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Transcriptome profiles in peripheral
white blood cells at the time of artificial
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Abstract

Background: Infertility is a longstanding limitation in livestock production with important economic impact for the
cattle industry. Female reproductive traits are polygenic and lowly heritable in nature, thus selection for fertility is
challenging. Beef cattle operations leverage estrous synchronization in combination with artificial insemination (AI)
to breed heifers and benefit from an early and uniform calving season. A couple of weeks following AI, heifers are
exposed to bulls for an opportunity to become pregnant by natural breeding (NB), but they may also not become
pregnant during this time period. Focusing on beef heifers, in their first breeding season, we hypothesized that: a- at
the time of AI, the transcriptome of peripheral white blood cells (PWBC) differs between heifers that become pregnant
to AI and heifers that become pregnant late in the breeding season by NB or do not become pregnant during the
breeding season; and b- the ratio of transcript abundance between genes in PWBC classifies heifers according
to pregnancy by AI, NB, or failure to become pregnant.

Results: We generated RNA-sequencing data from 23 heifers from two locations (A: six AI-pregnant and five
NB-pregnant; and B: six AI-pregnant and six non-pregnant). After filtering out lowly expressed genes, we quantified
transcript abundance for 12,538 genes. The comparison of gene expression levels between AI-pregnant and NB-
pregnant heifers yielded 18 differentially expressed genes (DEGs) (ADAM20, ALDH5A1, ANG, BOLA-DQB, DMBT1,
FCER1A, GSTM3, KIR3DL1, LOC107131247, LOC618633, LYZ, MNS1, P2RY12, PPP1R1B, SIGLEC14, TPPP, TTLL1, UGT8,
eFDR≤0.02). The comparison of gene expression levels between AI-pregnant and non-pregnant heifers yielded
six DEGs (ALAS2, CNKSR3, LOC522763, SAXO2, TAC3, TFF2, eFDR≤0.05). We calculated the ratio of expression levels between
all gene pairs and assessed their potential to classify samples according to experimental groups. Considering all samples,
relative expression from two gene pairs correctly classified 10 out of 12 AI-pregnant heifers (P = 0.0028) separately from
the other 11 heifers (NB-pregnant, or non-pregnant).

Conclusion: The transcriptome profile in PWBC, at the time of AI, is associated with the fertility potential of beef heifers.
Transcript levels of specific genes may be further explored as potential classifiers, and thus selection tools, of heifer fertility.
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Background
Female infertility remains a limiting factor in cattle pro-
duction systems. In beef heifers, pregnancy rates vary
from 53% to 95% [1–10] under natural breeding (NB),
and are reduced to the range of 48–69% [1, 4, 7, 9, 11, 12]
if artificial insemination (AI) is the only breeding strat-
egy utilized. Best management practices in heifer devel-
opment have been used to increase the probability of
reproductive success in a heifer’s first breeding season
[13]. For instance, heifers that reach 60% of their mature
body weight [10], have a body conformation compatible
with a healthy and well-nourished animal [3, 14],
present reproductive structures indicative of cyclic an-
imals [9, 15, 16], and are bred on their third estrus
versus earlier cycles [8] may have a greater chance of
becoming pregnant early in the breeding season [13].
Yet, under appropriate management, many of the
heifers that are deemed reproductively mature accord-
ing to morphological assessment and age criteria do
not become pregnant. Unexplained infertility of other-
wise healthy females impacts the cattle industry nega-
tively and is a condition of significant importance in
other livestock and humans [17].
In addition to the economic losses from infertile ani-

mals, heifers that conceive late in their first breeding
season to NB are likely to cause losses to beef cattle op-
erations. Following an unsuccessful AI, heifers that be-
come pregnant to NB and calve after the first 21 days
into their first calving season remain productive in the
herd for a shorter period of time and wean less total
pounds of calf than their early calving counterparts [18].
Therefore, improving the selection for heifers that be-
come pregnant by AI at the beginning of the breeding
season will reduce economic losses in beef cattle
operations.
Genetic selection has been used extensively to improve

production and reproductive traits in beef cattle opera-
tions. In heifers, fertility is assessed by first service con-
ception and pregnancy rate. Nonetheless, low heritability
estimates for pregnancy rate (0.07–0.13 [1, 4, 19]) and
first service conception (0.02–0.18 [1, 4, 19, 20]) make it
challenging to leverage statistical models to guide the
decision making process for sire selection to improve fe-
male fertility in cattle. As a consequence, selection for
fertility in beef heifers using traditional approaches has
not achieved significant progress over generations.
Strategies leveraging molecular genetics biotechnology

