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Ever since technologies enabled the characterization of eukaryotic plasma membranes,

heterogeneities in the distributions of its constituents were observed. Over the years this

led to the proposal of various models describing the plasma membrane organization

such as lipid shells, picket-and-fences, lipid rafts, or protein islands, as addressed in

numerous publications and reviews. Instead of emphasizing on one model we in this

review give a brief overview over current models and highlight how current experimental

work in one or the other way do not support the existence of a single overarching model.

Instead, we highlight the vast variety of membrane properties and components, their

influences and impacts. We believe that highlighting such controversial discoveries will

stimulate unbiased research on plasmamembrane organization and functionality, leading

to a better understanding of this essential cellular structure.

Keywords: plasma membrane, membrane organization models, nanodomains, heterogenous distribution,

membrane physical properties

Membranes are one of the key structures in cell biology. Besides being instrumental in
compartmentalizing and protecting cells, their role as organizing centers for tasks such as
metabolism or signaling is increasingly recognized. In fact, a majority of cellular processes are
associated with membranes (Stryer, 1995). Membranes provide useful docks for correct localisation
of proteins which is essential for their function (Miosge and Zamoyska, 2007; Grecco et al.,
2011; Hung and Link, 2011). Importantly, in humans, mislocalization of membrane proteins
leads to the loss-of-function and, frequently, can develop into diseases (Edwards et al., 2000;
Matsuda et al., 2008; Hung and Link, 2011; Schaeffer et al., 2014). Nevertheless, the presence of
proteins at a particular membrane is usually not sufficient for their function. Often, the nanoscopic
localization, oligomerisation and/or clustering of membrane proteins can affect the efficiency of
cellular processes (Cebecauer et al., 2010; Matthews, 2012; Nussinov, 2013; Garcia-Parajo et al.,
2014).Membranes, the lipid environment andmembrane properties in general, influence nanoscale
organization and function of these molecules. It is, therefore, important to understand molecular
details of membrane structure and mechanisms responsible for its dynamics organization.

Here, we reviewmembrane properties, models of membrane organization and useful techniques
for studies of membrane organization and dynamics, with a special focus on the plasma membrane
of higher eukaryotes (mammals). Our specific aim is to re-emphasize currently omitted or
underestimated biophysical principles and discuss their role in dynamic membrane organization.
We attempt to provide a comprehensive description of membrane complexity and suggestions how
to avoid interpretation of membrane-associated phenomena within the borders of a single theory.
As a reader will see, we believe that there is no universal model of the plasma membrane dynamic
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lateral organization. These more general issues will be discussed
in the last section. First, let us start with the very basic structure
of membranes.

BASIC STRUCTURE OF CELL
MEMBRANES

A lipid bilayer forms the basis of all cellular membranes.
It is a lamellar structure with a hydrophobic core and a
polar headgroup region on both sides (Figure 1A). In cells,
it is composed of hundreds, if not thousands, of different
phospholipid species. These differ in their polar headgroup
moiety but mainly in the length and saturation of acyl chains
forming a hydrophobic core of a lipid bilayer. Other lipid
and fatty acid species add to this complexity. Of those,
sterols (cholesterol in mammals) are the most abundant in
the plasma membrane and can represent up to 40% of total
lipid (van Meer and de Kroon, 2011). Cholesterol has a special
structure (Figure 1A) enabling strong impact on basicmembrane
properties such as viscosity or interleaflet coupling, as described
multiple times in comprehensive articles (Ipsen et al., 1987;
Mouritsen and Zuckermann, 2004; Maxfield and van Meer,
2010).

Proteins constitute approximately half of the total plasma
membrane mass (Dupuy and Engelman, 2008). We distinguish
integral and peripheral membrane proteins depending on their

FIGURE 1 | Schematic illustration of the basic structure of lipid bilayer and proteo-lipidic membranes. (A) Cell membranes are lamellar structures with a

hydrophobic core and a polar headgroup space. As examples, phospholipids and cholesterol are shown with almost atomistic detail (red and green boxes).

(B) Membrane proteins can integrate into membranes (i), but can use lipid anchors (ii and iii) or peripherally associate with membranes via electrostatic interactions (iv).

(C) Proteins can further associate with membranes via protein-protein interactions on the cytosolic side (v) or at the interface between the plasma membrane and the

extracellular matrix (vi). Outer leaflet lipids (vii) and extracellular domains of proteins (viii) are often glycosylated.

anchorage into a lipid bilayer via transmembrane domain(s)
or a lipid moiety, respectively (Figure 1B). In addition, some
proteins may associate with the membrane via electrostatic
interactions with lipid headgroups (Figure 1B; McLaughlin and
Murray, 2005) or a variety of protein-protein or protein-
glycan interactions (Figure 1C; Stryer, 1995). Such proteins are
commonly termed as “membrane-associated.” Extracellular parts
of lipids and proteins are frequently glycosylated (Figure 1C).
Indeed, glycans form a dense structure at the outer surface of the
plasma membrane (Berrier and Yamada, 2007). This molecular
complexity of membranes has probably evolved to serve as a
selective barrier and organizing center with a high fidelity and
robustness (Cebecauer et al., 2010). But what are those unique
properties which were selected in the process of evolution to
control critical cellular processes with such efficiency?

INTRINSIC PROPERTIES OF CELL
MEMBRANES ESSENTIAL FOR THEIR
FUNCTION

Early definitions, of which the “fluidmosaic model” of Singer and
Nicolson (SN model Singer and Nicolson, 1971, 1972) is the best
known, highlighted fluidity as one of the most critical membrane
features. Indeed, fluidity of membranes provides important
advantage over other cellular structures such as the cytoskeleton
or ribonucleoproteins. It forms the basis for the highly dynamic
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character of membrane-associated (bio)chemical reactions and
other cellular processes. Membrane fluidity enables the majority
of molecules to diffuse freely over long distances and rotate or
re-orientate to adopt optimal conformation. Membranes can be
considered as two-dimensional solutions. This two-dimensional
character also distinguishes membranes from other three-
dimensional cellular solutes (e.g., the cytosol). The fundamental
importance of fluidity is, for example, underlined by the fact
that cells modify the saturation of their lipid acyl-chains to keep
their membranes fluid when adapting to the environment, e.g.,
different temperatures (Fraenkel and Hopf, 1940; Buda et al.,
1994).

Although membranes are fluid, they have higher viscosity

(Box 1) than the cytosol (Luby-Phelps et al., 1993). This has
a direct impact on the mobility of membrane molecules.
Membrane viscosity can be modified by lipid composition or
other factors, such as the presence of proteins or poorly mobile
structures, and will thus vary over space and time.

Another property emphasized in the SN model is continuity
of the plasma membrane (Singer and Nicolson, 1972). The
plasma membrane fully covers the cell surface. Its continuity
is especially important for membrane receptors or effector
molecules which need rapidly to re-localize, e.g., when a cell
is changing its direction of chemotactic mobility (Janetopoulos
and Firtel, 2008). Continuity also supports intermolecular
interactions or the formation of multi-molecular assemblies
within or at the surface of membranes. In some cells, membrane
continuity is limited to the apical or basal side due to the presence
of tight junctions eliminating free mobility of membrane
molecules (Balda andMatter, 2008).We will discuss viscosity and
continuity, and their impact on the organization ofmembranes in
more detail further in the text.

Almost all molecules can interact and influence each other in
cellular membranes. As a consequence, coexistence of molecules
in membranes has cooperative character. Cooperativity of
molecules was already mentioned for fluid cellular membranes

in the SN model (Singer and Nicolson, 1972) but seems to
be recently overseen. This property has a dramatic impact on
experiments, in which systemic perturbance of membranes (e.g.,
by chemical or genetic treatment) was employed to support
specific models of membrane organization.

Lipid membranes undergo interleaflet coupling, meaning
that acyl chains of lipids in one leaflet interdigitate into the space
of the other leaflet (Figure 2A; Nickels et al., 2015). Theoretical
predictions suggest that interleaflet coupling can coordinate the
organization ofmolecules between the two leaflets (Schmidt et al.,
1978; Duzgunes et al., 1988; Merkel et al., 1989; Kiessling et al.,
2006; Raghupathy et al., 2015; Williamson and Olmsted, 2015).
Yet, White and co-workers recently provided an alternative view
(Mihailescu et al., 2011; Capponi et al., 2016). They do not negate
the existence of strong coupling between the two leaflets of lipid
bilayer but observed no direct complementarity between the
opposite acyl chains (Capponi et al., 2016). Cholesterol, which
was predicted to intensify interleaflet coupling in membrane
lipid domains, was found to reduce the level of acyl-chain
interdigitation (Mihailescu et al., 2011). These works indicate that
we needmore experimental data in order to better understand the
effect of interleaflet coupling in lipid bilayers.

The plasma membrane of eukaryotic cells is asymmetric

(Figure 2B) in terms of lipid and surface ion composition,
as well as the presence of specific proteins (Rothman and
Lenard, 1977; van Meer et al., 2008). The lipid asymmetry is
maintained by flippases and other lipid translocating or transport
proteins (Canagarajah et al., 2008; Devaux et al., 2008). Chemical
asymmetry, a gradient of ions, drives a number of vital cellular
processes (e.g., generation of chemical energy and metabolism).
On the other hand, lipid asymmetry further adds to the diversity
and complexity of cellular compartments, thereby helping to
optimize cellular processes. For example, negatively charged lipid
headgroups in the inner leaflet provide the binding surface for
proteins with specific binding domains (Figure 2C; McLaughlin
and Murray, 2005). This can cause protein relocalisation often

BOX 1 | MEMBRANE FLUIDITY, VISCOSITY AND MOBILITY

Viscosity is a macroscopic parameter describing the behavior of a large, rigid sphere in a Newtonian fluid. Its use for membranes is imperfect and should be

treated with care (Valeur and Berberan-Santos, 2012; Olšinová et al., 2014). Membranes are nanoscopic structures with 2D character and highly heterogeneous

composition in terms of size and chemistry. Due to a lack of a better parameter, we use the term “viscosity” to describe membrane properties such as membrane

lateral compressibility and acyl chain ordering, which influence the mobility of membrane components. Other terms, e.g., “microviscosity” or “rigidity” were also used

in literature to cover these properties in one word (Shinitzky and Inbar, 1976; Kowalska and Cierniewski, 1983; Gut et al., 1985; Sherbet, 1989).

The term “fluidity” is frequently used to replace “viscosity” for biological membranes or other highly heterogeneous materials (Valeur and Berberan-Santos, 2012).

We use term “fluidity” in this work to distinguish membranes from other cellular structures which exhibit much higher stability (e.g., nucleoproteins), thereby limiting

rapid, long-range mobility of associated compounds.

Efforts to measure viscosity of cellular membranes are associated with serious technical difficulties (Valeur and Berberan-Santos, 2012; Olšinová et al., 2014).

Instead, measurements of rotational or lateral diffusion were successfully applied to characterize membrane viscosity. In cellular membranes, lateral diffusion is

frequently substituted with the term “mobility.” Mobility of membrane molecules can be influenced by many different factors, such as (i) membrane ordering or, in

the other terms, how densely lipids and proteins are packed in the membrane (Kahya et al., 2003), (ii) lateral pressure of the membrane which is partially linked to

ordering but also membrane hydration (polarity) and directly influences bilayer compressibility and elasticity (Marsh, 1996; Cantor, 1999), and (iii) macromolecular

crowding (Saxton, 1987; Guigas and Weiss, 2015). Mobility of membrane components is further influenced by other intrinsic and extrinsic factors as described in the

main text.

To illustrate dramatic differences in the mobility of molecules in synthetic and cellular environments, we provide a few values of diffusion coefficients in Table 1.

These should be considered as a simple guideline due to differences in the precision with which these values were measured. We also provide the time scale a

molecule requires to traverse the distance of 20 µm (longitudal size of HeLa cells) by random (Brownian) 2D motion. This should underline dramatic differences in

the mobility of molecules in real space.
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FIGURE 2 | Schematic illustrations of the selected intrinsic membrane properties: (A) Interleaflet coupling [interdigitating lipid acyl chains in green-gray; zoom:

interdigitating ethyl groups of upper (green) and lower (red) leaflets]; (B) Asymmetric distribution of lipids and ions [right hand-side: color-coding of lipid species]; (C)

Negatively charged lipids (yellow) of the plasma membrane inner leaflet [for the association of proteins with basic-rich domains (light green)]; (D) Lipid self-assemblies

(pink); (E) Hydrophobic mismatch (purple); (F) Protein-lipid interactions [*sphingolipid- and **cholesterol-binding pockets].

leading to the initiation of signaling events (Yeung et al., 2008). In
addition, chemical asymmetry and the presence of ions induces
heterogeneous distribution of lipids, at least in simulations and
in model systems (Vácha et al., 2009; Jurkiewicz et al., 2012).
Whether this effect contributes to the organization of plasma
membrane in living cells is experimentally difficult to test; an
asymmetric membrane is indispensable for cell viability. At the
same time, the formation of asymmetric model membranes in
vitro is a rather delicate process and was successfully performed
only in a few cases in past (Kiessling et al., 2006; Collins and
Keller, 2008; Chiantia et al., 2011). Therefore, data demonstrating
lateral (re)organization due to membrane asymmetry are still
rare.

