, predators, weather, genetic and 
infectious diseases. Early in life, an animal 
must be strong and competitive. Activated 
by nutrients and growth factors, intra-
cellular signaling networks including the 
MTOR (target of rapamycin) pathway 
stimulate growth,2,3 muscle hypertrophy4 
and robustness.5 Provided that nutrients 
(fuel) are readily available, MTOR is 
active or, metaphorically, “MoTOR” is 
running (Fig. 1A).

Because BW cannot design, she is 
extremely wasteful and messy. But even 
a small increase in fitness early in life 
justifies any waste. Furthermore, when 
development is finished, BW continues 
to spend energy on “twisted” growth or 
aging, which is purely harmful, energy-
consuming and an unneeded process. But 
nature is blind. So how does growth con-
vert into aging?

When developmental growth is com-
pleted, BW does not care to switch off 

Figure 1. MTOR-driven quasi-programmed aging: plenty of food (overeating) vs. calorie restric-
tion (famine). (A) Plenty of food: activation of the nutrient/MTOR and insulin/MTOR pathway. 
Calories are used for survival, growth and reproduction (R). Energy-dependent program of devel-
opmental growth continues as energy-dependent quasi-program of aging. N (natural), the typical 
lifespan in the wild; P (protected environment), the typical lifespan in the protected environment 
(humans, laboratory and domestic animals). In rare cases, protected environments can emerge 
naturally, especially among large animals. (B) Calorie restriction and famine: Especially during 
famine, calories/nutrients are used for immediate survival and only “leftovers” for program of 
developmental growth and reproduction (growth/R). N (natural), the typical lifespan in the wild 
during famine is short. There is no need to spend any calorie on anti-aging activities, no need 
to delay aging. P (protected environment), the typical lifespan in the protected environment 
(humans, laboratory and domestic animals). Lifespan is increased during calorie restriction under 
protected environment (ideally, no accidental death), exactly because resources are limited to 
drive energy-dependent quasi-programmed aging.

2	 In theory, either the MTOR activity or synthetic 
processes may be decreased later in life, but either not 
sufficiently or too late. For example, RNA/protein 
synthesis is decreased with aging in model organ-
isms, yet its further inhibition prolongs lifespan,8-13 
indicating insufficient natural decrease
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gerogenic cells drive age-related diseases 
and organism aging.38,60 Because rapamy-
cin suppresses cellular geroconversion, the 
gerosuppressant rapamycin also suppresses 
age-related diseases and aging (See ref. 61 
for review and references therein as well 
as most recent publications). Interestingly 
rapamycin can also affect not only gero-
conversion (physiological aging) but also 
so-called chronological aging in yeast62 
and cancer cells,63 or in other words, acid-
induced cell destruction.63-65 Even more 
intriguingly, rapamycin can prevent rep-
licative aging in certain conditions.55,66-68 
Most importantly, it can treat age-related 
diseases and69-74 extend lifespan in old75 
and cancer-prone mice,76 including mice 
lacking p5377-80 and RB,81 and slow down 
the aging process.82,83

Why Damage Cannot Cause  
Aging, as We Know It

Unlike pleotropic MTOR, which is useful 
early in life, random damage is harmful 
at any stage of life. Blind watchmaker is 
especially prone to overdo any necessary 
task for short-termed benefits. BW repairs 
it because it is harmful right now, not 
because BW is concerned with aging later. 
Broken bone needs to be repaired to save 
infant life. Molecular damage needs to 
be repaired too. Or consider progeria,84-87 
including Hutchinson-Gilford progeria 
(HGP) syndrome.88 Infants and children 
with this syndrome would not be viable 
in the wild. They would die at a very 
young age. By a remarkable co-incidence, 
progeria in animals can be treated by 
rapamycin.89-91

So BW takes damage repair seriously: 
damage must be repaired regardless of 
aging, and this is why it is not a cause of 
aging. In addition, mutations initiate a 
sequence of events leading to cancer. Not 
despite but because of high mutation rate, 
cancer cells are robust (not weak), and 
multiple rounds of selection and prolif-
eration non-randomly activate the MTOR 
pathway in cancer cells (for details, see ref. 
92). Finally, BW may blindly repair some 
rare beneficial mutations too.

But still, damage accumulates. In 
theory, it will cause a new type of aging 
(at age of 130, for instance) if MTOR-
driven quasi-programmed aging would 

Life without Food: Eating as 
Harmful Quasi-Programmed  

Hyperfunction

The most impressive example is lifespan 
extension by complete removal of food in 
C. elegans.40 Whereas nutrients are essen-
tial for developmental growth, they are not 
needed in adult C. elegans, but even hurt 
them. Still, harmful eating continues. As 
was discussed in detail, nutrients, insulin 
and growth factors all activate TOR, driv-
ing growth and aging.41 This explains why 
lack of food extends lifespan. This can-
not be easily explained by any trade-offs 
between maintenance and reproduction.40 
The higher the MTOR activity, the faster 
the aging the way it is blindly “designed.” 
An adult worm is actively seeking food, 
thus only accelerating its aging and death.