have added new perspective to understanding the gen-
etic architecture of fertility. To that end, genomic poly-
morphisms [20–24], differential gene transcription in
the hypothalamus [20], endometrium [25–29], and me-
tabolites from follicular fluids [30] have been associated
with fertility in heifers or cows. In women, investigation of
circulating prognostic biomarkers have yielded promising

candidates that are predictive of infertility [31], in vitro
fertilization [32], or pregnancy outcomes [32, 33]. These
studies, and the physiological connection between
reproduction and the immune system [34], support the ra-
tionale that peripheral white blood cells (PWBC) harbor
invaluable molecular information predictive of the physio-
logical state of beef heifers pertaining to their likelihood of
pregnancy establishment.
The molecular profile of circulating miRNAs [35] in

the bloodstream and gene expression of PWBC [36]
change during the early stages of pregnancy. Nonethe-
less, the molecular profiles of gene or protein expression
in PWBC prior to fertilization have not been investi-
gated as biomarkers for fertility in cattle. In this study,
we tested the hypotheses that at the time of AI in beef
heifers on their first breeding season: a- the transcrip-
tome of PWBC differs between heifers that become
pregnant to AI and heifers that become pregnant late in
the breeding season by NB or do not become pregnant
during the breeding season; and b- the ratio of transcript
abundance between genes in PWBC classifies heifers
according to pregnancy by AI, NB, or failure to be-
come pregnant.

Results
Experiment overview
The experimental scheme of this study is outlined in
Fig. 1a. Sixty pubertal, crossbred heifers (Angus x
Simmental) were subjected to estrous synchronization
followed by fixed-time AI with semen of proven fertility
at two Auburn University Alabama Agricultural Experi-
ment Stations. The heifers were then exposed to bulls
for natural breeding and checked for pregnancy by rectal
palpation. Figure 1b depicts the timeline of the experi-
ment from breeding soundness to heifer classification.
Heifers were identified as pregnant or not pregnant, and
conceptus morphology was used to identify when con-
ception occurred over the breeding season, for the clas-
sification of three groups (AI-pregnant, NB-pregnant,
non-pregnant, Fig. 1a). We selected heifers from two ex-
perimental stations for transcriptome analyses. From sta-
tion A, we carried out the experiment with AI-pregnant
(N = 6) and NB-pregnant (N = 5) heifers. From station B,
we conducted the experiment with AI-pregnant (N = 6)
and non-pregnant (N = 6). Heifers presented similar av-
erages for age, weaning weight, pelvic metrics, body con-
dition score, and reproductive tract score within stations
(P > 0.1, Additional file 1: Table S1).
For each heifer, we collected peripheral blood at the

time of AI, and assayed high throughput sequencing
from PWBC. We generated over 557.2 million pairs of
reads, averaging 20.9 million pairs of reads uniquely
aligned to the bovine genome UMD3.1 [37] per sample
(Additional file 1: Table S2).
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Gene expression levels in PWBC associated with pregnancy
outcome
We counted pairs of reads [38] according to the bovine
Ensembl annotation [39] to estimate transcript abun-
dance of expressed genes. In order to remove quantifica-
tion uncertainty associated to lowly expressed genes and
erroneous identification of differentially expressed genes
[40, 41], we retained genes with more than one count
per million (1 CPM) in six or more samples for down-
stream analyses, for each location independently. We
quantified expression levels of 12,538 genes in all sam-
ples. Of these genes, 10,422 were expressed in PWBC of
heifers located at both experimental stations. Further-
more, 1706 and 410 genes were exclusively expressed in
PWBC of heifers located at experimental stations A or
B, respectively (Fig. 2a). In order to strengthen the infer-
ences of differentially expressed genes (DEG) between
heifers of differential pregnancy classification, we ana-
lyzed the data from each station independently, and we
adopted two algorithms implemented in the Bioconduc-
tor [42] packages edgeR [43] and DESeq2 [44]. The fold
changes estimated by both algorithms were very similar
(r > 0.99, p < 0.0001) and we used the output from
edgeR package to report the fold changes of differen-
tial gene expression.
The comparison of gene expression profiles in PWBC