Even though lipids interact only weakly, preferential
self-assemblies of certain lipid species or conformations
(Figure 2D) were demonstrated in model lipid mixtures
(Björkbom et al., 2010; Ivankin et al., 2010). Under certain
circumstances, lipid self-assembling may extensively reduce
miscibility of its molecules, i.e., generate physico-chemical
heterogeneities. A well-known example of lipid self-assembly
and segregation is the formation of separated lipid phases in
vesicles composed of two or more lipid species with different
melting points (Bagatolli and Gratton, 1999; Korlach et al.,
1999; Bernardino de la Serna et al., 2004; Veatch and Keller,
2005). Importantly, lipids are prone to phase separation or
miscibility transitions also in cell membrane-derived vesicles
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and blebs, as well as artificial vesicles generated from lipids
extracts and from native membranes (Bernardino de la Serna
et al., 2004; Baumgart et al., 2007; Veatch et al., 2008). All these
observations were achieved using equilibrated membranes;
however, cells are non-equilibrium systems (Stryer, 1995).
Indeed, no miscibility phase transitions were observed in living
cells over a wide range of temperatures (Lee et al., 2015). Putative
impact of lipid self-assembly and ordered lipid membranes on
cell membranes is discussed in the section “Plasma membrane
organization–general models and concepts.”

Hydrophobic thickness of a lipid bilayer is defined mainly
by the length and saturation of acyl chains and the presence
of sterols. Bilayer lipids interact non-specifically and transiently
with transmembrane domains of integral proteins (Marsh, 1993).
Imparity of the hydrophobic thickness of the bilayer and the
hydrophobic length of TMD (s) is called hydrophobic mismatch

(Figure 2E). Hydrophobic mismatch was proposed to induce
molecular aggregation/segregation in lipid bilayers, as described
in the mattress model (Mouritsen and Bloom, 1984). For
example, lipids with longer and more saturated acyl chains will
preferentially reside in the annulus of helical TMD with long
hydrophobic length. More about the mattress model is discussed
in the section “Plasma membrane organization–general models
and concepts.”

Lipids can also interact with proteins in a more specific
manner (Haberkant et al., 2008; Fantini and Barrantes, 2013;
Yeagle, 2014). Several proteins carry lipid-binding domains
(Ernst et al., 2010; Contreras et al., 2011; Fantini and Barrantes,
2013) to which lipids bind with a higher affinity compared to the
lipids of the first shell interacting with transmembrane domains
non-specifically. Such protein-lipid interactions (Figure 2F)
can be highly specific in a way that lipid headgroup, acyl
chain length and its saturation determine the affinity of such
interactions (Contreras et al., 2012). Specific protein-lipid
interactions have been shown to modulate protein stability and
its function (Uittenbogaard and Smart, 2000; Hanson et al., 2008;
Contreras et al., 2012) or are directly involved in transport of
lipids between subcellular compartments (Kwon et al., 2009).
But what is their impact on the lateral organization of plasma
membrane is to date unclear.

The abovementioned intrinsic properties can be ascribed
to any proteo-lipid membranes, independent of whether these
are artificial or cellular structures. But what is so specific
about membranes of living cells? Can “clever” use of these
intrinsic properties, their local amplification, reduction and/or
combination lead to such limitless concert of events such as
metabolism and signal transduction? Or is there a need for
extrinsic factors to support those basal membrane properties?

EXTRINSIC FACTORS INFLUENCING THE
PLASMA MEMBRANE ORGANISATION

The plasma membrane is built to interact with surrounding
structures such as cortical actin, the extracellular matrix or a
variety of ligand molecules. These form the basis of extrinsic
factors which can shape the plasma membrane.

We assigned protein-protein interactions to the section
of extrinsic factors, given the fact that extra-membranous
(extracellular and cytosolic) domains are the predominant
structures involved in persistent associations of proteins. Further,
since these interactions often involve non-membranous protein
scaffolds, we believe that protein-protein interactions have, to
some extent, extrinsic character.

In contrast to lipids, proteins can interact with high affinity
and thus form relatively stable structures (Figure 3A) within
a sea of lipid molecules. Indeed, the interaction of proteins
is a common process associated, for example, with leukocyte
signaling or cellular adhesion, both taking place at the surface
of cells (Douglass and Vale, 2005; Rossier et al., 2012).
Supramolecular complexes of proteins can be relatively large and
can further interact with other cellular components such as the
cytoskeleton, thereby forming protein networks which can have
local or systemic impact on membranes (see below).

More recently, a concept of protein islands was presented
based on the fact that proteins were detected in distinct domains
interspaced with protein-free areas, when membrane patches
were imaged by electron microscopy (Wilson et al., 2000;
Lillemeier et al., 2006). Heterogeneous distribution of proteins
in entities reminiscent of such “protein islands” were often found
by super-resolution fluorescence imaging of the cellular plasma
membrane (for example Sieber et al., 2007; Lillemeier et al.,
2010; Letschert et al., 2014; Saka et al., 2014; see also Figure 4).
However, it is not yet clear whether such entities are created and
stabilized by protein-protein interactions or other mechanisms
are involved. The impact of the underlying actin cytoskeleton
on protein islands was reported in the past (Wilson et al., 2001;
Lillemeier et al., 2006).

Certain cytosolic proteins can interact with headgroups

of selected lipid species (e.g., negatively charged
phosphatidylserines and phosphoinositols) via electrostatic
interactions (Figure 2C; McLaughlin andMurray, 2005). In cells,
binding of proteins to charged headgroups of inner leaflet lipids
is well-documented to control important cellular processes,
e.g., phagocytosis (Botelho et al., 2000). In addition, peripheral
protein interactions at the inner leaflet of the plasma membrane
modulate localization and mobility of charged lipids, as well as
some other, probably associated, molecules (Golebiewska et al.,
2008, 2011; Yeung et al., 2008). But whether such peripheral
interactions can modulate the mobility of other membrane
components (e.g., at the outer leaflet) and have a more general
impact on the plasma membrane organization awaits its direct
proof.

Due to membrane plasticity and flexibity, certain
lipids with non-conical shape, e.g., lysophospholipids or
phosphatidylethanolamines found also in cell membranes,
can deform the planar structure of lipid bilayers by bending
(Figure 3B), thereby changing its curvature (Šachl et al., 2011).
Similar to protein-protein interactions, curvature is not a
typical extrinsic factor. But in cells, highly curved membranes
are prevalently generated by curvature-forming proteins (e.g.,
BAR-domain containing proteins) or cytoskeleton-induced
mechanical forces (McMahon and Gallop, 2005; Mattila and
Lappalainen, 2008). Both these processes are externally regulated
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FIGURE 3 | Schematic illustrations of the selected extrinsic membrane properties. (A) Protein-protein interactions. Putative membrane proteins (green and

red) forming heterodimers can assemble into larger clusters and be stabilized by further interaction with cytosolic proteins (dark yellow). (B) Membrane curvature.

Certain proteins (blue and green-brown) may prefer curved membranes. Curved membranes can be stabilized e.g., by BAR proteins (light yellow). (C) Intracellular

cortical actin skeleton. Actin-binding proteins (dark yellow and orange) can associate with integral membrane proteins and form larger assemblies with reduced

mobility. (D) Extracellular glycocalyx. Interaction of certain membrane proteins (dark blue and dark green) with the extracellular matrix may lead to the formation of

larger assemblies with reduced mobility. (E) Endo-/exocytosis. Membrane lipids and proteins are rapidly endocytosed (red) or exocytosed (green).

and require energy and/or cofactors (Mima et al., 2008; Frolov
et al., 2010). For example, processes of endo/exocytosis are
initiated by protein-induced membrane bending and ATP/GTP
hydrolysis (Vilmart-Seuwen et al., 1986; Hansen and Nichols,
2009; Stachowiak et al., 2013). The plasma membrane has the
capacity to form specialized extensions with high curvature to
accomplish some of its specific functions, e.g., the formation of
microvilli in polarized cells for the efficient uptake of nutrients
(Crawley et al., 2014), or of membrane nanotubes for the
inter-cellular communication (Onfelt et al., 2004). In theory,
curvature can modulate the distribution of membrane molecules
(Bozic et al., 2006; Wu and Liang, 2014). Indeed, some proteins
accumulate in curved or filamentous membranes in cells, but the
mechanisms responsible for such diversity are probably based
on targeted delivery of molecules to these specific structures and
partial impermeability of the basal region of such membrane
extensions, e.g., of cilia (Trimble and Grinstein, 2015). In model
membranes, specific proteins undergo curvature-driven sorting

while others do not (Hatzakis et al., 2009; Aimon et al., 2014;
Quemeneur et al., 2014). Specific intermolecular interactions
between lipids and proteins were suggested to be responsible for
such selectivity (Callan-Jones et al., 2011), nonetheless it is still
unclear whether curvature-based protein and lipid sorting can
occur in highly dynamic membranes of cells.

The cortical actin (CA) skeleton (Figure 3C) helps to keep
and modulate the shape of living cells (Murase et al., 2004). In
addition, it is involved in the regulation of membrane trafficking
and signaling (for example Suzuki et al., 2007; Jaqaman et al.,
2011; Gowrishankar et al., 2012; Johnson et al., 2012). The impact
of the CA on the organization of the plasma membrane is well
described and forms the basis of a key model discussed in the
following section.

Similarly, the glycocalyx (Figure 3D), a part of the
extracellular matrix (ECM) in vertebrates, forms a dense
structure at the surface of eukaryotic cells (Stryer, 1995).
Glycosaminoglycans and associated glycoproteins and
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FIGURE 4 | Examples of heterogenous distribution of proteins in the

plasma membrane of mammalian cells. (A) Heterogenous distribution of

MHC molecules as observed on murine lymphoid cells in 1967 by Cerottini

and Brunner using epifluorescence microscopy (Adapted by permission from

John Wiley and Sons Ltd; (Cerottini and Brunner, 1967). (B) MHC clustering

on murine red blood cells as detected in 1971 by Nicolson and colleagues by

electron microscopy (EM; scale bar: 200 nm; Adapted by permission from

RUPress: ©1971 Nicolson et al., 1971). (C) Distribution of individual TCR

molecules on activated primary human T cells analyzed by dSTORM (Adapted

by permission from Macmillan Publishers Ltd: Nature Methods

(Rubin-Delanchy et al., 2015), copyright 2015). Showing 3 × 3 µm area. (D)

Distribution of proteins in membrane sheets derived from a neuroendocrine

cell line as revealed by STED microscopy [Adapted by permission from

Macmillan Publishers Ltd: Nature Communications (Saka et al., 2014),

copyright 2015]. Scale bar: 500 nm.

proteoglycans of the glycocalyx were shown to modulate
signaling by direct association with surface receptors (Bass et al.,
2007; Morgan et al., 2007) or by binding of ligands (Hynes,
2009). In this way, the glycocalyx and the extracellular matrix
regulate the shape of multicellular organisms. The glycocalyx
was also predicted to influence the general organization of the
plasma membrane (Jacobson et al., 1987). Indeed, glycosylated
extracellular domains were shown to modulate the organization
(Anderson and Fambrough, 1983) and mobility (Wier and
Edidin, 1986; Zhang et al., 1991; Hartel et al., 2015) of membrane
proteins. The molecular mechanism is still unknown and, to our
knowledge, has not been studied in detail.

Cells keep their membranes “healthy” by a rapid turnover of
its components. This is achieved mainly by vesicular transport—
endo-/exocytosis (Figure 3E)—but also by a less well understood
protein-mediated lipid transport mechanism(s) (Lev, 2012). Each
exo-/endocytic event delivers or removes a material equivalent
to a surface area of ≈ 30.000 nm2 (estimated for the average
diameter of exo-/endocytic vesicles to be ∼100 nm). Therefore,
every such event can transiently, but dramatically change
the local membrane composition and, thereby, organization.

Whereas no preferred sites of exo-/endocytosis were reported
under resting conditions (Schmoranzer et al., 2000), stimulation
of cells can result in more localized vesicular transport and
fusion/fission hotspots (Stinchcombe et al., 2001; Gaffield et al.,
2009). This can further accelerate changes in the plasma
membrane.

Alternatively, membrane components (specifically
lipids) can be delivered to the plasma membrane by
specific lipid transporters (Raychaudhuri et al., 2006; Voelker,
2009; Tarling et al., 2013). These may travel through the cytosol
by diffusion or, more probably, such events can take place at
membrane contact sites between the endoplasmic reticulum
(ER) and plasma membrane (see Figure 5 in Fernández-
Busnadiego et al., 2015). These sites are responsible for the
synthesis, transport of lipids between the ER and plasma
membrane (e.g., by Osh sterol transporters Raychaudhuri
et al., 2006) and regulation of lipid metabolism in the plasma
membrane (Stefan et al., 2011).

Vesicular and protein-mediated transport are the two main
mechanisms responsible for a rapid turnover of membrane
molecules (estimated to exchange almost all of its components
within 1 h), but other routes such as free diffusion of small
molecules (e.g., glucose, ions Cortizo et al., 1990) or infection of
cells by viruses and other pathogens (Mazzon and Mercer, 2014)
can further modulate membrane composition and organization.

Active transport of protons and ions, together with chemical
asymmetry, generates an electrostatic potential across the
plasma membrane of living cells (Hodgkin and Huxley, 1952).
In addition to the function of the membrane potential in
metabolism and transport of essential molecules in and out of
cells, it has an impact on properties of model and cell membranes
(O’Shea et al., 1984; Grossmann et al., 2007; Herman et al., 2015).
Even in the absence of ions, asymmetric distribution of lipids in
the bilayer can generate a transmembrane potential (Gurtovenko
and Vattulainen, 2007). As a consequence, it is technically
challenging to uncouple membrane potential and asymmetry.
Of note, the available theoretical and experimental evidence
related to the electrostatic potential and the organization of cell
membranes was recently reviewed (Malinsky et al., 2016).

