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Understanding the role that the environment plays in influencing public health often

involves collecting and studying large, complex data sets. There have been a number

of private and public efforts to gather sufficient information and confront significant

unknowns in the field of environmental public health, yet there is a persistent and

largely unmet need for findable, accessible, interoperable, and reusable (FAIR) data.

Even when data are readily available, the ability to create, analyze, and draw conclusions

from these data using emerging computational tools, such as augmented and artificial

intelligence (AI) and machine learning, requires technical skills not currently implemented

on a programmatic level across research hubs and academic institutions. We argue

that collaborative efforts in data curation and storage, scientific computing, and training

are of paramount importance to empower researchers within environmental sciences

and the broader public health community to apply AI approaches and fully realize

their potential. Leaders in the field were asked to prioritize challenges in incorporating

big data in environmental public health research: inconsistent implementation of FAIR

principles in data collection and sharing, a lack of skilled data scientists and appropriate

cyber-infrastructures, and limited understanding of possibilities and communication of

benefits were among those identified. These issues are discussed, and actionable

recommendations are provided.

Keywords: artificial intelligence, public health, machine learning, open data, environmental health sciences,

big data

INTRODUCTION

Out of the tens of thousands of individual chemicals currently in commerce (and many more
mixtures, natural products, and metabolites) <10% have been screened for safety. The U.S. EPA’s
Toxic Substances Control Act (TSCA) Chemical Substances Control Inventory contains roughly
85,000 chemicals (U.S. EPA, 2016), and the European Chemicals Agency (ECHA) Inventory lists
over 100,000 unique substances (as of the most recent update in August 2017), of which ∼22,000
are registered substances with some information on structure, usage, or toxicity (ECHA, 2017).
Understanding which chemicals in the environment, both with and without safety data,
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pose a risk to human health requires that we more effectively
leverage the data that we already have, and that we take intelligent
approaches to generating new data. While the traditional means
of collecting chemical safety data (animal models) are laborious
and of variable accuracy and human relevance (Hartung, 2009),
such reference data can still be used to train models for
prioritizing and predicting toxicity of new chemicals, provided
the data are curated in a computationally accessible format
and, ideally, integrated with other lines of evidence providing
mechanistic information. This requires significant effort, both
in collecting, and extracting information as well as annotating
it appropriately.

These toxicological problems are mirrored in public and
environmental health more generally: huge, complex issues
with inadequately curated data, and analytic power. Recent
research in toxicology has focused on high-throughput screening
to rapidly produce quantitative data on thousands of human
biological targets (e.g., Thomas et al., 2019), data-mining to
identify relevant end-points building predictive models for
adverse toxicological outcomes (e.g., Saili et al., 2019), and
application of cutting-edge machine learning (ML) and artificial
or augmented intelligence (AI) techniques (e.g., Luechtefeld
et al., 2018). Collectively, these technologies facilitate enhanced
mechanistic insights and may obviate the need for inefficient
testing in animal models, but they are still not considered
mainstream approaches nor are they widely accepted by
regulatory agencies. Individual research programs generate large
data sets, but without centralized coordination, standardized
reporting, and common storage structures, the data cannot
be effectively combined and used to its full potential. The
federal Tox21 research consortium has, to date, tested more
than 9,000 chemicals to varying degrees in 1,600 assays and
demonstrated environmental chemical interactions with critical
human and ecologically-relevant targets (Tice et al., 2013).
Translational systems approaches are being employed by this
and other programs (e.g., Horizon 2020, EUToxRisk, CEFIC LRI,
OpenTox) to produce diverse data streams and predict chemical
effects on human health and disease outcomes (e.g., Kleinstreuer
et al., 2014). At the same time, there have been substantial
efforts to develop and deploy sensors and satellite systems
that yield additional large and complex data sets that provide
information about chemical exposures (Dons et al., 2017; Ring
et al., 2019; Weichenthal et al., 2019). Further, epidemiologists
are actively developing ML and AI approaches to enhance
understanding of chemical exposures and associated disease risks
(Brandon et al., 2018). However, these efforts also are largely
disconnected from one another and operate independently,
despite the clear potential benefits if such data could be combined
and jointly analyzed. Given the need to integrate and analyze
large, multifactorial data sets, researchers in public health and
the environmental health sciences (EHS) would greatly benefit
from the ability to collect, process, analyze, and make inferences
on data using ML and AI. However, in these fields, a general
lack of relevant knowledge among many researchers, sparse,
distributed, or inaccessible data, and an inadequate framework
for sharing and disseminating innovations impede efforts to
implement these approaches. Here, we discuss three specific

areas with room for improvement in the public health/EHS field:
data collection and sharing, researcher knowledgebase, and a
recognition of the benefits AI/ML can bring to current problems.
Recommendations are provided in each of these areas to facilitate
bringing big data to bear on public health and EHS challenges.