between AI-pregnant and NB-pregnant heifers resulted
in 18 DEGs (Fig. 2b, eFDR≤0.02, Additional file 1: Figure S1),
of which DMBT1, ADAM20, ALDH5A1, GSTM3,
MNS1, P2RY12, TTLL1, UGT8 showed greater and
ANG, BOLA-DQB, FCER1A, KIR3DL1, LOC107131247,
LOC618633, LYZ, PPP1R1B, SIGLEC14, TPPP displayed
lower expression levels in NB-pregnant compared to
AI-pregnant heifers (Table 1, Fig. 2d). Despite the low num-
ber of DEGs, we identified significant enrichment
(FDR≤0.002) for the GO biological process “metabolic
process” (ALDH5A1, GSTM3, LYZ, UGT8).
The comparison of gene expression profiles in

PWBC between AI-pregnant and non-pregnant heifers

resulted in six DEGs (eFDR≤0.05, Fig. 2c, Additional file 1:
Figure S1). The genes ALAS2, CNKSR3, LOC522763,
TAC3, TFF2 presented greater transcript abundance in
non-pregnant heifers, whereas transcripts for SAXO2 were
less abundant in PWBC of non-pregnant heifers
compared to heifers that became pregnant to AI (Table 2,
Fig. 2e). No significant GO term was identified when these
six DEGs where tested for enrichment of biological pro-
cesses or molecular functions.
We selected the genes ALDH5A1, FCER1A, LOC522763,

SIGLEC14, TAC3, and TTLL1 for independent assessment
of differential gene expression by quantitative real-time
polymerase chain reaction (qPCR). The averages of fold
change calculated from the PCR data were correspondent
to those obtained from RNA-seq (Spearman’s correlation =
0.94, P < 0.02, Additional file 1: Table S3). Therefore, we
validated the results obtained by RNA-seq.

Detection of gene pairs to discriminate heifers pregnant
by AI
Next, we used the top scoring pair (TSP) approach [45]
to test whether the ratio between transcript levels of two
genes within samples discriminated heifers presenting
distinct pregnancy outcomes. According to this ap-
proach, a gene’s expression level is compared to the ex-
pression levels of all other genes. For instance, in station
A, 12,128 genes formed 147,076,256 pairs, and 10,422
genes in station B formed 117,321,392 pairs.
The analysis of the transcriptome data from AI-

pregnant and NB-pregnant heifers (station A) resulted in
1520 pairs of genes that discriminate most of the heifers
according to their pregnancy outcome (Overall score = 1,
P < 0.0002, 5000 randomizations). The pair of genes with
the greatest discriminatory score was DTX4 and
ENSBTAG00000038233, whereby the transcript levels of
DTX4 are greater than the transcript levels of
ENSBTAG00000038233 in NB-pregnant in contrast with
AI-pregnant heifers (Fig. 3a). Clustering of the samples
using the ratios of transcript levels of the top 20 gene

a

b

Fig. 1 Overview of the experimental design and heifer classification. a General scheme used for the classification of heifers. b Depiction of the timeline
adopted from breeding soundness evaluation to final heifer classification. See text for details. ES: estrous synchronization; AI: artificial insemination;
RTS: reproductive tract scores; PM: pelvic measurements; BCS: body condition score
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pairs (Additional file 1: Figure S2a) separated the heifers
into two clusters that followed their pregnancy classifica-
tion (Fig. 3b, P≤0.01, 5000 randomizations).
Analysis of the transcriptome data from 12 heifers

sampled from station B, (AI-pregnant and non-
pregnant) resulted in 88 gene pairs identified that sepa-
rated most of the heifers in two groups (Overall score =
1, P < 0.0002, 5000 randomizations). The genes U3 and
MMP19 formed the top scoring pair, in which the AI-
pregnant heifers presented greater transcript abundance
of U3 compared to MMP19, and the opposite direction
was observed for the non-pregnant heifers (Fig. 3c).
Clustering of the samples using the ratios of transcript

levels of the top 20 gene pairs (Additional file 1:
Figure S2b) resulted in the formation of two clusters
that separated the samples by pregnancy outcome
(Fig. 3d, P< 0.01, 5000 randomizations).
The TSP approach uses within subject transcript levels

to calculate ratios between genes, and the analysis does
not use variables that may create batch effects in animal
experiments (i.e. time, genetic background, location of
sampling). Thus, we interrogated the entire dataset (23
samples) under the binary classification of AI-pregnant
(N = 12) and AI-not-pregnant (N = 11). There were four
genes forming two pairs (C11orf54, TAF1B; URB2,
ENSTAG00000039129) that discriminated 10 out of 12