Gerogenic Conversion (Cellular 
Aging) and Organismal Aging

One of the most important features of 
hyperfunction theory is that organismal 
aging and age-related diseases can be eas-
ily explained by cellular aging on molecu-
lar mechanisms.38,42,43 Cellular senescence 
is not just cell cycle arrest.44 Senescence is 
not even necessarily cell cycle arrest (see 
Footnote 3). Cellular senescence devel-
ops when signal-transduction pathways, 
which drive metabolism and mass/size 
growth (nutrient-sensing, oncogenic, 
growth-promoting pathway, insulin/
mitogen-sensing, gerogenic pathways), are 
activated, but the cell cycle is nevertheless 
blocked. Then the cell undergoes MTOR-
driven geroconversion or conversion from 
quiescence/arrest to senescence.45-59 Such 

vice versa, namely, over-nutrition would 
provide resources for repair and thereby 
extend lifespan. However, calorie restric-
tion extends lifespan, whereas overeating 
shortens it.

To save the theory, it was suggested 
that during famine/starvation resources 
are allocated to anti-aging repair (Fig. 1). 
When starvation is over, then an organ-
ism would live a longer life, catching up 
with reproduction. This is paradoxical.14,19 
First, during famine, when the death rate 
is especially high, it would be sensible to 
allocate resources to vital functions and 
fitness, simply to prevent death from 
starvation and predators. Is it aging that 
always limits lifespan in the wild accord-
ing to DST (and even despite famine 
when external death rate is exceptionally 
high). This contradicts the evolutionary 
theory. The DST (repair/damage) theory 
becomes internally inconsistent, leading 
to paradoxes as discussed.14 It was even 
suggested that some harmful conditions 
such as menopause are programmed and 
have a purpose.15 And would any rational 
designer extend life by inflicting damage 
(hormesis), indicating lack of design, as 
recently discussed?20 And finally, dele-
tion of numerous genes and processes 
not only improves an organism, but also 
extends lifespan.21-36 What is a strange 
design? Should knockout of springs make 
clock-watches better? One must agree 
with Richard Dawkins that an intelligent 
designer (ID) has never existed. Aging, 
like life itself, have been shaped by blind 
watchmaker (BW).

DST Two: Hyperfunction Theory

In the BW scenario, an organism actively 
causes aging. BW uses energy to foster 
growth and then for its unneeded con-
tinuation, quasi-programmed aging. 
The long sequence of unforeseen events 
includes cellular hypertrophy, hyperplasia, 
hyperfunctions, loss of homeostasis, age-
related diseases, organ damage and loss 
of functions.37,38 At late stages, the pro-
cess becomes MTOR-independent. Then 
malfunctions replace hyperfunctions. 
Since initial hyperfunctions are the most 
harmful, the model MTOR-driven quasi-
programmed aging is becoming known as 
hyperfunction theory.39

3	 The difference between cell cycle arrest and senes-
cence is unfortunately misunderstood. In the young 
organism, most cells are arrested but not senescent. 
They become senescent via gerogenic conversion. 
In cell culture, cell cycle arrest is a predisposition 
to senescence. Cell cycle arrest itself does not cause 
senescence but creates conditions for geroconversion 
from arrest to senescence.44 MTOR generally causes 
growth and fosters proliferation, whereas rapamycin 
slows cell cycle progression and of course does not 
induce proliferation in the arrested cells.44 What 
rapamycin and other inhibitors of MTOR do is sup-
press geroconversion (gerosuppression). Inhibitors 
of MTOR suppress some markers of senescent phe-
notype and preserve proliferative/regenerative (PP) 
potential, which is convenient to measure senescence. 
The potential to proliferate is not proliferation. This 
is the potential of normal young cell.
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not terminate life first. By analogy, when 
in the past people died young from star-
vation, infections and accidents, then 
atherosclerosis could not kill them. Some 
age-related diseases were almost unknown 
until recently.

Quasi-Program is Not a Program

The evolutionary theory explains that 
aging cannot be programmed. Still the 
notion that aging is programmed persists 
and was even “re-invented.” In my mind, 
the reason why theories of programmed 
aging are still “alive” is that aging is so 
program-like. Human age-related diseases 
and menopause have distinct molecu-
lar, cellular and systemic mechanisms, 
which are not random at all. How can 
random damage drive these processes 
that are so development-like? Even non-
programmed random molecular damage 
theories accept that menopause and death 
of Pacific salmon are programmed. But, 
like aging itself, they are not: they are 
quasi-programmed.

A quasi-program looks like as a pro-
gram, but it is not. It is a continuation of 
some useful developmental program. It is 
a by-product. Unlike an actual program 
it has no purpose, nor plan. By giving a 
new application to the Dawkins words, I 
have the courage to write that, as the blind 
continuation of developmental growth, a 
quasi-program of aging “has no purpose 
in mind. It has no mind and no mind’s 
eye. It does not plan for the future. It has 
no vision, no foresight, no sight at all.”1

Amazingly, logical thinking could cre-
ate non-programmed “damage/repair” 
theories on one hand, and “programmed 
aging” theories on the other hand. In con-
trast, blind watchmaker may unsuspect-
ingly create only quasi-programmed aging. 
Of course, “DST-one” was not intended 
as a design theory, but in contrast, like 
“DST-two,” it was inspired by Darwinian 
theory of natural selection. But at the end, 
one may characterize DST-one as a flawed 
application of BW thinking that, inad-
vertently, has the character of intelligent 
invention when viewed through the lens of 
hyperfunction theory (DST-two).
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