On their own, extrinsic factors do not have the capability to
control all plasma membrane processes. Hence, more holistic
hypotheses combining intrinsic and extrinsic factors are needed.
In the following section, we will briefly describe a more general
concept and five most popular models. A reader will find more
detailed descriptions of these models and some alternative views
in recently published reviews (e.g., Lingwood and Simons, 2010;
Owen et al., 2010; Klammt and Lillemeier, 2012; Klotzsch and
Schütz, 2013; Nicolson, 2014; Rao and Mayor, 2014; Mouritsen
and Bagatolli, 2015; Sevcsik and Schütz, 2016).

PLASMA MEMBRANE
ORGANISATION–GENERAL MODELS AND
CONCEPTS

Let us begin this section with a brief inspection of the mobility of
membrane components. This will indicate how simple concepts
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FIGURE 5 | Schematic illustrations of the plasma membrane organization models. (A) Fluid mosaic model. The membrane surface was artistically decorated

to indicate non-homogenous distribution of molecules. Colored objects represent various species of membrane proteins, strings of colored hexagons illustrate

glycosylation of proteins and lipids. (B) Hydrodynamic model. Similar mobility of lipids and proteins are indicated by orange and pink trajectories. Large assemblies

(red circle) with significantly larger radius can exhibit slower diffusion (dashed red trajectory). (C) Lipid membrane domains. Dark membrane patches indicate lipid

self-assemblies and different lipid (and protein) composition. (D) Mattress model. Dark membrane patches indicate accumulation of lipid species due to increased

hydrophobic length of protein TMDs. (E) Picket-and-fence model. Accumulation of proteins around the underlying CA skeleton and formation of fences (dashed black

line) which may restrict “free” diffusion of non-associated proteins (red) to a limited area (red trajectory). For long-distance mobility, proteins have to “hop” over the

fence (yellow arrow-line) which limits their long-range diffusion coefficient.
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highlighting intrinsic properties, namely viscosity and continuity
can, to some extent, explain certain puzzles related to the plasma
membrane organization and function. Measurements of lateral
diffusion of membrane components over the last few decades
uncovered much slower molecular mobility of molecules in cell
membranes compared to their model counterparts (Wier and
Edidin, 1986; Jacobson et al., 1987; Lippincott-Schwartz et al.,
2001). On average, lipid tracers (e.g., DiI or BODIPY-DPPE)
diffuse about four times faster in model membranes than in the
plasma membrane of living cells (Box 1; Table 1). This difference
can be explained by the compositional complexity of the plasma
membrane. The large proportion of lipids with long and saturated
acyl chains and cholesterol (van Meer et al., 2008) cause a
higher rigidity (Sezgin et al., 2015) and, thereby, viscosity of
membranes (Kucik et al., 1999). In addition, the presence of
integral membrane proteins further increases the local viscosity
in their immediate environment, which reduces the mobility
of membrane constituents in general (Peters and Cherry, 1982;
Chazotte and Hackenbrock, 1988; Frick et al., 2007; Saxton, 2008;
Niemelä et al., 2010). A plethora of lipid-lipid and lipid-protein
interactions, heterogeneities in general, can further contribute to
this reduction in mobility.

Therefore, intrinsic properties, particularly viscosity, can be
responsible for the reduced long-range diffusion rates measured
for lipids in cell membranes. Since membranes are continuous,
all of its lipid components should be influenced similarly
and equally throughout the whole area. For lipids which do
not comply with this statement, localization and mobility is
regulated by other factors such as proteins interacting with
charged lipid headgroups, endocytosis,... etc. This simple concept
works for lipids. But the extremely slow mobility of many
plasma membrane proteins—one-to-two orders of magnitude

lower compared to model membranes–calls for a more elaborate
explanation.

Fluid Mosaic Model (SN Model; Figure 5A). The SN model in
a large detail summarizes the understanding of the plasma
membrane composition, structure and thermodynamics 45
years ago (Singer and Nicolson, 1972). The emphasis is
placed on the fluidity of the membrane and coexistence of
lipids and proteins in this essential cellular structures. We
have already described crucial issues of this model in the
previous sections. Here, we would like to underline that
the word “mosaic” in the SN model was primarily used to
accent a mixed character of cell membranes where diverse
lipids and proteins coexist in a single lamellar structure.
Later, this was frequently misinterpreted as homogeneous or
random distribution of molecules. But heterogeneity of cell
membranes was observed and reported as early as in 1960s
(Figures 4A,B; Cerottini and Brunner, 1967; Aoki et al., 1969;
Kourilsky et al., 1971; Nicolson et al., 1971). Indeed, Nicolson
described putative mechanisms responsible for clustering
of proteins (or formation of domains) in his pillar work
already in 1979 (Nicolson, 1979 and Figure 4 therein). These
assumptions are still valid almost 40 years later (Nicolson,
2014).

Hydrodynamic Model (Figure 5B). The mobility of
transmembrane proteins and their aggregates in cell
membranes can be defined by the hydrodynamic model
(Saffman and Delbrück, 1975). This model hypothesizes
that molecular diffusion rates depend mainly on membrane
viscosity and thickness, and only weakly on the size of
proteins and aggregates. This model was later updated many
times (e.g., for arbitrary viscosity of membranes and solutes

TABLE 1 | Examples of diffusion coefficients and their translation to the times needed to traverse a distance of 20 µm (e.g., HeLa cell).

Molecule and environment Diffusion coefficient

(µm2/s)

Time to traverse 20 µm

(Brownian diffusion; seconds)#
Reference(s)*

Small molecule (fluorescein) in water 430 0.2 Culbertson et al., 2002

Protein (GFP) in water 90 >1 Swaminathan et al., 1997

Small molecule (fluorescein) in cytoplasm 30 >3 Luby-Phelps et al., 1986

Protein (GFP) in cytoplasm (CHO cell) 30 >3 Swaminathan et al., 1997

Protein (GFP) in cytoplasm (bacterium) 8 12.5 Elowitz et al., 1999

Lipid tracer in fluid model membranes (DOPC; free-standing membrane) 5–15 1.6–20 Ramadurai et al., 2009

Lipid tracer in membrane blebs (cell membrane without cortical actin) 1–10 10–100 Tank et al., 1982

Lipid-anchored protein@ in fluid model membrane 5 20 Kahya et al., 2005

Integral membrane protein in fluid model membrane 2–5 20–50 Ramadurai et al., 2009

Lipid tracer in cell membrane 0.5–4 25–200 Tank et al., 1982

Lipid-anchored protein@ in cell membrane 0.1–1 100–1000 Zhang et al., 1991

Lipid-anchored protein@ in cell membrane blebs (without CA skeleton) 0.3–0.6 170–330 Zhang et al., 1991

Integral membrane protein in cell membrane blebs (CA skeleton-free) 0.01–0.5 200–10000 Tank et al., 1982

Integral membrane protein in cell membrane$ 0.001–0.1 1000–100000 Tank et al., 1982

#The time to traverse the distance x was calculated as τ ≈ x2/4D, where D denotes the diffusion coefficient.

$ Some membrane proteins can exhibit only small mobile fraction or have even slower D.
@GPI-anchored proteins were tested in cited works.

*Original articles listed only.
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(Hughes et al., 1981) or asymmetric membranes Evans and
Sackmann, 1988), and experimentally confirmed in model
membranes (e.g., Ramadurai et al., 2009). However, it applies
only for freely moving molecules absent of interactions with
objects which do not co-diffuse as a single entity. The model is
further limited by the density of objects in the membrane and
their lipid environment. First, the presence of slowly moving
obstacles and molecular crowding can strongly influence the
mobility of membrane components (Saxton, 2008; Guigas
and Weiss, 2015). Second, lipids in the vicinity of TMDs of
integral membrane proteins (annular lipids or lipid shells)
exhibit reduced lateral diffusion (Meier et al., 1987; Anderson
and Jacobson, 2002). This is probably caused by the fact
that TMDs form relatively large and rigid structure in the
bilayer (Meier et al., 1987; Niemelä et al., 2010) but also due
to the rough surface of TMDs. Therefore, the complexity of
cell membranes evidently does not allow the application of
hydrodynamic model or its variants as a general model of the
plasma membrane organization. Nevertheless, it can provide
a useful alternative to more complex models for local changes
(nanoscale; see below).

Self-Assemblies of Lipids and Ordered Lipid Domains
(Figure 5C). Observation of protein clusters (DePierre
and Karnovsky, 1973), lipid segregation (Shimshick and
McConnell, 1973a,b; Klausner et al., 1980) and heterogeneous
distribution of certain lipids and proteins between apical
and basal membranes of polarized cells (van Meer and
Simons, 1982) led to the suggestions that lipids and their
self-assemblies can determine the fate of newly synthesized or
recycled membrane molecules (Karnovsky et al., 1982; Simons
and van Meer, 1988). This concept was modified by Simons
and Ikonen (Simons and Ikonen, 1997) who proposed “lipid
rafts” as the plasma membrane platforms of high molecular
order enriched in cholesterol and sphingolipids, in which
proteins involved in signaling can selectively interact with
effector molecules. In parallel, biochemical analyses revealed
inefficient solubilisation of some, but not all, membrane
proteins and lipids in mild detergents, forming the basis
of detergent resistant membranes (DRMs). Throughout
the years, the ordered lipid character of “model lipid rafts”
was emphasized and suggested to correspond to domains
present in the plasma membrane of cells. All these terms,
lipid rafts, DRMs and ordered lipid domains, were used
inconsistently and frequently led to misinterpretations which
were highlighted in recent reviews (Cebecauer et al., 2009;
Owen et al., 2010; Kraft, 2013; Sevcsik and Schütz, 2016).
In addition, the data supporting spontaneous formation of
lipid domains in living cells are rather controversial and
inconclusive (e.g., Eggeling et al., 2009; Brameshuber et al.,
2010; Owen et al., 2012; Honigmann et al., 2014; Sevcsik et al.,
2015). On the other hand, an undisputable capacity of certain
lipids (e.g., gangliosides) to self-aggregate (Fujita et al., 2007;
Chen et al., 2008), anomalous diffusion and/or distribution
of lipids in highly complex mixtures (Kusumi et al., 2005;
Eggeling et al., 2009; He and Marguet, 2011; Jeon et al., 2012)
and spontaneous formation of fluid nanoclusters (van Zanten

et al., 2010; Amaro et al., 2016) were demonstrated in silico, in
model membranes as well as in living cells. Such fluctuations
can potentially contribute to the overall heterogeneity of
the plasma membrane and the peculiar mobility of certain
lipids and proteins therein. Yet, the direct observation of such
anomaly remains challenging due the required spatial and
temporal resolution to disclose molecular-scale objects at sub-
millisecond rates, albeit recent advances in super-resolution
optical microscopy and ultrafast single-molecule tracking
indicate remedies to this limitation.

Mattress Model (Figure 5D). As mentioned above, lipids
in the vicinity of TMDs exhibit abnormal behavior (Lee,
2004; Niemelä et al., 2010), particularly in cell membranes
with a large variety of lipid species and TMDs. The
average membrane hydrophobic thickness increases between
the ER, Golgi apparatus and plasma membrane (Mitra
et al., 2004). During protein translation, proteins with
long TMDs are incorporated into the relatively thin
membrane of the ER, causing hydrophobic mismatch.
Lipids with longer and saturated acyl chains can form
metastable shells surrounding such TMDs, thereby generating
heterogeneity in the membrane of the ER. At a larger
scale, hydrophobic mismatch was proposed to induce the
formation of lipid/protein domains also in the plasma
membrane (Mouritsen and Bloom, 1993; Anderson and
Jacobson, 2002; Kaiser et al., 2011). Significant impact of
hydrophobic mismatch is well-documented for the sorting
of proteins in cell membranes (Munro, 1995; Sharpe et al.,
2010; Chum et al., 2016). But whether similar “sorting”
of lipids and proteins due to hydrophobic mismatch
contributes to the nanoscale organization of the plasma
membrane in living cells has so far not been experimentally
proven, mainly due to aforementioned limitations on spatial
and temporal resolution of potential direct observation
methods.

Cortical Actin Skeleton (Figure 5E). Membrane-proximal
positioning of the CA skeleton and its direct association
with the plasma membrane via actin-binding proteins or
complexes makes it the first-hand structure to influence the
mobility of plasma membrane molecules and their lateral
organization. Indeed, the actin skeleton was demonstrated to
affect membrane molecules in numerous works employing a
variety of experimental approaches (e.g., Golan and Veatch,
1980; Sheetz et al., 1980; Tank et al., 1982; Fujiwara et al.,
2002; Ritchie et al., 2003; Murase et al., 2004; Mueller et al.,
2011; Andrade et al., 2015). The effect of the CA skeleton is
to date the most accepted model for membrane organization,
independent of whether we speak about indirect sterical
hindrance (picket-and-fence model; (Koppel et al., 1981;
Jacobson et al., 1984; Sako and Kusumi, 1995; Machta et al.,
2011) or direct interactions of proteins with the CA skeleton
(Saxton, 1990; Sheetz et al., 2006; Mueller et al., 2011; Rao
and Mayor, 2014). Its undisputable impact was described in
more detail in current reviews (Kusumi et al., 2010; Rao and
Mayor, 2014). On the other hand, the CA skeleton provides a
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good explanation for many, but probably not all membrane-
associated phenomena (see below).