a b c

d

e

Fig. 2 Gene expression levels associated with pregnancy outcome. a Number of genes with expression estimated in PWBCs. b, c Fold change profiles
obtained by two Bioconductor packages highlighting the genes inferred as differentially expressed between the two experimental groups. d, e Expression
levels (counts per million, CPM) for the DEGs obtained in experimental station A (d) and B (e). Within location, the shapes represent the same animals
across gene charts
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heifers correctly (Fig. 3e, Overall score = 0.83). The clus-
tering of 10 out of 12 AI-pregnant heifers independently
from NB-pregnant and non-pregnant heifers, showed
non-trivial (P < 0.003, hypergeometric test) patterns of
ratios that identified heifers by pregnancy outcome, and
clearly contrasted with ratio patterns obtained from ran-
dom gene pairs (Fig. 3f ).

Discussion
Our main goal was to identify differences in the tran-
scriptome profile in PWBC at the time of AI in beef
heifers with different pregnancy outcomes. In our ex-
periment, we identified heifers that became pregnant to
AI, to natural breeding, and heifers that failed to become
pregnant during the breeding season. Sampling blood

from heifers of similar age and other phenotypic param-
eters within herd was central for us to work with puber-
tal heifers of similar nutritional status, and thus focus on
the differences associated with the physiology of the
reproduction driving the likelihood of pregnancy in beef
heifers. Similar to other models of fertility and infertility
in cattle [25–28], the categorical pregnancy outcomes
adopted in our study identify heifers with distinct fertil-
ity potential. In the current study, we identified that var-
iations in gene expression profiles of PWBC may be
associated with the likelihood of a successful fertilization
and pregnancy establishment.
Considering the similarity of the heifers within location,

as observed by age, phenotypic records (Additional file 1:
Table S1), genetic background, reproductive, health, and

Table 1 Differentially expressed genes associated with pregnancy originated from artificial insemination or natural breeding

Ensembl ID Symbol Description LogFC(pregnant NB/pregnant AI)b

ENSBTAG00000022715 DMBT1a Deleted in Malignant Brain Tumors 1 1.98

ENSBTAG00000001842 GSTM3 glutathione S-transferase Mu 3 1.76

ENSBTAG00000012030 TTLL1 tubulin tyrosine ligase like 1 1.36

ENSBTAG00000000271 MNS1 meiosis specific nuclear structural 1 1.28

ENSBTAG00000021902 ALDH5A1 aldehyde dehydrogenase 5 family member A1 1.20

ENSBTAG00000004574 UGT8 UDP glycosyltransferase 8 1.13

ENSBTAG00000038377 ADAM20 ADAM metallopeptidase domain 20 1.11

ENSBTAG00000015837 P2RY12 purinergic receptor P2Y12 1.08

ENSBTAG00000026779 LYZ Lysozyme C, non-stomach isozyme −0.67

ENSBTAG00000045492 ANGa angiogenin, ribonuclease, RNase A family, 5 −1.11

ENSBTAG00000040580 LOC618633a myeloid-associated differentiation marker-like −1.22

ENSBTAG00000012887 FCER1A Fc fragment of IgE receptor Ia −1.28

ENSBTAG00000035868 SIGLEC14a Sialic Acid Binding Ig Like Lectin 14 −1.31

ENSBTAG00000047116 TPPP tubulin polymerization promoting protein −1.70

ENSBTAG00000006035 PPP1R1B protein phosphatase 1 regulatory inhibitor subunit 1B −1.84

ENSBTAG00000047971 KIR3DL1 killer cell immunoglobulin-like receptor, three domains,
long cytoplasmic tail, 1 precursor

−2.05

ENSBTAG00000021077 BOLA-DQBa major histocompatibility complex, class II, DQ beta −3.57

ENSBTAG00000047764 LOC107131247 multidrug resistance-associated protein 4-like −4.15
aGenes annotated manually according to either Keeg pathways, Uniprot or NCBI Entrez databases
bLogFC: log fold change output by edgeR package

Table 2 Differentially expressed genes associated with pregnancy outcome in beef heifers