DATA COLLECTION AND SHARING

Challenge
A major hurdle confronting investigators conducting public
health and EHS research is a lack of comprehensive human
and environmental exposure and effects data that are annotated
using controlled vocabularies. Addressing this problem is a
prerequisite to applying AI and ML, as without sufficient, high-
quality data and metadata, the analytic methods themselves are
irrelevant. Quantifying environmental exposure, such as from air,
water, soil, and food, is difficult both at the micro (localized to
individuals and small geographic units) and macro (national and
international) levels. For instance, air pollution can vary up to
eight-fold within a given city block, but most U.S. cities have only
one air quality monitor (EDF, 2019). Epidemiologic studies of air
pollution health effects often must rely on disparate data that lack
both temporal and spatial specificity and cannot account for the
movement of people across different areas of pollution. Without
continuous and advanced monitoring, and robust computer
modeling methods, illnesses related to transient exposures might
not be recognized as part of a significant pattern until substantial
adverse health effects have occurred. This is one example where
the development of AI tools in the EHS space has been hindered
not by the AI technology capacity itself but instead by a lack
of reliable, interconnected data (NAS, 2019). This is equally
true in the medical sector with respect to patient treatment and
outcomes. IBM’s ambitious partnership with the MD Anderson
Cancer Center to develop AI to expedite clinical decision-making
has been at a standstill after years of development due to a lack of
standardized, accessible data (Jaklevic, 2017).

Even when standardized data are available, finding, accessing,
and processing it can be a monumental task. The absence of a
uniform framework for openly sharing and storing data means
that researchers devote significant time to locating relevant data.
Knowledge of where to find data is often highly sector-specific,
inhibiting cross-disciplinary research. For example, a climate
scientist interested in public health would need knowledge of
health-specific data repositories to conduct the search. Rather
than waste manual effort and time in locating data, let alone
integrating it, coordinated efforts could result in processes
that could be automated and simplified. Ethical concerns have
been voiced in regard to organizing large repositories of these
types (Ienca et al., 2018). Of these, patient data privacy is a
major concern, and breaches of patient records databases are a
constant challenge. Unique patient identifier numbers and other
de-identification/anonymization techniques can protect patient
privacy, while allowing for meaningful research and analysis
(Emam et al., 2015). New encryption based techniques allow for
predictive modeling while maintaining the privacy of sensitive
information, such as the application of homomorphic encryption
to patient data in predicting cardiovascular disease (Bos et al.,
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2014). However, inconsistent regulations and lack of practical
protocols around handling sensitive information have resulted in
unethical scenarios, where data is being sourced from countries
where patients have minimal rights (Mittelstadt and Floridi,
2016). Not only is this problematic from an ethical perspective,
it also limits AI innovation to only those who have access to these
obscure datasets. Specific tools developed by startups who have
the luxury of sourcing data from elsewhere are often acquired
by large corporations, making innovation an exclusive pursuit.
Thus, the environmental public health field requires a revolution
in the collection and organization of environmental exposure and
effects data as a first step in democratizing information access and
building better models to improve predictions.