THERE IS NO UNIVERSAL MODEL OF THE
PLASMA MEMBRANE LATERAL
ORGANISATION

Models listed in the previous sections, better or worse, contribute
to the overall understanding how cells potentially organize
molecules in their plasma membrane. Some of these models
passed through their glorious periods, in which almost any
article assumed the applicability of this one particularmechanism
for the function and/or organization of the studied membrane
molecule(s). A handful of recent experimental work (e.g.,
Kenworthy et al., 2004; Frisz et al., 2013; Honigmann et al.,
2014; Letschert et al., 2014; Sevcsik et al., 2015; Wilson et al.,
2015) and reviews (Kraft, 2013; Sevcsik and Schütz, 2016) argue
against these universal theories. Improvements in technology
for observing membrane studies have more and more reduced
the affection for such a single, universal theory. A dynamic
and complex plasma membrane is the environment where all
molecules play in concert to achieve the optimal physiological
output.

As a metaphor, one can think of human society. Similar
to cell membranes, it is highly complex and dynamic, with
activities difficult to investigate. As an example one can consider
clustering. “Clustering” occurs in human society at the nanoscale
(e.g., families), mesoscale (e.g., clubs, classes or other small
interest groups), or macroscale (e.g., villages, cities, states). The
formation of such “clusters” depends on intrinsic properties like
affection or animosity, the local or global economic situation, but
also the health and mobility of the individuals. As an analogy
for extrinsic parameters we may consider the environmental
situation (sunshine/rain, drought/flooding), local factors (alpine
landscape vs. influence of the sea), but also the interaction with
other “clusters.” As we know from experience, social systems
may develop rather stable phenotypes at the macroscale (e.g.,
the current western society), which are still characterized by
high dynamics at the nano—or mesoscale. On the contrary,
there are periods in history, in which no stable situation was
reached for many years. Our point is, that it is virtually
impossible to predict the behavior of a large society from
simple models, even if the intrinsic and extrinsic parameters
are well-known at high detail. Or, if we return to the topic
of cell membranes: currently, it seems impossible to explain
the plasma membrane organization based on individual models
described in the previous section. Hence, future challenges will
include the clever combination of this principle models into
more holistic meta-models to increase their predictive power.
Or, in the other words, we believe there is no simple, universal
mechanism underlying the organization of the plasmamembrane
of mammalian cells.

Why we believe this is so? And what are the consequences?

Starting with the first question, one has to look at the sections
with the lists of intrinsic and extrinsic factors influencing the

behavior of molecules in the plasma membrane. Both, intrinsic
and extrinsic factors are highly interconnected and can occur
at the same time or, more probably, in rapid, sequential events.
If intrinsic properties should be considered as rather general
factors, to which all molecules must adapt, extrinsic factors may
have more specific effects. Tuning of intrinsic properties (e.g.,
fluidity or viscosity) requires significant changes in molecular
composition. This can rapidly occur locally (at the nanoscale)
and transiently (sub-second), but would require substantial costs
of energy to induce large-scale and more stable changes. On the
contrary, extrinsic factors (e.g., the CA skeleton or glycocalyx)
can affect larger surface areas for longer periods of time with
higher efficiency. It is, therefore, probably a combination of
these factors which regulates behavior of molecules in the
plasma membrane at a full spectrum of spatial and temporal
scales.

This brings us to the second question about the consequences
of the non-existence of omnipotent, universal model applicable
to all plasma membrane components and events. First, when
interpreting data acquired during the analysis of cell membranes,
one should not ignore intrinsic membrane properties. Even
though less visible (detectable), these form the basis of membrane
organization and function. Extrinsic factors are important
but may be consequential. In order to fully understand
membrane-associated processes and avoid undesirable borders
of a single theory, a careful analysis of sequential events,
which may lead to the observed effect, needs to be performed
(Box 2).

Another concern with the interpretation of membrane-
focused data is the systemic use of chemical and genetic
tools as a proof of one or the other model of the plasma
membrane organization. Specific side-effects of some of these
treatments (e.g., detergents, methyl-β-cyclodextrin, cytochalasin
D or temperature changes) have been described in past
(Ailenberg and Silverman, 2003; Lichtenberg et al., 2005; Magee
et al., 2005; Shvartsman et al., 2006; Zidovetzki and Levitan,
2007). Due to the fluidity and cooperativity, systemic treatment
(both, chemical and genetic) will often influence the behavior
of many (if not all) molecules present in or associated with
the membrane, instead of only specific ones. In addition, the
procedure of observing the system may potentially introduce
artifacts, for example labels or intense light sources employed
in fluorescence microscopy (Sezgin et al., 2012; Magidson
and Khodjakov, 2013). Therefore, employment of treatments
or observation techniques requires cautious interpretation and
experiments performed with extensive number of controls.
Leaving space for alternative interpretations and emphasis on
possible side-effects should be a good practice in this kind of
works.

In summary, we provide here a comprehensive list of
membrane features and peripheral structures which were
previously demonstrated or proposed to control lateral mobility
and organization of the plasma membrane in mammalian
cells. We also offer alternative views how to interpret results
measured on the plasma membrane of living cells. We re-
emphasize the impact of the intrinsic membrane properties
which were discovered and characterized more than 20 years
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BOX 2 | SEQUENTIAL EVENTS INFLUENCING THE PLASMA MEMBRANE ORGANISATION

Imaging techniques are excellent tools to monitor changes of the plasma membrane organization. High details can be explored using current advanced techniques

(Eggeling, 2015). But all methods suffer from the fact that the preeminent feature (e.g., CA skeleton reorganization) can hide one or more less well detectable events

(e.g., changes in local viscosity) accompanying an observed process. In some cases, these undetectable fluctuations may be the determining factors or triggers of

a transformation process.

To illustrate the consequences of the abovementioned limitation(s), let’s imagine a putative membrane-associated process: A ligand binds to its receptor which is

followed by receptor oligomerisation or nanoscale clustering. Such increased protein density causes increased membrane viscosity which, in turn, reduces mobility

of molecules in the vicinity of a cluster (Peters and Cherry, 1982; Niemelä et al., 2010). As a consequence, an actin-binding protein can collide with a receptor cluster,

enhance low-affinity interactions by crosslinking cluster components and trigger CA skeleton reorganization. It is the last event which will stabilize the overall structure

and, at the same time, it is the best detectable feature of this imaginary process. But the interpretation that the CA skeleton is responsible for the observed changes

is only part of the story. In this case, the ability to detect small-scale viscosity fluctuations would help to better understand such process. Unfortunately, at present,

such tools are not available for living cells.

ago but were sometimes overlooked in more recent works.
We finish with the hope that development of novel improved
observation techniques such as fast single-molecule tracking
(Ritchie et al., 2005; Ortega-Arroyo and Kukura, 2012), TOCSSL
(Brameshuber et al., 2010), STED-FCS (Eggeling et al., 2009;
Mueller et al., 2013; Eggeling, 2015), iMSD or related image
correlation techniques (Hebert et al., 2005; Digman et al., 2009;
Di Rienzo et al., 2013), will be rewarded with a more precise
information about players responsible for the uniqueness of
the plasma membrane. In case the improvements will be still
insufficient, we should probably overpass the barrier (obstacle)
between researchers studyingmammalian cells and those focused
on yeasts and plants. These organisms own membranes which
behave much friendlier on temporal scale compared to the
plasma membrane of mammalian cells. Such membranes are
highly heterogeneous and can be imaged with the use of existing
methods (Malínská et al., 2003; Spira et al., 2012). Cell cycle
regulation and RNA interference were also discovered in yeast
and plants.

AUTHOR CONTRIBUTIONS

JBdlS, GS, CE, and MC defined the topic and wrote the
manuscript.

FUNDING

This work was funded by Czech Science Foundation (15-
06989S; MC), the Medical Research Council (MRC, grant
number MC_UU_12010/unit programmes G0902418 and
MC_UU_12025; CE), Marie Curie Career Integration Grant
(JBdlS), and the Austrian Science Fund (FWF projects P
26337-B21, P 25730-B21).

ACKNOWLEDGMENTS

We would like to thank Marie Olsinova, Daniela Glatzova, Tony
Magee, Martin Hof, Lukasz Cwiklik, Piotr Jurkiewicz, and Tomas
Chum for critical discussions which led to writing of this article.

REFERENCES

Ailenberg, M., and Silverman, M. (2003). Cytochalasin D disruption of actin
filaments in 3T3 cells produces an anti-apoptotic response by activating
gelatinase A extracellularly and initiating intracellular survival signals. Biochim.

Biophys. Acta 1593, 249–258. doi: 10.1016/S0167-4889(02)00395-6
Aimon, S., Callan-Jones, A., Berthaud, A., Pinot, M., Toombes, G. E., and

Bassereau, P. (2014). Membrane shape modulates transmembrane protein
distribution. Dev. Cell 28, 212–218. doi: 10.1016/j.devcel.2013.12.012

Amaro, M., Šachl, R., Aydogan, G., Mikhalyov, II., Vácha, R., and Hof, M.
(2016). GM1 Ganglioside inhibits β-Amyloid oligomerization induced by
sphingomyelin. Angew. Chem. 55, 9411–9415. doi: 10.1002/anie.201603178

Anderson, M. J., and Fambrough, D. M. (1983). Aggregates of acetylcholine
receptors are associated with plaques of a basal lamina heparan sulfate
proteoglycan on the surface of skeletal muscle fibers. J. Cell Biol. 97(5 Pt 1),
1396–1411. doi: 10.1083/jcb.97.5.1396

Anderson, R. G., and Jacobson, K. (2002). A role for lipid shells in targeting
proteins to caveolae, rafts, and other lipid domains. Science 296, 1821–1825.
doi: 10.1126/science.1068886

Andrade, D. M., Clausen, M. P., Keller, J., Mueller, V., Wu, C., Bear, J. E.,
et al. (2015). Cortical actin networks induce spatio-temporal confinement of
phospholipids in the plasma membrane–a minimally invasive investigation by
STED-FCS. Sci. Rep. 5:11454. doi: 10.1038/srep11454

Aoki, T., Hammerling, U., De Harven, E., Boyse, E. A., and Old, L. J. (1969).
Antigenic structure of cell surfaces. An immunoferritin study of the occurrence
and topography of H-2′ theta, and TL alloantigens on mouse cells. J. Exp. Med.

130, 979–1001. doi: 10.1084/jem.130.5.979

Bagatolli, L. A., and Gratton, E. (1999). Two-photon fluorescence microscopy
observation of shape changes at the phase transition in phospholipid
giant unilamellar vesicles. Biophys. J. 77, 2090–2101. doi: 10.1016/S0006-
3495(99)77050-5

Balda, M. S., and Matter, K. (2008). Tight junctions at a glance. J. Cell Sci.
121(Pt 22), 3677–3682. doi: 10.1242/jcs.023887

Bass, M. D., Roach, K. A., Morgan, M. R., Mostafavi-Pour, Z., Schoen,
T., Muramatsu, T., et al. (2007). Syndecan-4-dependent Rac1 regulation
determines directional migration in response to the extracellular matrix. J. Cell
Biol. 177, 527–538. doi: 10.1083/jcb.200610076

Baumgart, T., Hammond, A. T., Sengupta, P., Hess, S. T., Holowka, D. A., Baird, B.
A., et al. (2007). Large-scale fluid/fluid phase separation of proteins and lipids in
giant plasma membrane vesicles. Proc. Natl. Acad. Sci. U.S.A. 104, 3165–3170.
doi: 10.1073/pnas.0611357104

Bernardino de la Serna, J., Perez-Gil, J., Simonsen, A. C., and Bagatolli, L. A. (2004).
Cholesterol rules: direct observation of the coexistence of two fluid phases in
native pulmonary surfactant membranes at physiological temperatures. J. Biol.
Chem. 279, 40715–40722. doi: 10.1074/jbc.M404648200

Berrier, A. L., and Yamada, K. M. (2007). Cell-matrix adhesion. J. Cell. Physiol. 213,
565–573. doi: 10.1002/jcp.21237

Björkbom, A., Róg, T., Kaszuba, K., Kurita, M., Yamaguchi, S., Lönnfors,
M., et al. (2010). Effect of sphingomyelin headgroup size on molecular
properties and interactions with cholesterol. Biophys. J. 99, 3300–3308. doi:
10.1016/j.bpj.2010.09.049

Botelho, R. J., Teruel, M., Dierckman, R., Anderson, R., Wells, A., York, J. D., et al.
(2000). Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at
sites of phagocytosis. J. Cell Biol. 151, 1353–1368. doi: 10.1083/jcb.151.7.1353

Frontiers in Cell and Developmental Biology | www.frontiersin.org 12 September 2016 | Volume 4 | Article 106

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Bernardino de la Serna et al. Revised View of Plasma Membrane Organization

Bozic, B., Kralj-Iglic, V., and Svetina, S. (2006). Coupling between vesicle shape and
lateral distribution of mobile membrane inclusions. Phys. Rev. E Stat. Nonlin.