Ensembl ID Gene symbol Description LogFC(not pregnant/pregnant AI)b

ENSBTAG00000030814 TFF2 trefoil factor 2 3.42

ENSBTAG00000021807 TAC3 tachykinin 3 2.17

ENSBTAG00000001308 LOC522763a 1.92

ENSBTAG00000013178 ALAS2 5′-aminolevulinate synthase 2 1.82

ENSBTAG00000012674 CNKSR3 CNKSR family member 3 1.28

ENSBTAG00000003414 SAXO2 stabilizer of axonemal microtubules 2 −0.98
aGenes annotated manually according to NCBI Entrez databases
bLogFC: log fold change output by edgeR package
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nutritional management, and other environmental effects
within station, one could anticipate the low number of
DEGs inferred in this study. Our very stringent
approach for inferring DEGs according to two inde-
pendent algorithms was one reason for this observa-
tion. Nonetheless, this strategy [46] greatly reduces
the chance of inferring false positives by leveraging
the strengths of both algorithms [47]. Other tran-
scriptome investigations of endometrial tissues of beef
heifers [27–29] or dairy cows [48] of different fertility
potential yielded DEGs in the order of few dozens. Of
note, no previously identified DEGs have been found
in more than one study. Furthermore, none of the
DEGs identified in our study were observed in similar
investigations focusing on women’s fertility [31–33].
This observation is not surprising given the polygenic
and complex physiology involving fertilization and
pregnancy in females.

We identified 18 DEGs associated with heifer preg-
nancy to AI compared to pregnancy from natural breed-
ing. Gene ontology analysis showed significant
enrichment of the biological process “metabolic process”,
which included the genes “aldehyde dehydrogenase 5
family member A1” (ALDH5A1), “glutathione S-
transferase Mu 3” (GSTM3), “UDP glycosyltransferase 8”
(UGT8), and “Lysozyme C, non-stomach isozyme”
(LYZ). The gene ALDH5A1 is part of a family of alde-
hyde dehydrogenases that metabolizes aldehydes and re-
duces cellular toxicity. Additionally, there is evidence, in
humans, that a functional ALDH5A1 is associated with
the concentration of glutathione in the bloodstream
[49]. Also in humans, it has been hypothesized that up-
regulation of GSTM3 is a response to greater presence
of cytotoxic products resultant of overabundance of re-
active oxygen species (ROS) [50] and the need for the
conjugation of ROS to glutathione [51] to mitigate the

a

b

e f

c

d

Fig. 3 Top scoring pairs for sample classification. Top 20 gene pairs whose expression ratios separate the samples into two groups: AI-pregnant
relative to NB-pregnant in station A (a, b) and AI-pregnant relative to non-pregnant in station B (c, d). e Identification of two TSP with significant
separation of AI-pregnant heifers from the others (NB-pregnant, non-pregnant). f Pairs of genes randomly chosen to demonstrate the null hypothesis
of the top scoring pair approach
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toxic effects of ROS. As evidence supports the link be-
tween oxidative stress and female infertility in humans
[51–53], the upregulation of ALDH5A1 and GSTM3 in
PWBC suggests that a greater presence of ROS species
in the blood stream may reduce the likelihood of preg-
nancy success to AI in beef heifers, but do not prevent
the heifers from becoming pregnant to a bull later in the
breeding season.
Although no significant enrichment was observed, it

was noteworthy that four out of 18 DEGs were related
to “cytoskeleton organization” (MNS1, TTLL1, TPPP,
UGT8). Interestingly, UGT8 was down-regulated in the
endometrium of women affected by implantation failure
[54]. The gene FCER1A is associated with “positive regu-
lation of granulocyte macrophage colony-stimulating
factor production” was less expressed in NB-pregnant
heifers. The down-regulation of the gene FCER1A in
blood samples is associated with pre-term delivery in
women [55]. Another gene related to the immune sys-
tem, namely KIR3DL1, showed the lowest transcript
abundance (4-fold) in NB-pregnant compared to AI-
pregnant heifers. Interestingly, recurrent miscarriage
patients presented lower occurrence of KIR3DL1 in their
blood compared to healthy women [56]. When expressed
in natural killer (NK) cells, KIR3DL1 inhibits [57] the
cytotoxic function or the adhesive capacity of NK cells
(reviewed by [58]).
We identified six DEGs in the PWBC of heifers associ-