Recommendations
Further work is clearly needed in data collection and sharing,
but recent attempts in specific sectors are exemplar in the
aggregation of data and development of open, accessible
repositories that maintain necessary privacy standards. In
2016, over 50 contributing researchers from global institutions
proposed the “Findable, Accessible, Interoperable, and Reusable”
(FAIR) Guiding Principles for scientific data management and
stewardship (Wilkinson et al., 2016). These principles bridge the
divide between human-conducted and machine-driven research
behaviors. Using FAIR principles, the NIH is creating Data
Commons, a platform for data management, and metadata
cataloging for terminologies and ontologies (Mahony et al.,
2018). This framework has been one of the key drivers behind
new repositories and tools such as the National Toxicology
Program’s Integrated Chemical Environment (ICE) (Bell et al.,
2017) portal and the U.S. EPA’s CompTox Chemicals Dashboard
(Williams et al., 2017), which allow FAIR principles to be
applied to non-animal in vitro and in silico data, along with
in vivo animal data and human exposure information. A
collaboration between the US FDA, the non-profit Clinical
Data Interchange Standards Consortium (CDISC), and other
stakeholders, resulted in the development of study data standards
for non-clinical, clinical, analysis and metadata (https://www.
cdisc.org/standards) to create common reporting formats. These
concepts are cornerstones of the 2018U.S. Strategic Roadmap for
Modernizing Safety Testing of Chemicals and Medical Products,
developed by 16U.S. federal agencies, which advocates for
practices that increase confidence in new data-driven research
methods (ICCVAM, 2018). A significant portion of the work
done by these data powerhouses is retrospective data curation,
often performedmanually (e.g., Kleinstreuer et al., 2016).Work is
ongoing to automate some aspects of the information extraction
pipeline, but additional efforts to standardize reporting formats,
and metadata terminologies in emerging research could lighten
the curation burden on these institutions and streamline data
annotation and storage, allocating greater resources to the
development of novel applications.

Many of the recent advances in developing openly accessible
databases of environmental exposure information have come
from the private sector, often in partnership with non-profit
organizations and academic institutions. The Monarch Initiative
(https://monarchinitiative.org/) is one such collaboration to

apply ontologies, or semantic descriptions, to disease phenotypes
and enable intra- and inter-species comparisons and connection
to genotypes, pathways, and experimental models. Another
example is a pilot project in Oakland, California, between
the Environmental Defense Fund (EDF) and Google Earth
Outreach which involved attaching air quality sensors to Google
Street View cars. This was recently extended to a partnership
with an environmental sensor company (Aclima) to equip
Street View cars with mobile air quality sensors in cities
around the world (Business Wire, 2018). The sensors capture
detailed air quality and emissions data at high (street-block
level) resolution and temporal frequency. These data will be
aggregated and made available on a Google database. Google
also recently announced that it will report estimates of city-
level greenhouse gas emissions and annual driving, biking, and
transit ridership (data gathered via Google Maps and Waze)
(Meyer, 2018; Google, 2019). Google’s new Dataset Search is
an initial attempt to apply distributed search to datasets from
the environmental and social sciences, government data, and
news organizations (Noy, 2018). By providing access to data
from multiple disciplines via a single platform, researchers can
conduct interdisciplinary work fundamental to environmental
and public health (Vincent, 2018). Applying these powerful
methods to better curate and integrate diverse sources of data
will promote greater understanding of complex and dynamic
systems. However, acceptance and implementation of these
improvements are not yet widespread, particularly in the
public and environmental health sectors. Following the lead of
these innovative pilot studies, a greater emphasis needs to be
placed on developing the appropriate infrastructure for effective,
standardized data collection approaches, common ontologies,
and uniform sharing protocols.

RESEARCHER KNOWLEDGE BASE

Challenge
Public health and EHS researchers are not traditionally trained
in scientific computing and data science, and computer scientists
do not typically apply their skill sets to EHS problems. This
impedes the introduction and utilization of powerful data science
techniques to public and environmental health practice and
research. The American Association for Public Health, the
body responsible for accrediting public health programs in the
United States, currently does not include computer skills in the
core competencies required of a Master’s of Public Health (MPH)
program. This omission is a disservice both to public health
students and the field of public health research more broadly.
Just as being able to read and write are fundamental skills and
required baseline competencies for entering a graduate program,
computer science will eventually become a similar prerequisite
for comprehensive and effective analytical approaches across
the biological and toxicological realm. Ultimately, the EHS and
public health disciplines need a culture and skill shift. Over the
next decade, scientists will need to understand the fundamentals
of computer and data science in order to be successful in their
field. Having this core computer science competency will be
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critical to the future success of transdisciplinary research in the
EHS and public health disciplines.

Recommendations
Current public health and EHS students are interested in these
issues, which means that public health schools need to integrate
computer and data science into their core curriculums. While
students interested in big data and public health are not at a total
loss for resources, provided they are willing to seek them out,
there are major gaps in the academic arena. There are a handful
of existing programs that currently provide the skill set needed
to apply data science to public health research. The Master of
Science in Data Science is an option offered from a number
of Universities, but few offer, or even consider, the integration of
this degree with applications in the field of public health. Within
the status quo, students are presented with the option of either
an MPH or an MS in Data Science, with little crossover between
the two. Even programs such as Harvard’s Health Data Science
MS, which is offered through the School of Public Health, only
requires one epidemiology course and then places the onus on
the student to integrate the public health perspective into their
own research.