Soft Matter Phys. 73(4 Pt 1):041915. doi: 10.1103/PhysRevE.73.041915
Brameshuber, M., Weghuber, J., Ruprecht, V., Gombos, I., Horváth, I., Vigh, L.,

et al. (2010). Imaging of mobile long-lived nanoplatforms in the live cell plasma
membrane. J. Biol. Chem. 285, 41765–41771. doi: 10.1074/jbc.M110.182121

Buda, C., Dey, I., Balogh, N., Horvath, L. I., Maderspach, K., Juhasz, M., et al.
(1994). Structural order of membranes and composition of phospholipids in
fish brain-cells during thermal acclimatization. Proc. Natl. Acad. Sci. U.S.A. 91,
8234–8238. doi: 10.1073/pnas.91.17.8234

Callan-Jones, A., Sorre, B., and Bassereau, P. (2011). Curvature-driven lipid
sorting in biomembranes. Cold Spring Harb. Perspect. Biol. 3:a004648. doi:
10.1101/cshperspect.a004648

Canagarajah, B. J., Hummer, G., Prinz, W. A., and Hurley, J. H. (2008). Dynamics
of cholesterol exchange in the oxysterol binding protein family. J. Mol. Biol. 378,
737–748. doi: 10.1016/j.jmb.2008.01.075

Cantor, R. S. (1999). Lipid composition and the lateral pressure profile in
membranes. Biophys. J. 76, A58–A58. doi: 10.1016/S0006-3495(99)77415-1

Capponi, S., Freites, J. A., Tobias, D. J., andWhite, S. H. (2016). Interleaflet mixing
and coupling in liquid-disordered phospholipid bilayers. Biochim. Biophys.

Acta 1858, 354–362. doi: 10.1016/j.bbamem.2015.11.024
Cebecauer, M., Owen, D. M., Markiewicz, A., and Magee, A. I. (2009). Lipid order

andmolecular assemblies in the plasmamembrane of eukaryotic cells. Biochem.

Soc. Trans. 37(Pt 5), 1056–1060. doi: 10.1042/BST0371056
Cebecauer,M., Spitaler,M., Sergè, A., andMagee, A. I. (2010). Signalling complexes

and clusters: functional advantages and methodological hurdles. J. Cell Sci.
123(Pt 3), 309–320. doi: 10.1242/jcs.061739

Cerottini, J. C., and Brunner, K. T. (1967). Localization of mouse isoantigens on
the cell surface as revealed by immunofluorescence. Immunology 13, 395–403.

Chazotte, B., and Hackenbrock, C. R. (1988). The multicollisional, obstructed,
long-range diffusional nature of mitochondrial electron transport. J. Biol.
Chem. 263, 14359–14367.

Chen, Y., Qin, J., and Chen, Z. W. (2008). Fluorescence-topographic NSOM
directly visualizes peak-valley polarities of GM1/GM3 rafts in cell membrane
fluctuations. J. Lipid Res. 49, 2268–2275. doi: 10.1194/jlr.D800031-JLR200

Chiantia, S., Schwille, P., Klymchenko, A. S., and London, E. (2011). Asymmetric
GUVs prepared by MbetaCD-mediated lipid exchange: an FCS study. Biophys.
J. 100, L1–L3. doi: 10.1016/j.bpj.2010.11.051

Chum, T., Glatzova, D., Kvicalova, Z., Malinsky, J., Brdicka, T., and Cebecauer,
M. (2016). The role of palmitoylation and transmembrane domain in
sorting of transmembrane adaptor proteins. J. Cell Sci. 129, 95–107. doi:
10.1242/jcs.175190

Collins, M. D., and Keller, S. L. (2008). Tuning lipid mixtures to induce or suppress
domain formation across leaflets of unsupported asymmetric bilayers. Proc.
Natl. Acad. Sci. U.S.A. 105, 124–128. doi: 10.1073/pnas.0702970105

Contreras, F. X., Ernst, A. M., Haberkant, P., Björkholm, P., Lindahl, E.,
Gönen, B., et al. (2012). Molecular recognition of a single sphingolipid
species by a protein’s transmembrane domain. Nature 481, 525–529. doi:
10.1038/nature10742

Contreras, F. X., Ernst, A. M., Wieland, F., and Brügger, B. (2011). Specificity
of intramembrane protein-lipid interactions. Cold Spring Harb. Perspect. Biol.

3:a004705. doi: 10.1101/cshperspect.a004705
Cortizo, A. M., Paladini, A., Díaz, G. B., García, M. E., and Gagliardino, J. J. (1990).

Changes induced by glucose in the plasma membrane properties of pancreatic
islets.Mol. Cell. Endocrinol. 71, 49–54. doi: 10.1016/0303-7207(90)90074-I

Crawley, S. W., Mooseker, M. S., and Tyska, M. J. (2014). Shaping the
intestinal brush border. J. Cell Biol. 207, 441–451. doi: 10.1083/jcb.2014
07015

Culbertson, C. T., Jacobson, S. C., and Michael Ramsey, J. (2002). Diffusion
coefficient measurements in microfluidic devices. Talanta 56, 365–373. doi:
10.1016/S0039-9140(01)00602-6

DePierre, J. W., and Karnovsky, M. L. (1973). Plasma membranes of mammalian
cells: a review of methods for their characterization and isolation. J. Cell Biol.
56, 275–303. doi: 10.1083/jcb.56.2.275

Devaux, P. F., Herrmann, A., Ohlwein, N., and Kozlov, M. M. (2008). How
lipid flippases can modulate membrane structure. Biochim. Biophys. Acta 1778,
1591–1600. doi: 10.1016/j.bbamem.2008.03.007

Digman, M. A., Wiseman, P. W., Horwitz, A. R., and Gratton, E. (2009). Detecting
protein complexes in living cells from laser scanning confocal image sequences

by the cross correlation raster image spectroscopy method. Biophys. J. 96,
707–716. doi: 10.1016/j.bpj.2008.09.051

Di Rienzo, C., Gratton, E., Beltram, F., and Cardarelli, F. (2013). Fast
spatiotemporal correlation spectroscopy to determine protein lateral diffusion
laws in live cell membranes. Proc. Natl. Acad. Sci. U.S.A. 110, 12307–12312. doi:
10.1073/pnas.1222097110

Douglass, A. D., and Vale, R. D. (2005). Single-molecule microscopy reveals
plasma membrane microdomains created by protein-protein networks that
exclude or trap signaling molecules in T cells. Cell 121, 937–950. doi:
10.1016/j.cell.2005.04.009

Dupuy, A. D., and Engelman, D. M. (2008). Protein area occupancy at the center
of the red blood cell membrane. Proc. Natl. Acad. Sci. U.S.A. 105, 2848–2852.
doi: 10.1073/pnas.0712379105

Duzgunes, N., Newton, C., Fisher, K., Fedor, J., and Papahadjopoulos, D. (1988).
Monolayer coupling in phosphatidylserine bilayers: distinct phase transitions
induced by magnesium interacting with one or both monolayers. Biochim.

Biophys. Acta 944, 391–398. doi: 10.1016/0005-2736(88)90510-X
Edwards, S. W., Tan, C. M., and Limbird, L. E. (2000). Localization of G-protein-

coupled receptors in health and disease. Trends Pharmacol. Sci. 21, 304–308.
doi: 10.1016/S0165-6147(00)01513-3

Eggeling, C. (2015). Super-resolution optical microscopy of lipid plasma
membrane dynamics. Essays Biochem. 57, 69–80. doi: 10.1042/bse0570069

Eggeling, C., Ringemann, C., Medda, R., Schwarzmann, G., Sandhoff,
K., Polyakova, S., et al. (2009). Direct observation of the nanoscale
dynamics of membrane lipids in a living cell. Nature 457, 1159–1162.
doi: 10.1038/nature07596

Elowitz, M. B., Surette, M. G.,Wolf, P. E., Stock, J. B., and Leibler, S. (1999). Protein
mobility in the cytoplasm of Escherichia coli. J. Bacteriol. 181, 197–203.

Ernst, A. M., Contreras, F. X., Brügger, B., and Wieland, F. (2010). Determinants
of specificity at the protein-lipid interface in membranes. FEBS Lett. 584,
1713–1720. doi: 10.1016/j.febslet.2009.12.060

Evans, E., and Sackmann, E. (1988). Translational and rotational drag coefficients
for a disk moving in a liquid membrane-associated with a rigid substrate. J.
Fluid Mech. 194, 553–561. doi: 10.1017/S0022112088003106

Fantini, J., and Barrantes, F. J. (2013). How cholesterol interacts with membrane
proteins: an exploration of cholesterol-binding sites including CRAC, CARC,
and tilted domains. Front. Physiol. 4:31. doi: 10.3389/fphys.2013.00031

Fernández-Busnadiego, R., Saheki, Y., and De Camilli, P. (2015). Three-
dimensional architecture of extended synaptotagmin-mediated endoplasmic
reticulum-plasma membrane contact sites. Proc. Natl. Acad. Sci. U.S.A. 112,
E2004–E2013. doi: 10.1073/pnas.1503191112

Fraenkel, G., and Hopf, H. S. (1940). The physiological action of abnormally
high temperatures on poikilothermic animals: temperature adaptation and
the degree of saturation of the phosphatides. Biochem. J. 34, 1085–1092. doi:
10.1042/bj0341085

Frick, M., Schmidt, K., and Nichols, B. J. (2007). Modulation of lateral diffusion
in the plasma membrane by protein density. Curr. Biol. 17, 462–467. doi:
10.1016/j.cub.2007.01.069

Frisz, J. F., Klitzing, H. A., Lou, K., Hutcheon, I. D., Weber, P. K., Zimmerberg,
J., et al. (2013). Sphingolipid domains in the plasma membranes of fibroblasts
are not enriched with cholesterol. J. Biol. Chem. 288, 16855–16861. doi:
10.1074/jbc.M113.473207

Frolov, V. A., Bashkirov, P. V., Akimov, S. A., and Zimmerberg, J. (2010).
Membrane curvature and fission by dynamin: mechanics, dynamics and
partners. Biophys. J. 98:2a. doi: 10.1016/j.bpj.2009.12.012

Fujita, A., Cheng, J., Hirakawa, M., Furukawa, K., Kusunoki, S., and Fujimoto, T.
(2007). Gangliosides GM1 and GM3 in the living cell membrane form clusters
susceptible to cholesterol depletion and chilling.Mol. Biol. Cell 18, 2112–2122.
doi: 10.1091/mbc.E07-01-0071

Fujiwara, T., Ritchie, K., Murakoshi, H., Jacobson, K., and Kusumi, A. (2002).
Phospholipids undergo hop diffusion in compartmentalized cell membrane. J.
Cell Biol. 157, 1071–1081. doi: 10.1083/jcb.200202050

Gaffield, M. A., Tabares, L., and Betz, W. J. (2009). Preferred sites of
exocytosis and endocytosis colocalize during high- but not lower-frequency
stimulation in mouse motor nerve terminals. J. Neurosci. 29, 15308–15316. doi:
10.1523/JNEUROSCI.4646-09.2009

Garcia-Parajo, M. F., Cambi, A., Torreno-Pina, J. A., Thompson, N., and
Jacobson, K. (2014). Nanoclustering as a dominant feature of plasmamembrane
organization. J. Cell Sci. 127, 4995–5005. doi: 10.1242/jcs.146340

Frontiers in Cell and Developmental Biology | www.frontiersin.org 13 September 2016 | Volume 4 | Article 106

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Bernardino de la Serna et al. Revised View of Plasma Membrane Organization

Golan, D. E., and Veatch, W. (1980). Lateral mobility of band 3 in the human
erythrocyte membrane studied by fluorescence photobleaching recovery:
evidence for control by cytoskeletal interactions. Proc. Natl. Acad. Sci. U.S.A.
77, 2537–2541. doi: 10.1073/pnas.77.5.2537

Golebiewska, U., Kay, J. G., Masters, T., Grinstein, S., Im, W., Pastor, R. W., et al.
(2011). Evidence for a fence that impedes the diffusion of phosphatidylinositol
4,5-bisphosphate out of the forming phagosomes of macrophages. Mol. Biol.

Cell 22, 3498–3507. doi: 10.1091/mbc.E11-02-0114
Golebiewska, U., Nyako, M.,Woturski, W., Zaitseva, I., andMcLaughlin, S. (2008).

Diffusion coefficient of fluorescent phosphatidylinositol 4,5-bisphosphate
in the plasma membrane of cells. Mol. Biol. Cell 19, 1663–1669. doi:
10.1091/mbc.E07-12-1208

Gowrishankar, K., Ghosh, S., Saha, S., Rumamol, C., Mayor, S., and Rao, M. (2012).
Active remodeling of cortical actin regulates spatiotemporal organization of cell
surface molecules. Cell 149, 1353–1367. doi: 10.1016/j.cell.2012.05.008

Grecco, H. E., Schmick, M., and Bastiaens, P. I. (2011). Signaling from the living
plasma membrane. Cell 144, 897–909. doi: 10.1016/j.cell.2011.01.029

Grossmann, G., Opekarová, M., Malinsky, J., Weig-Meckl, I., and Tanner, W.
(2007). Membrane potential governs lateral segregation of plasma membrane
proteins and lipids in yeast. EMBO J. 26, 1–8. doi: 10.1038/sj.emboj.7601466

Guigas, G., and Weiss, M. (2015). Effects of protein crowding on
membrane systems. Biochim. Biophys. Acta 1858, 2441–2450. doi:
10.1016/j.bbamem.2015.12.021

Gurtovenko, A. A., and Vattulainen, I. (2007). Lipid transmembrane asymmetry
and intrinsic membrane potential: two sides of the same coin. J. Am. Chem.

Soc. 129, 5358–5359. doi: 10.1021/ja070949m
Gut, J., Kawato, S., Cherry, R. J., Winterhalter, K. H., and Richter, C. (1985).