ated with the pregnancy outcome of AI-pregnant or
non-pregnant. It is critical to notice, however, that the
inferences of ALAS2, LOC52273, TAC3, TFF2 as DEGs,
were mostly driven by some heifers that did not become
pregnant, whereas others presented gene expression
levels equivalent to the heifers that became pregnant to
AI. The gene TAC3 encodes the protein neurokinin B,
whose expression is negatively regulated by ovarian de-
rived steroids [59] and in turn stimulates the secretion
of Gonadotropin-Releasing Hormone (GnRH) [60],
which is has central function on the release of follicle-
stimulating hormone and luteinizing hormone. On the
same note, expression of the gene CNKSR3 was upregu-
lated by luteinizing hormone in women’s endometrium
[61] and follicular granulosa cells in buffalo cows [62].
In specific heifers, the dysregulation on these two genes
is suggestive of an alteration in the hormonal feedback
between the ovary the hypothalamic-pituitary axis in
some of the heifers that did not become pregnant.
The TSP approach compares the levels of transcript

abundance for each possible pair of genes expressed
within a sample [45], and it has been used as a classifica-
tion or prediction tool in biomedicine [45, 63–65]. We
employed this approach to evaluate the usefulness of
gene expression levels in PWBC at the time of AI for
classification of heifers with different pregnancy outcome.

For each experimental station, the use of transcript levels
for the top 20 pairs of genes clustered AI-pregnant heifers
separately from the others with 100% confidence of cluster
formation. Because this approach is parameter free
[66, 67] with the exception of the binary variable that
separates subjects into two categories, we used the al-
gorithm to identify TSPs in all 23 samples that could
identity AI-pregnant heifers. The ratio between the
expression levels for four gene pairs misclassified only
two out of the 12 AI-pregnant heifers.
Our investigation focused on PWBC, which are mostly

composed of circulating immune cells. The immune sys-
tem and female fertility are connected at many levels
with the reproductive function in cattle (reviewed by Fair
[34]), and circulating cells of the immune system re-
spond to reproductive hormones [68, 69]. Our results
show that specific genes have transcript abundance cor-
related with whether a heifer became pregnant to AI,
could become pregnant later by natural breeding, or
failed to become pregnant. We hypothesize that PWBC
change their transcriptome as the heifers undergo the
follicular phase of their estrous cycle. These changes
most likely reflect the heifer’s readiness for fertilization.
The physiological relationship between the immune

system of healthy heifers and their likelihood of becom-
ing pregnant by AI is yet to be studied. In addition, fur-
ther investigation is required to assess how our results
may translate to other herds, especially when accounting
for different management strategies, breeds, and genetic
background. Although further work is needed to develop
robust approaches to identify molecular markers in the
transcriptome of PWBC, taken together, our results sug-
gest a window of opportunity for the use of gene expres-
sion data as source of prognostic molecular markers of
pregnancy likelihood in beef heifers.

Conclusions
At the time of AI, specific genes expressed in PWBC
displayed differential transcript abundance in heifers
classified according to their pregnancy outcome (AI-,
NB-, non-pregnant). This variable expression is likely as-
sociated with the heifers’ physiological condition that re-
lates to their fertility at the time of AI. The data suggest
that the heifer’s metabolic status may be critical for the
AI success, and impaired hormonal regulation is among
the multiple factors that may hinge the chances of preg-
nancy in beef heifers. Further investigation is needed to
confirm these hypotheses. Using a parameter free ap-
proach, the transcript abundance of specific gene pairs
distinguished most AI-pregnant, relative to NB- or non-
pregnant heifers. This result showed that the transcrip-
tome of PWBC has a promising potential to be used as a
source of data to classify heifers of distinct potential to
become pregnant.
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Methods
Animal handling and heifer classification according to
pregnancy outcome
Crossbred beef heifers (Angus-Simmental cross) from
two Auburn University research stations (Station A:
Wiregrass Research and Extension Center, n = 27; and
Station B: Black Belt Research and Extension Center, n
= 33) were developed to reach a target weight of 60% of
their mature body weight by 13.5 months of age [13, 70].
Pre-breeding examinations were performed approxi-
mately 45 days before breeding to evaluate the pubertal
status of each heifer. Reproductive tract scores (scale of
1–5; 1 = pre-pubertal, 5 = pubertal, luteal phase [16]),
pelvic width, and pelvic height were determined through
transrectal palpation by a single, experienced veterinar-
ian. Additionally, heifers were evaluated for body condi-
tion score (BCS; scale of 1–9 with 1 = emaciated and 9 =
obese [3]).
Heifers were then subjected to estrous synchronization