The lack of computer skills in the core competencies of the
MPH is one example of an area with obvious and immediate
room for improvement. However, the need for cross-disciplinary
training and communication is equally relevant from the
perspective of computer scientists, who should be educated and
engaged in EHS and public health applications. Students from
both academic disciplines should be encouraged, if not required,
to engage in coursework in the other. This idea of “cross-
departmental partnerships” would arm public health students
with the technical skills needed to integrate computer science, AI,
andML into their work while providing insight for potential EHS
projects to which computer science students could apply their
skills. The thoughtful design of such a program also would foster
a culture of transdisciplinary research which will be key to finding
solutions to complex environmental and public health problems.
TheMassachusetts Institute of Technology is laying the necessary
groundwork for such a program by creating a new college for
AI. With a $1 billion investment, the college is expected to
start in the Fall of 2019 with the goal of integrating AI systems
across academic fields (Lohr, 2018). Continuing education
programs, such as the New Approach Methodology Use in
Regulatory Application training series (https://www.pcrm.org/
ethical-science/animal-testing-and-alternatives/nura), are being
offered to ensure that environmental public health professionals
also begin to develop the skills and expertise needed to leverage
big data and implement AI and ML based approaches. A highly
topical example of the benefit of teaching public health students
computational skills is the widely referenced Johns Hopkins
University resource for tracking the spread of the novel SARS
COV-2 coronavirus (https://coronavirus.jhu.edu/map.html).

While the above focus on cross-discipline training is of
paramount importance for future successful applications of
AI and ML in the EHS, incentives for cross-disciplinary
collaboration would have a more rapid impact and also would
inform the integration of computer and data science into EHS

curricula. Recognition of this opportunity by current EHS
leadership and appropriate investments to achieve this goal
would be of substantial benefit.

WHAT CAN AI AND ML DO FOR PUBLIC
HEALTH AND EHS?

Challenge
A downstream consequence of the challenges detailed above
is that the majority of researchers in the scientific community
are still unaware of the benefits that AI and ML could provide
when coupled with large, annotated, integrated datasets. A
lack of familiarity with AI and ML as tools means that even
when presented with examples of effective predictive models,
potential end-users may not adopt them due to a lack of
understanding, leading to decreased confidence in their utility.
Further, without substantial investment in data curation and
integration, the ability to apply AI andML and build suchmodels
is severely limited.

Recommendations
While these approaches are not yet mainstream, there are many
examples of extremely successful implementations of combining
big data with AI and ML to build high-performing predictive
models, and such case studies should be widely distributed
and serve as the catalysts for increasing support in these
research areas. Beyond establishing the cyber-infrastructure
to generate and store open, accessible data, select researchers,
and government agencies are developing modeling approaches
to effectively leverage those data. Aggregation of scholarly
data into more structured computational models, such as
quantitative structure activity relationship (QSAR)-based
chemical predictions, demonstrates the efficacy of pipelines
which turn decentralized data inputs into centralized models
(Mansouri et al., 2016). Keeping these models in siloed
communities is counter-productive, as the fundamental methods
of model creation relies on open data provided by researchers.
Drawing on standards for collaboration and sharing within the
computer sciences, the National Institutes of Health (NIH) and
the National Institute for Standards and Technology (NIST) have
organized multiple hackathons and public-private partnerships
to automate data extraction efforts and to create computational
models that map the biological effects of chemical exposures (e.g.,
Kleinstreuer et al., 2018). Models resulting from such enterprises
have surpassed the accuracy and efficiency of traditional,
manual-labor driven animal testing (e.g., Browne et al., 2017).
Projects such as the NCATS Biomedical Data Translator are
designed to establish cross-cutting infrastructures to facilitate
these data integration and modeling efforts (Austin et al., 2019).

If the above-mentioned hurdles can be overcome, big
data, AI, and ML represent a huge opportunity for the
expansion and application of effective environmental public
health research, as discussed at a recent 2019 National Academies
of Sciences workshop on “Leveraging Artificial Intelligence and
Machine Learning to Advance Environmental Health Research
and Decisions” (http://nas-sites.org/emergingscience/meetings/
ai/). There exist a number of examples of researchers who are
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TABLE 1 | Challenges and recommendations for fostering the big data revolution in environmental public health, summarized here and detailed in text.