Lipid-Peroxidation decreases the rotational mobility of Cytochrome-P-450 in
Rat-Livermicrosomes. Biochim. Biophys. Acta 817, 217–228. doi: 10.1016/0005-
2736(85)90023-9

Haberkant, P., Schmitt, O., Contreras, F. X., Thiele, C., Hanada, K., Sprong, H.,
et al. (2008). Protein-sphingolipid interactions within cellular membranes. J.
Lipid Res. 49, 251–262. doi: 10.1194/jlr.D700023-JLR200

Hansen, C. G., and Nichols, B. J. (2009). Molecular mechanisms of
clathrin-independent endocytosis. J. Cell Sci. 122(Pt 11), 1713–1721. doi:
10.1242/jcs.033951

Hanson, M. A., Cherezov, V., Griffith, M. T., Roth, C. B., Jaakola, V. P., Chien, E.
Y., et al. (2008). A specific cholesterol binding site is established by the 2.8 A
structure of the human beta2-adrenergic receptor. Structure 16, 897–905. doi:
10.1016/j.str.2008.05.001

Hartel, A. J., Glogger, M., Guigas, G., Jones, N. G., Fenz, S. F., Weiss, M., et al.
(2015). The molecular size of the extra-membrane domain influences the
diffusion of the GPI-anchored VSG on the trypanosome plasma membrane.
Sci. Rep. 5:10394. doi: 10.1038/srep10394

Hatzakis, N. S., Bhatia, V. K., Larsen, J., Madsen, K. L., Bolinger, P. Y.,
Kunding, A. H., et al. (2009). How curved membranes recruit amphipathic
helices and protein anchoring motifs. Nat. Chem. Biol. 5, 835–841. doi:
10.1038/nchembio.213

He, H. T., andMarguet, D. (2011). Detecting nanodomains in living cell membrane
by fluorescence correlation spectroscopy. Annu. Rev. Phys. Chem. 62, 417–436.
doi: 10.1146/annurev-physchem-032210-103402

Hebert, B., Costantino, S., and Wiseman, P. W. (2005). Spatiotemporal image
correlation spectroscopy (STICS) theory, verification, and application to
protein velocity mapping in living CHO cells. Biophys. J. 88, 3601–3614. doi:
10.1529/biophysj.104.054874

Herman, P., Vecer, J., Opekarova, M., Vesela, P., Jancikova, I., Zahumensky, J.,
et al. (2015). Depolarization affects the lateral microdomain structure of yeast
plasma membrane. FEBS J. 282, 419–434. doi: 10.1111/febs.13156

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. J. Physiol.
117, 500–544. doi: 10.1113/jphysiol.1952.sp004764

Honigmann, A., Mueller, V., Ta, H., Schoenle, A., Sezgin, E., Hell, S. W., et al.
(2014). Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid
interaction in the plasma membrane of living cells. Nat. Commun. 5:5412. doi:
10.1038/ncomms6412

Hughes, B. D., Pailthorpe, B. A., and White, L. R. (1981). The translational and
rotational drag on a cylinder moving in a membrane. J. Fluid Mech. 110,
349–372. doi: 10.1017/S0022112081000785

Hung, M. C., and Link, W. (2011). Protein localization in disease and therapy. J.
Cell Sci. 124(Pt 20), 3381–3392. doi: 10.1242/jcs.089110

Hynes, R. O. (2009). The extracellular matrix: not just pretty fibrils. Science 326,
1216–1219. doi: 10.1126/science.1176009

Ipsen, J. H., Karlström, G., Mouritsen, O. G., Wennerström, H., and Zuckermann,
M. J. (1987). Phase equilibria in the phosphatidylcholine-cholesterol system.
Biochim. Biophys. Acta 905, 162–172. doi: 10.1016/0005-2736(87)90020-4

Ivankin, A., Kuzmenko, I., and Gidalevitz, D. (2010). Cholesterol-phospholipid
interactions: new insights from surface x-ray scattering data. Phys. Rev. Lett.
104, 108101–108104. doi: 10.1103/PhysRevLett.104.108101

Jacobson, K., Ishihara, A., and Inman, R. (1987). Lateral diffusion
of proteins in membranes. Annu. Rev. Physiol. 49, 163–175. doi:
10.1146/annurev.ph.49.030187.001115

Jacobson, K., O’Dell, D., Holifield, B., Murphy, T. L., and August, J. T. (1984).
Redistribution of a major cell surface glycoprotein during cell movement. J. Cell
Biol. 99, 1613–1623. doi: 10.1083/jcb.99.5.1613

Janetopoulos, C., and Firtel, R. A. (2008). Directional sensing during chemotaxis.
FEBS Lett. 582, 2075–2085. doi: 10.1016/j.febslet.2008.04.035

Jaqaman, K., Kuwata, H., Touret, N., Collins, R., Trimble, W. S., Danuser, G.,
et al. (2011). Cytoskeletal control of CD36 diffusion promotes its receptor and
signaling function. Cell 146, 593–606. doi: 10.1016/j.cell.2011.06.049

Jeon, J. H., Monne, H. M., Javanainen, M., and Metzler, R. (2012). Anomalous
diffusion of phospholipids and cholesterols in a lipid bilayer and its origins.
Phys. Rev. Lett. 109:188103. doi: 10.1103/PhysRevLett.109.188103

Johnson, J. L., Monfregola, J., Napolitano, G., Kiosses,W. B., and Catz, S. D. (2012).
Vesicular trafficking through cortical actin during exocytosis is regulated by
the Rab27a effector JFC1/Slp1 and the RhoA-GTPase-activating protein Gem-
interacting protein. Mol. Biol. Cell 23, 1902–1916. doi: 10.1091/mbc.E11-
12-1001

Jurkiewicz, P., Cwiklik, L., Vojtíšková, A., Jungwirth, P., and Hof, M. (2012).
Structure, dynamics, and hydration of POPC/POPS bilayers suspended in
NaCl, KCl, and CsCl solutions. Biochim. Biophys. Acta 1818, 609–616. doi:
10.1016/j.bbamem.2011.11.033

Kahya, N., Brown, D. A., and Schwille, P. (2005). Raft partitioning and dynamic
behavior of human placental alkaline phosphatase in giant unilamellar vesicles.
Biochemistry 44, 7479–7489. doi: 10.1021/bi047429d

Kahya, N., Scherfeld, D., Bacia, K., Poolman, B., and Schwille, P. (2003). Probing
lipid mobility of raft-exhibiting model membranes by fluorescence correlation
spectroscopy. J. Biol. Chem. 278, 28109–28115. doi: 10.1074/jbc.M302969200

Kaiser, H. J., Orlowski, A., Róg, T., Nyholm, T. K., Chai, W., Feizi, T.,
et al. (2011). Lateral sorting in model membranes by cholesterol-mediated
hydrophobic matching. Proc. Natl. Acad. Sci. U.S.A. 108, 16628–16633. doi:
10.1073/pnas.1103742108

Karnovsky, M. J., Kleinfeld, A. M., Hoover, R. L., Dawidowicz, E. A., McIntyre, D.
E., Salzman, E. A., et al. (1982). Lipid domains in membranes. Ann. N. Y. Acad.
Sci. 401, 61–75. doi: 10.1111/j.1749-6632.1982.tb25707.x

Kenworthy, A. K., Nichols, B. J., Remmert, C. L., Hendrix, G. M., Kumar, M.,
Zimmerberg, J., et al. (2004). Dynamics of putative raft-associated proteins at
the cell surface. J. Cell Biol. 165, 735–746. doi: 10.1083/jcb.200312170

Kiessling, V., Crane, J. M., and Tamm, L. K. (2006). Transbilayer effects of raft-
like lipid domains in asymmetric planar bilayers measured by single molecule
tracking. Biophys. J. 91, 3313–3326. doi: 10.1529/biophysj.106.091421

Klammt, C., and Lillemeier, B. F. (2012). How membrane structures control T cell
signaling. Front. Immunol. 3:291. doi: 10.3389/fimmu.2012.00291

Klausner, R. D., Kleinfeld, A. M., Hoover, R. L., and Karnovsky, M. J. (1980).
Lipid domains in membranes. Evidence derived from structural perturbations
induced by free fatty acids and lifetime heterogeneity analysis. J. Biol. Chem.

255, 1286–1295.
Klotzsch, E., and Schütz, G. J. (2013). A critical survey of methods to detect

plasma membrane rafts. Philos. Trans. R. Soc. B Biol. Sci. 368:20120033. doi:
10.1098/rstb.2012.0033

Koppel, D. E., Sheetz, M. P., and Schindler, M. (1981). Matrix control of protein
diffusion in biological membranes. Proc. Natl. Acad. Sci. U.S.A. 78, 3576–3580.
doi: 10.1073/pnas.78.6.3576

Korlach, J., Schwille, P., Webb, W. W., and Feigenson, G. W. (1999).
Characterization of lipid bilayer phases by confocal microscopy and
fluorescence correlation spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 96,
8461–8466. doi: 10.1073/pnas.96.15.8461

Frontiers in Cell and Developmental Biology | www.frontiersin.org 14 September 2016 | Volume 4 | Article 106

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Bernardino de la Serna et al. Revised View of Plasma Membrane Organization

Kourilsky, F. M., Silvestre, D., Levy, J. P., Dausset, J., Nicolai, M. G., and Senik, A.
(1971). Immunoferritin study of the distribution of HL-A antigens on human
blood cells. J. Immunol. 106, 454–466.

Kowalska, M. A., and Cierniewski, C. S. (1983). Microenvironment changes
of human-blood platelet membranes associated with fibrinogen binding. J.
Membr. Biol. 75, 57–64. doi: 10.1007/BF01870799

Kraft, M. L. (2013). Plasma membrane organization and function: moving past
lipid rafts.Mol. Biol. Cell 24, 2765–2768. doi: 10.1091/mbc.E13-03-0165

Kucik, D. F., Elson, E. L., and Sheetz, M. P. (1999). Weak dependence of mobility
of membrane protein aggregates on aggregate size supports a viscous model of
retardation of diffusion. Biophys. J. 76(1 Pt 1), 314–322. doi: 10.1016/S0006-
3495(99)77198-5

Kusumi, A., Ike, H., Nakada, C., Murase, K., and Fujiwara, T. (2005).
Single-molecule tracking of membrane molecules: plasma membrane
compartmentalization and dynamic assembly of raft-philic signalingmolecules.
Semin. Immunol. 17, 3–21. doi: 10.1016/j.smim.2004.09.004

Kusumi, A., Shirai, Y. M., Koyama-Honda, I., Suzuki, K. G., and Fujiwara, T. K.
(2010). Hierarchical organization of the plasma membrane: investigations by
single-molecule tracking vs. fluorescence correlation spectroscopy. FEBS Lett.

584, 1814–1823. doi: 10.1016/j.febslet.2010.02.047
Kwon, H. J., Abi-Mosleh, L., Wang, M. L., Deisenhofer, J., Goldstein, J. L., Brown,

M. S., et al. (2009). Structure of N-terminal domain of NPC1 reveals distinct
subdomains for binding and transfer of cholesterol. Cell 137, 1213–1224. doi:
10.1016/j.cell.2009.03.049

Lee, A. G. (2004). How lipids affect the activities of integral membrane proteins.
Biochim. Biophys. Acta 1666, 62–87. doi: 10.1016/j.bbamem.2004.05.012

Lee, I. H., Saha, S., Polley, A., Huang, H., Mayor, S., Rao, M., et al. (2015). Live
cell plasma membranes do not exhibit a miscibility phase transition over a wide
range of temperatures. J. Phys. Chem. B 119, 4450–4459. doi: 10.1021/jp512839q

Letschert, S., Göhler, A., Franke, C., Bertleff-Zieschang, N., Memmel, E., Doose, S.,
et al. (2014). Super-resolution imaging of plasma membrane glycans. Angew.
Chem. Int. Ed Engl. 53, 10921–10924. doi: 10.1002/anie.201406045

Lev, S. (2012). Nonvesicular lipid transfer from the endoplasmic reticulum. Cold
Spring Harb. Perspect. Biol. 4:a013300. doi: 10.1101/cshperspect.a013300

Lichtenberg, D., Goñi, F. M., and Heerklotz, H. (2005). Detergent-resistant
membranes should not be identified with membrane rafts. Trends Biochem. Sci.

30, 430–436. doi: 10.1016/j.tibs.2005.06.004
Lillemeier, B. F., Mörtelmaier, M. A., Forstner, M. B., Huppa, J. B., Groves, J. T., and

Davis, M. M. (2010). TCR and Lat are expressed on separate protein islands on
T cell membranes and concatenate during activation. Nat. Immunol. 11, 90–96.
doi: 10.1038/ni.1832

Lillemeier, B. F., Pfeiffer, J. R., Surviladze, Z., Wilson, B. S., and Davis, M.
M. (2006). Plasma membrane-associated proteins are clustered into islands
attached to the cytoskeleton. Proc. Natl. Acad. Sci. U.S.A. 103, 18992–18997.
doi: 10.1073/pnas.0609009103

Lingwood, D., and Simons, K. (2010). Lipid rafts as a membrane-organizing
principle. Science 327, 46–50. doi: 10.1126/science.1174621

Lippincott-Schwartz, J., Snapp, E., and Kenworthy, A. (2001). Studying protein
dynamics in living cells. Nat. Rev. Mol. Cell Biol. 2, 444–456. doi:
10.1038/35073068

Luby-Phelps, K., Castle, P., Taylor, D. L., and Lanni, F. (1986). Further evidence
for the existence of a structural network in the cytoplasmic ground substance
of living cells. J. Cell Biol. 103, A286–A286.