for fixed-time artificial insemination with the 7-Day CO-
Synch protocol. Briefly, heifers received an injection of
GnRH (i.m.; 100 μg; Cystorelin®; Merial, Duluth, GA)
and insertion of a CIDR (intravaginal insert; 1.38 g pro-
gesterone; Eazi-Breed® CIDR®; Zoetis Inc., Kalamazoo,
MI) on day − 9, followed by CIDR removal and an injec-
tion of prostaglandin F2α (PGF; i.m.; 25 mg; Lutalyse®;
Zoetis Inc., Kalamazoo, MI) on day − 2. All heifers then
received a second GnRH injection (i.m.; 100 μg; Cystore-
lin®; Merial, Duluth, GA) and were inseminated with a
dose of semen of proven fertility on day 0, 54 ± 2 h after
CIDR removal and PGF injection. Two professionals
were responsible for insemination procedures in both
experimental stations, taking turns on random heifers.
Immediately after AI, 10 ml of blood was drawn from

the jugular vein into vacutainers containing 18 mg K2
EDTA (Becton, Dickinson and Company, Franklin, NJ).
The tubes were inverted for 8–10 times and immersed
in ice. Upon arrival in the laboratory, the tubes were
sprayed with 10% bleach and rinsed to eliminate con-
tamination from the field. The tubes were centrifuged
for 10 min at 2000×g at 4 °C. The buffy coat was re-
moved and deposited into 14 ml of red blood cell lysis
solution (0.15 M ammonium chloride, 10 mM potassium
bicarbonate, 0.1 mM EDTA, Cold Spring Harbor Proto-
cols) for 10 min at room temperature (24–25 °C). The
solution was then centrifuged for 5 min at 800xg at 4C
to pellet the PWBCs. The aqueous layer was discarded
and the pellet was re-suspended in 200 μl of RNAlater®
(Lifetechnologies™, Carlsbad, CA). The PWBCs were
then stored at − 80°C prior to RNA extraction. This pro-
cedure was reproduced for both experimental stations.
Fourteen days after insemination, heifers were exposed

to two fertile bulls for natural breeding for the remainder
of the 86 day breeding season on station A or 42 day

breeding season on station B. An experienced veterinarian
performed pregnancy evaluation by transrectal palpation
on day 62 and 125 post insemination at station A, and on
day 95 post insemination at station B. Presence or absence
of a conceptus, alongside morphological features indicat-
ing fetal age were recorded, and heifers were classified as
pregnant to AI, pregnant to natural service, or non-
pregnant. Heifers that became pregnant after the first
21 days of breeding were identified as late breeding for
the purpose of this study.

Selection of heifers for RNA-sequencing of PWBC
Eleven heifers (six AI-pregnant and five NB-pregnant)
were selected from station A, and twelve heifers (six AI-
pregnant and six non-pregnant) were selected from sta-
tion B for RNA-sequencing. Within station, heifers were
selected according to their similarities of age and pheno-
typic parameters. Data for age, weaning weight, pelvic
height, pelvic width, and pelvic area were compared be-
tween groups using Krustal-Wallis rank sum test. Body
condition and reproductive tract scores were tested
using Fisher’s exact test. Tests were conducted in R soft-
ware. Selected heifers did not differ for phenotypic traits
associated with puberty (Additional file 1: Table S1), and
all heifers were of pubertal status at the time of
breeding. The selection of heifers from different
groups that were phenotypically similar, according to
trait average and standard deviation, avoided the
addition of covariates in the analysis of differential
gene expression.