Challenge Recommendation

Data are not collected using controlled terminologies or

standardized reporting formats.

Study data standards and ontologies should be designed and widely implemented. Such

resources should be both specific to individual data types and coordinated across sources to

optimize data utility and potential for integration.

Silos of information prevent access, integration, and effective data

science analyses and applications.

Implement FAIR principles in data curation and development of scientific cyber-infrastructures.

Establishing a culture of openness and data accessibility requires multiple nodes of

cross-sector communication. Funding opportunities should emphasize this necessity.

Current environmental public health curricula do not emphasize

data science skills.

Public health curricula should be data-minded and with ample resources for learning and

improving technical skills. Establish tech-focused learning by offering relevant course, digital

resources, and hosting speakers. Acquiring new skills needs to be celebrated and

credentialed. Similarly, computer science programs should offer training in environmental health

sciences and other biological application-oriented foci.

Lack of technical skills among environmental public health

professionals leads to out-sourcing of data-science tasks and lack

of adoption.

Training in AI, ML, and data science is not exclusive to universities or educational institutions.

Continuing education courses, seminars, and conference sessions should provide

environmental public health professionals with specialized resources and hands-on training in

data science and new approach methodologies.

Public health culture does not prioritize data expertise and

experimentation.

The scientific community must build an agile network of ambassadors and support curiosity

and experimentation. Major institutions should appoint a team of experts within the organization

to steer institutional culture and develop a wider network of expertise while also encouraging

students, faculty, regulators, and professionals to apply data science tools in innovative ways.

already bridging the fields of environmental public health, data
science, and AI. The “AI for Earth” initiative partners Microsoft’s
data science acumen with researchers who have environmental
expertise in the areas of agriculture, climate change, biodiversity,
and water. Grants from AI for Earth have funded AI
projects on population health model projections, image analysis
for biodiversity, crop forecasting, climate-related landslide
projections, modeling carbon sequestration, understanding
global pathogen spread, and much more (Microsoft, 2018).
AI and ML have facilitated a more nuanced and accurate
understanding of climate patterns, improving the accuracy
of forecasting extreme weather events to >90 percent (Cho,
2018). Researchers already use AI to improve air pollution
forecasts (Fontes et al., 2014; Bellinger et al., 2017; Bai et al.,
2018), disease diagnosis (Xiong et al., 2018), infectious disease
monitoring (Milinovich et al., 2014 https://nextstrain.org/),
tracking antibiotic resistance (Li et al., 2018), computational
chemistry (Goh et al., 2017), exposure and chemical-mixture
modeling (Bobb et al., 2014; Park et al., 2017; Vopham et al.,
2018) and improving classification of climate regions (Liss et al.,
2014). These innovative approaches and their successes are just
the tip of the iceberg, and point to the potential benefit of
sufficiently resourced investments in the application of AI and
ML in environmental public health research.

CONCLUSIONS AND
RECOMMENDATIONS

While grassroots innovation is increasing, top-down influencers
within academia, government, industry, and funding bodies
need to facilitate the conditions for AI to flourish in the
fields of public and environmental health sciences. The
philosophy of the “Fourth Industrial Revolution” (i.e., rapid

technological advancement) is wildly different than the
competition involved in typical academic research, as it requires
enhanced interdisciplinary collaboration and universal data
sharing and organization. As others have noted (Rubens et al.,
2014), public health is generally slower than other scientific
disciplines to embrace the use of advanced technologies. If
we do not collectively aspire to change the framing of public
health research and education, the discipline could impede
its own progress. Technical talent will gravitate to the open,
collective opportunities offered by private enterprise. To prevent
this, change should percolate from those currently leading
the field: researchers, educators, and practitioners need to
understand the ingenious applications of emerging technologies
and foster such opportunities within EHS research. Students
should be encouraged, and even required, to explore these
fields in core curriculums. During this time of unprecedented
access to technical domains, cross-disciplinary training in
computer science and EHS research will empower students
and professionals alike to make meaningful contributions to
perceivably the greatest revolution of their lifetime. We therefore
propose actionable recommendations for leaders in the public
and environmental health fields to implement and create an
environment that will foster the data revolution (Table 1).
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