Luby-Phelps, K., Mujumdar, S., Mujumdar, R. B., Ernst, L. A., Galbraith, W., and
Waggoner, A. S. (1993). A novel fluorescence ratiometric method confirms
the low solvent viscosity of the cytoplasm. Biophys. J. 65, 236–242. doi:
10.1016/S0006-3495(93)81075-0

Machta, B. B., Papanikolaou, S., Sethna, J. P., and Veatch, S. L. (2011). Minimal
model of plasma membrane heterogeneity requires coupling cortical actin to
criticality. Biophys. J. 100, 1668–1677. doi: 10.1016/j.bpj.2011.02.029

Magee, A. I., Adler, J., and Parmryd, I. (2005). Cold-induced coalescence of T-
cell plasma membrane microdomains activates signalling pathways. J. Cell Sci.
118(Pt 14), 3141–3151. doi: 10.1242/jcs.02442

Magidson, V., and Khodjakov, A. (2013). Circumventing photodamage in live-cell
microscopy. Methods Cell Biol. 114, 545–560. doi: 10.1016/B978-0-12-407761-
4.00023-3

Malínská, K., Malínský, J., Opekarová, M., and Tanner, W. (2003). Visualization of
protein compartmentation within the plasma membrane of living yeast cells.
Mol. Biol. Cell 14, 4427–4436. doi: 10.1091/mbc.E03-04-0221

Malinsky, J., Tanner, W., and Opekarova, M. (2016). Transmembrane voltage:
potential to induce lateral microdomains. Biochim. Biophys. Acta 1861(8 Pt B),
806–811. doi: 10.1016/j.bbalip.2016.02.012

Marsh, D. (1993). “The nature of the lipid-protein interface and the influence of
protein structure on protein-lipid interactions,” in Protein-Lipid Interactions,
ed A. Watts (Amsterdam: Elsevier), 41–66.

Marsh, D. (1996). Lateral pressure in membranes. Biochim. Biophys. Acta 1286,
183–223. doi: 10.1016/S0304-4157(96)00009-3

Matsuda, S., Miura, E., Matsuda, K., Kakegawa, W., Kohda, K., Watanabe,
M., et al. (2008). Accumulation of AMPA receptors in autophagosomes in
neuronal axons lacking adaptor protein AP-4. Neuron 57, 730–745. doi:
10.1016/j.neuron.2008.02.012

Matthews, J. M. (2012). “Protein dimerization and oligomerization in biology,”
in Advances in Experimental Medicine and Biology, ed M. M. Jacqueline
(New York, NY: Springer-Verlag), V–Vi. doi: 10.1007/978-1-4614-3229-6

Mattila, P. K., and Lappalainen, P. (2008). Filopodia: molecular architecture and
cellular functions. Nat. Rev. Mol. Cell Biol. 9, 446–454. doi: 10.1038/nrm2406

Maxfield, F. R., and van Meer, G. (2010). Cholesterol, the central
lipid of mammalian cells. Curr. Opin. Cell Biol. 22, 422–429. doi:
10.1016/j.ceb.2010.05.004

Mazzon, M., and Mercer, J. (2014). Lipid interactions during virus entry and
infection. Cell. Microbiol. 16, 1493–1502. doi: 10.1111/cmi.12340

McLaughlin, S., and Murray, D. (2005). Plasma membrane phosphoinositide
organization by protein electrostatics. Nature 438, 605–611. doi:
10.1038/nature04398

McMahon, H. T., and Gallop, J. L. (2005). Membrane curvature and
mechanisms of dynamic cell membrane remodelling.Nature 438, 590–596. doi:
10.1038/nature04396

Meier, P., Sachse, J. H., Brophy, P. J., Marsh, D., and Kothe, G. (1987). Integral
membrane proteins significantly decrease the molecular motion in lipid
bilayers: a deuteron NMR relaxation study of membranes containing myelin
proteolipid apoprotein. Proc. Natl. Acad. Sci. U.S.A. 84, 3704–3708. doi:
10.1073/pnas.84.11.3704

Merkel, R., Sackmann, E., and Evans, E. (1989). Molecular friction and epitactic
coupling between monolayers in supported bilayers. J. De Phys. 50, 1535–1555.
doi: 10.1051/jphys:0198900500120153500

Mihailescu, M., Vaswani, R. G., Jardón-Valadez, E., Castro-Román, F., Freites,
J. A., Worcester, D. L., et al. (2011). Acyl-chain methyl distributions of
liquid-ordered and -disordered membranes. Biophys. J. 100, 1455–1462. doi:
10.1016/j.bpj.2011.01.035

Mima, J., Hickey, C. M., Xu, H., Jun, Y., and Wickner, W. (2008).
Reconstituted membrane fusion requires regulatory lipids, SNAREs and
synergistic SNARE chaperones. EMBO J. 27, 2031–2042. doi: 10.1038/emboj.20
08.139

Miosge, L., and Zamoyska, R. (2007). Signalling in T-cell development: is it
all location, location, location? Curr. Opin. Immunol. 19, 194–199. doi:
10.1016/j.coi.2007.02.008

Mitra, K., Ubarretxena-Belandia, I., Taguchi, T., Warren, G., and Engelman, D. M.
(2004). Modulation of the bilayer thickness of exocytic pathway membranes by
membrane proteins rather than cholesterol. Proc. Natl. Acad. Sci. U.S.A. 101,
4083–4088. doi: 10.1073/pnas.0307332101

Morgan, M. R., Humphries, M. J., and Bass, M. D. (2007). Synergistic control of
cell adhesion by integrins and syndecans. Nat. Rev. Mol. Cell Biol. 8, 957–969.
doi: 10.1038/nrm2289

Mouritsen, O. G., and Bagatolli, L. A. (2015). Lipid domains in model membranes:
a brief historical perspective. Essays Biochem. 57, 1–19. doi: 10.1042/bse05
70001

Mouritsen, O. G., and Bloom, M. (1984). Mattress model of lipid-protein
interactions in membranes. Biophys. J. 46, 141–153. doi: 10.1016/S0006-
3495(84)84007-2

Mouritsen, O. G., and Bloom, M. (1993). Models of Lipid-Protein Interactions
in Membranes. Annu. Rev. Biophys. Biomol. Struct. 22, 145–171. doi:
10.1146/annurev.bb.22.060193.001045

Mouritsen, O. G., and Zuckermann, M. J. (2004). What’s so special about
cholesterol? Lipids 39, 1101–1113. doi: 10.1007/s11745-004-1336-x

Mueller, V., Honigmann, A., Ringemann, C., Medda, R., Schwarzmann, G., and
Eggeling, C. (2013). FCS in STED microscopy: studying the nanoscale of
lipid membrane dynamics.Meth. Enzymol. 519, 1–38. doi: 10.1016/B978-0-12-
405539-1.00001-4

Frontiers in Cell and Developmental Biology | www.frontiersin.org 15 September 2016 | Volume 4 | Article 106

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Bernardino de la Serna et al. Revised View of Plasma Membrane Organization

Mueller, V., Ringemann, C., Honigmann, A., Schwarzmann, G., Medda, R.,
Leutenegger, M., et al. (2011). STED nanoscopy reveals molecular details
of cholesterol- and cytoskeleton-modulated lipid interactions in living cells.
Biophys. J. 101, 1651–1660. doi: 10.1016/j.bpj.2011.09.006

Munro, S. (1995). An investigation of the role of transmembrane domains in Golgi
protein retention. EMBO J. 14, 4695–4704.

Murase, K., Fujiwara, T., Umemura, Y., Suzuki, K., Iino, R., Yamashita, H.,
et al. (2004). Ultrafine membrane compartments for molecular diffusion
as revealed by single molecule techniques. Biophys. J. 86, 4075–4093. doi:
10.1529/biophysj.103.035717

Nickels, J. D., Smith, J. C., and Cheng, X. (2015). Lateral organization, bilayer
asymmetry, and inter-leaflet coupling of biological membranes. Chem. Phys.

Lipids 192, 87–99. doi: 10.1016/j.chemphyslip.2015.07.012
Nicolson, G. L. (1979). Topographic display of cell surface components and their

role in transmembrane signaling. Curr. Top. Dev. Biol. 13(Pt 1), 305–338. doi:
10.1016/S0070-2153(08)60700-0

Nicolson, G. L. (2014). The Fluid-Mosaic model of membrane structure: still
relevant to understanding the structure, function and dynamics of biological
membranes after more than 40 years. Biochim. Biophys. Acta 1838, 1451–1466.
doi: 10.1016/j.bbamem.2013.10.019

Nicolson, G. L., Hyman, R., and Singer, S. J. (1971). The two-dimensional
topographic distribution of H-2 histocompatibility alloantigens on mouse red
blood cell membranes. J. Cell Biol. 50, 905–910. doi: 10.1083/jcb.50.3.905

Niemelä, P. S., Miettinen, M. S., Monticelli, L., Hammaren, H., Bjelkmar, P.,
Murtola, T., et al. (2010). Membrane proteins diffuse as dynamic complexes
with lipids. J. Am. Chem. Soc. 132, 7574–7575. doi: 10.1021/ja101481b

Nussinov, R. (2013). The spatial structure of cell signaling systems. Phys. Biol.
10:045004. doi: 10.1088/1478-3975/10/4/045004

Olšinová, M., Jurkiewicz, P., Pozník, M., Šachl, R., Prausová, T., Hof, M., et al.
(2014). Di- and tri-oxalkyl derivatives of a boron dipyrromethene (BODIPY)
rotor dye in lipid bilayers. Phys. Chem. Chem. Phys. 16, 10688–10697. doi:
10.1039/C4CP00888J

Onfelt, B., Nedvetzki, S., Yanagi, K., and Davis, D. M. (2004). Cutting edge:
membrane nanotubes connect immune cells. J. Immunol. 173, 1511–1513. doi:
10.4049/jimmunol.173.3.1511

Ortega-Arroyo, J., and Kukura, P. (2012). Interferometric scattering microscopy
(iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy. Phys.
Chem. Chem. Phys. 14, 15625–15636. doi: 10.1039/c2cp41013c

O’Shea, P. S., Feuerstein-Thelen, S., and Azzi, A. (1984). Membrane-potential-
dependent changes of the lipid microviscosity of mitochondria and
phospholipid vesicles. Biochem. J. 220, 795–801. doi: 10.1042/bj2200795

Owen, D. M., Gaus, K., Magee, A. I., and Cebecauer, M. (2010). Dynamic
organization of lymphocyte plasmamembrane: lessons from advanced imaging
methods. Immunology 131, 1–8. doi: 10.1111/j.1365-2567.2010.03319.x

Owen, D. M., Williamson, D. J., Magenau, A., and Gaus, K. (2012). Sub-resolution
lipid domains exist in the plasma membrane and regulate protein diffusion and
distribution. Nat. Commun. 3:1256. doi: 10.1038/ncomms2273

Peters, R., and Cherry, R. J. (1982). Lateral and rotational diffusion of
bacteriorhodopsin in lipid bilayers: experimental test of the Saffman-
Delbruck equations. Proc. Natl. Acad. Sci. U.S.A. 79, 4317–4321. doi:
10.1073/pnas.79.14.4317

Quemeneur, F., Sigurdsson, J. K., Renner, M., Atzberger, P. J., Bassereau, P.,
and Lacoste, D. (2014). Shape matters in protein mobility within membranes.
Proc. Natl. Acad. Sci. U.S.A. 111, 5083–5087. doi: 10.1073/pnas.13210
54111

Raghupathy, R., Anilkumar, A. A., Polley, A., Singh, P. P., Yadav, M., Johnson,
C., et al. (2015). Transbilayer lipid interactions mediate nanoclustering of
lipid-anchored proteins. Cell 161, 581–594. doi: 10.1016/j.cell.2015.03.048

Ramadurai, S., Holt, A., Krasnikov, V., van den Bogaart, G., Killian, J. A., and
Poolman, B. (2009). Lateral diffusion of membrane proteins. J. Am. Chem. Soc.

131, 12650–12656. doi: 10.1021/ja902853g
Rao, M., and Mayor, S. (2014). Active organization of membrane constituents

in living cells. Curr. Opin. Cell Biol. 29, 126–132. doi: 10.1016/j.ceb.2014.
05.007

Raychaudhuri, S., Im, Y. J., Hurley, J. H., and Prinz, W. A. (2006). Nonvesicular
sterol movement from plasma membrane to ER requires oxysterol-binding
protein-related proteins and phosphoinositides. J. Cell Biol. 173, 107–119. doi:
10.1083/jcb.200510084

Ritchie, K., Iino, R., Fujiwara, T., Murase, K., and Kusumi, A. (2003).
The fence and picket structure of the plasma membrane of live cells as
revealed by single molecule techniques. Mol. Membr. Biol. 20, 13–18. doi:
10.1080/0968768021000055698

Ritchie, K., Shan, X. Y., Kondo, J., Iwasawa, K., Fujiwara, T., and Kusumi, A.
(2005). Detection of non-Brownian diffusion in the cell membrane in single
molecule tracking. Biophys. J. 88, 2266–2277. doi: 10.1529/biophysj.104.054106

Rossier, O., Octeau, V., Sibarita, J. B., Leduc, C., Tessier, B., Nair, D., et al. (2012).
Integrins beta1 and beta3 exhibit distinct dynamic nanoscale organizations
inside focal adhesions. Nat. Cell Biol. 14, 1057–1067. doi: 10.1038/ncb2588

Rothman, J. E., and Lenard, J. (1977). Membrane asymmetry. Science 195, 743–753.
Rubin-Delanchy, P., Burn, G. L., Griffié, J., Williamson, D. J., Heard, N.