RNA extraction, library preparation, and RNA sequencing
Total RNA was then isolated from PWBCs of 23 heifers
using TRIzol™ reagent (Invitrogen, Carlsbad, CA) follow-
ing the manufacturer’s protocol. RNA yield was quanti-
fied using the Qubit™ RNA Broad Range Assay Kit
(Eurogene, OR) on a Qubit® Fluorometer, and integrity
was assessed on Agilent 2100 Bioanalyzer (Agilent, Santa
Clara, CA) using an Agilent RNA 6000 Nano kit
(Agilent, Santa Clara, CA). We obtained RIN values ran-
ging between 7.7 and 8.8. Furthermore, samples with
rRNA ratios (28S:18S) greater than 1.5 were further
processed for library construction (range 1.5–1.8).
Libraries were prepared with the TruSeq Stranded
mRNA Library Prep kit (Illumina, Inc., San Diego, CA)
following manufacturer’s instructions. Libraries were
quantified with Qubit™ dsDNA High Sensitivity Assay
Kit (Eurogene, OR) and quality was evaluated using the
High Sensitivity DNA chip (Agilent, Santa Clara, CA) on
an Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA).
Libraries were sequenced in a HiSeq 2500 system at the
Genomic Services Laboratory at HudsonAlpha, Huntsvile,
AL to generate 125 nucleotide long pair-end reads.
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RNA sequencing data processing
Sequences were trimmed of their adapters and submit-
ted to a custom build bioinformatics pipeline [71]. Reads
were aligned to the bovine genome (UMD3.1 [37]), and
sequences aligning to multiple places on the genome,
with 5 or more mismatches were filtered out. The se-
quences were then marked for duplicates, and non-
duplicated pairs of reads were used for gene expression
study. The read-pairs were counted against the Ensembl
gene annotation [39] (version 1.87) using HTSeq [72].

Differentially expressed genes
Differences of transcript levels between samples at each
experimental station were determined from fragment
counts [38] using the Bioconductor packages “edgeR”
[73] and “DESeq2” [44] in R software [74]. Genes were
considered detected if the counts per million was greater
than one in six or more samples. For each experimental
station, a gene was inferred as differentially expressed if
the nominal P value was ≤ 0.01. This nominal P value
corresponded to empirical false discovery rate (eFDR) of
0.02 for station A and 0.05 for station B (Additional file 1:
Figure S1), as calculated according to the procedure out-
lined elsewhere [75], using 10,000 randomizations of sam-
ple classification.

Validation of DEGs
We used RNA extracted from the PWBC of the 23
heifers from station A and B whose PWBC transcrip-
tome was evaluated though RNA sequencing to confirm
the DEGs by RT-qPCR. We synthesized complementary
DNA from 500 ng of total RNA and using oligodT15

(Promega, Madison, WI). Reverse transcription was car-
ried out with SuperScriptII (Invitrogen, Carlsbad, CA)
following manufacturer’s recommendations. The final
RT reaction was diluted 1:2 (v:v) and 1μl was used as
template for each PCR reaction using Perfecta SYBR
Green FastMix (Quanta Biosciences), and 100 nM of
each primer (Additional file 1: Table S3, IDT) in a final
volume of 10μl. Primers were designed using Primer-
Blast application following the recommendations for
obtaining target-specific primers for PCR [76]. The reac-
tions were assayed in a Roche Light Cycler 480 equip-
ment (Roche) equipment with pre-incubation at 95 °C
for 1 min, followed by 40 cycles of 95 °C for 15 s and
60 °C for 45 s. A melting curve was generated using the
thermocycler’s default parameters to validate the pres-
ence of a unique amplicon. The identification of unique
amplicon is a proxy of primer specificity. Primer effi-
ciency and cycle threshold (CT) was determined for all
reactions using the LinRegPCR program [77].
We used GAPDH as a reference gene, which presented

similar Ct values across all samples (Additional file 1:
Figure S4) and showed no difference of transcript

abundance between the groups tested (P > 0.9, t-test,
Additional file 1: Table S4). The ΔCT was calculated for
each corresponding target gene relative to the reference
gene, and the values of ΔCT were used as input for a t-
test to assess the significance of differences between the
two groups [78]. We inferred that the averages of gene
expression levels were statistically different when P ≤ 0.1.
We adopted alpha = 0.1 for qPCR analysis because com-
paring normalized gene expression levels between
groups with six samples in each group presents the
power of 0.65 to detect an effect of 1 at the significance
level of 0.1.

Pairs of genes with expression ratios indicating fertility
categorization
Fragments per kilobase per million reads (FPKM) were
calculated using the function “rpkm()” from “edgeR”.
FPKM was the used as input for the calculation of TSP
using the package “tspair” [66]. The TSP approach [45]
identifies genes whose transcript abundance ratios
within each individual can classify subjects into binary
categories. The ratios of the 20 TSP were used as input
for hierarchical clustering of the samples, and the ro-
bustness of the clusters was calculated using 5000 ran-
domizations with the R package “pvclust” [79].

Additional files

Additional file 1: Supplementary figures and tables. (DOCX 639 kb)

Additional file 2: R Code that reproduces the RNA-seq analyses
performed in this study. (PDF 1676 kb)
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