A., Cope, A. P., et al. (2015). Bayesian cluster identification in single-
molecule localization microscopy data. Nat. Methods 12, 1072–1076. doi:
10.1038/nmeth.3612

Šachl, R., Mikhalyov, I., Gretskaya, N., Olzynska, A., Hof, M., and Johansson,
L. B. (2011). Distribution of BODIPY-labelled phosphatidylethanolamines in
lipid bilayers exhibiting different curvatures. Phys. Chem. Chem. Phys. 13,
11694–11701. doi: 10.1039/c1cp20608g

Saffman, P. G., and Delbrück, M. (1975). Brownian motion in biological
membranes. Proc. Natl. Acad. Sci. U.S.A. 72, 3111–3113. doi:
10.1073/pnas.72.8.3111

Saka, S. K., Honigmann, A., Eggeling, C., Hell, S. W., Lang, T., and Rizzoli, S.
O. (2014). Multi-protein assemblies underlie the mesoscale organization of the
plasma membrane. Nat. Commun. 5, 4509. doi: 10.1038/ncomms5509

Sako, Y., and Kusumi, A. (1995). Barriers for lateral diffusion of transferrin
receptor in the plasma membrane as characterized by receptor dragging
by laser tweezers: fence versus tether. J. Cell Biol. 129, 1559–1574. doi:
10.1083/jcb.129.6.1559

Saxton, M. J. (1987). Lateral diffusion in an archipelago. The effect of mobile
obstacles. Biophys. J. 52, 989–997. doi: 10.1016/S0006-3495(87)83291-5

Saxton, M. J. (1990). Themembrane skeleton of erythrocytes. A percolationmodel.
Biophys. J. 57, 1167–1177. doi: 10.1016/S0006-3495(90)82636-9

Saxton, M. J. (2008). A biological interpretation of transient anomalous
subdiffusion. II. Reaction kinetics. Biophys. J. 94, 760–771. doi:
10.1529/biophysj.107.114074

Schaeffer, C., Creatore, A., and Rampoldi, L. (2014). Protein trafficking defects in
inherited kidney diseases. Nephrol. Dial. Transplant 29(Suppl. 4), iv33–iv44.
doi: 10.1093/ndt/gfu231

Schmidt, C. F., Barenholz, Y., Huang, C., and Thompson, T. E. (1978).
Monolayer coupling in sphingomyelin bilayer systems. Nature 271, 775–777.
doi: 10.1038/271775a0

Schmoranzer, J., Goulian, M., Axelrod, D., and Simon, S. M. (2000). Imaging
constitutive exocytosis with total internal reflection fluorescence microscopy.
J. Cell Biol. 149, 23–32. doi: 10.1083/jcb.149.1.23

Sevcsik, E., Brameshuber, M., Folser, M., Weghuber, J., Honigmann, A., and
Schutz, G. J. (2015). GPI-anchored proteins do not reside in ordered
domains in the live cell plasma membrane. Nat. Commun. 6:6969. doi:
10.1016/j.bpj.2014.11.202

Sevcsik, E., and Schütz, G. J. (2016). With or without rafts? Alternative views on
cell membranes. Bioessays. 38, 129–139. doi: 10.1002/bies.201500150

Sezgin, E., Gutmann, T., Buhl, T., Dirkx, R., Grzybek, M., Coskun, Ü., et al.
(2015). Adaptive lipid packing and bioactivity in membrane domains. PLoS
ONE 10:e0123930. doi: 10.1371/journal.pone.0123930

Sezgin, E., Levental, I., Grzybek, M., Schwarzmann, G., Mueller, V., Honigmann,
A., et al. (2012). Partitioning, diffusion, and ligand binding of raft lipid
analogs in model and cellular plasma membranes. Biochim. Biophys. Acta 1818,
1777–1784. doi: 10.1016/j.bbamem.2012.03.007

Sharpe, H. J., Stevens, T. J., and Munro, S. (2010). A comprehensive comparison
of transmembrane domains reveals organelle-specific properties. Cell 142,
158–169. doi: 10.1016/j.cell.2010.05.037

Sheetz, M. P., Sable, J. E., and Döbereiner, H. G. (2006). Continuous membrane-
cytoskeleton adhesion requires continuous accommodation to lipid and
cytoskeleton dynamics. Annu. Rev. Biophys. Biomol. Struct. 35, 417–434. doi:
10.1146/annurev.biophys.35.040405.102017

Sheetz, M. P., Schindler, M., and Koppel, D. E. (1980). Lateral mobility of
integral membrane proteins is increased in spherocytic erythrocytes. Nature
285, 510–511. doi: 10.1038/285510a0

Frontiers in Cell and Developmental Biology | www.frontiersin.org 16 September 2016 | Volume 4 | Article 106

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Bernardino de la Serna et al. Revised View of Plasma Membrane Organization

Sherbet, G. V. (1989). Membrane fluidity and cancer metastasis. Exp. Cell Biol. 57,
198–205. doi: 10.1159/000163526

Shimshick, E. J., and McConnell, H. M. (1973a). Lateral phase separation
in phospholipid membranes. Biochemistry 12, 2351–2360. doi:
10.1021/bi00736a026

Shimshick, E. J., andMcConnell, H.M. (1973b). Lateral phase separations in binary
mixtures of cholesterol and phospholipids. Biochem. Biophys. Res. Commun. 53,
446–451. doi: 10.1016/0006-291X(73)90682-7

Shinitzky, M., and Inbar, M. (1976). Microviscosity parameters and protein
mobility in biological-membranes. Biochim. Biophys. Acta 433, 133–149. doi:
10.1016/0005-2736(76)90183-8

Shvartsman, D. E., Gutman, O., Tietz, A., andHenis, Y. I. (2006). Cyclodextrins but
not compactin inhibit the lateral diffusion of membrane proteins independent
of cholesterol. Traffic 7, 917–926. doi: 10.1111/j.1600-0854.2006.00437.x

Sieber, J. J., Willig, K. I., Kutzner, C., Gerding-Reimers, C., Harke, B., Donnert, G.,
et al. (2007). Anatomy and dynamics of a supramolecular membrane protein
cluster. Science 317, 1072–1076. doi: 10.1126/science.1141727

Simons, K., and Ikonen, E. (1997). Functional rafts in cell membranes. Nature 387,
569–572. doi: 10.1038/42408

Simons, K., and van Meer, G. (1988). Lipid sorting in epithelial cells. Biochemistry

27, 6197–6202. doi: 10.1021/bi00417a001
Singer, S. J., andNicolson, G. L. (1971). The structure and chemistry of mammalian

cell membranes. Am. J. Pathol. 65, 427–437.
Singer, S. J., and Nicolson, G. L. (1972). The fluid mosaic model of the structure of

cell membranes. Science 175, 720–731. doi: 10.1126/science.175.4023.720
Spira, F., Mueller, N. S., Beck, G., von Olshausen, P., Beig, J., and Wedlich-

Söldner, R. (2012). Patchwork organization of the yeast plasma membrane
into numerous coexisting domains. Nat. Cell Biol. 14, 640–648. doi:
10.1038/ncb2487

Stachowiak, J. C., Brodsky, F. M., andMiller, E. A. (2013). A cost-benefit analysis of
the physical mechanisms of membrane curvature.Nat. Cell Biol. 15, 1019–1027.
doi: 10.1038/ncb2832

Stefan, C. J., Manford, A. G., Baird, D., Yamada-Hanff, J., Mao, Y., and Emr, S.
D. (2011). Osh proteins regulate phosphoinositide metabolism at ER-plasma
membrane contact sites. Cell 144, 389–401. doi: 10.1016/j.cell.2010.12.034

Stinchcombe, J. C., Bossi, G., Booth, S., and Griffiths, G. M. (2001). The
immunological synapse of CTL contains a secretory domain and membrane
bridges. Immunity 15, 751–761. doi: 10.1016/S1074-7613(01)00234-5

Stryer, L. (1995). Biochemistry. New York, NY: W. H. Freeman and Company.
Suzuki, K. G., Fujiwara, T. K., Edidin, M., and Kusumi, A. (2007). Dynamic

recruitment of phospholipase C gamma at transiently immobilized GPI-
anchored receptor clusters induces IP3-Ca2+ signaling: single-molecule
tracking study 2. J. Cell Biol. 177, 731–742. doi: 10.1083/jcb.200609175

Swaminathan, R., Hoang, C. P., and Verkman, A. S. (1997). Photobleaching
recovery and anisotropy decay of green fluorescent protein GFP-S65T
in solution and cells: cytoplasmic viscosity probed by green fluorescent
protein translational and rotational diffusion. Biophys. J. 72, 1900–1907. doi:
10.1016/S0006-3495(97)78835-0

Tank, D. W., Wu, E. S., andWebb, W. W. (1982). Enhanced molecular diffusibility
in muscle membrane blebs: release of lateral constraints. J. Cell Biol. 92,
207–212. doi: 10.1083/jcb.92.1.207

Tarling, E. J., de Aguiar Vallim T. Q., and Edwards, P. A. (2013). Role of ABC
transporters in lipid transport and human disease. Trends Endocrinol. Metab.

24, 342–350. doi: 10.1016/j.tem.2013.01.006
Trimble, W. S., and Grinstein, S. (2015). Barriers to the free diffusion of

proteins and lipids in the plasma membrane. J. Cell Biol. 208, 259–271. doi:
10.1083/jcb.201410071

Uittenbogaard, A., and Smart, E. J. (2000). Palmitoylation of caveolin-1 is
required for cholesterol binding, chaperone complex formation, and rapid
transport of cholesterol to caveolae. J. Biol. Chem. 275, 25595–25599. doi:
10.1074/jbc.M003401200

Vácha, R., Berkowitz, M. L., and Jungwirth, P. (2009). Molecular model of a cell
plasma membrane with an asymmetric multicomponent composition:
water permeation and ion effects. Biophys. J. 96, 4493–4501. doi:
10.1016/j.bpj.2009.03.010

Valeur, B., and Berberan-Santos, M. N. (2012). Molecular Fluorescence. Principles

and Applications. New York, NY: Wiley VCH.
van Meer, G., and de Kroon, A. I. (2011). Lipid map of the mammalian cell. J. Cell

Sci. 124(Pt 1), 5–8. doi: 10.1242/jcs.071233

van Meer, G., and Simons, K. (1982). Viruses budding from either the apical
or the basolateral plasma membrane domain of MDCK cells have unique
phospholipid compositions. EMBO J. 1, 847–852.

van Meer, G., Voelker, D. R., and Feigenson, G. W. (2008). Membrane lipids:
where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124. doi:
10.1038/nrm2330

van Zanten, T. S., Gómez, J., Manzo, C., Cambi, A., Buceta, J., Reigada, R.,
et al. (2010). Direct mapping of nanoscale compositional connectivity on
intact cell membranes. Proc. Natl. Acad. Sci. U.S.A. 107, 15437–15442. doi:
10.1073/pnas.1003876107

Veatch, S. L., Cicuta, P., Sengupta, P., Honerkamp-Smith, A., Holowka, D., and
Baird, B. (2008). Critical fluctuations in plasma membrane vesicles. ACS Chem.

Biol. 3, 287–293. doi: 10.1021/cb800012x
Veatch, S. L., and Keller, S. L. (2005). Miscibility phase diagrams of

giant vesicles containing sphingomyelin. Phys. Rev. Lett. 94:148101. doi:
10.1103/PhysRevLett.94.148101

Vilmart-Seuwen, J., Kersken, H., Stürzl, R., and Plattner, H. (1986). Atp keeps
exocytosis sites in a primed state but is not required for Membrane-Fusion - an
analysis with paramecium cells Invivo and Invitro. J. Cell Biol. 103, 1279–1288.
doi: 10.1083/jcb.103.4.1279

Voelker, D. R. (2009). Genetic and biochemical analysis of non-
vesicular lipid traffic. Annu. Rev. Biochem. 78, 827–856. doi:
10.1146/annurev.biochem.78.081307.112144

Wier, M. L., and Edidin, M. (1986). Effects of cell density and extracellular
matrix on the lateral diffusion of major histocompatibility antigens in cultured
fibroblasts. J. Cell Biol. 103, 215–222. doi: 10.1083/jcb.103.1.215

Williamson, J. J., and Olmsted, P. D. (2015). Kinetics of symmetry and asymmetry
in a phase-separating bilayer membrane. Phys. Rev. E Stat. Nonlin. Soft Matter

Phys. 92:052721. doi: 10.1103/PhysRevE.92.052721
Wilson, B. S., Pfeiffer, J. R., and Oliver, J. M. (2000). Observing FcepsilonRI

signaling from the inside of the mast cell membrane. J. Cell Biol. 149,
1131–1142. doi: 10.1083/jcb.149.5.1131

Wilson, B. S., Pfeiffer, J. R., Surviladze, Z., Gaudet, E. A., and Oliver, J. M.
(2001). High resolution mapping of mast cell membranes reveals primary and
secondary domains of Fc(epsilon)RI and LAT. J. Cell Biol. 154, 645–658. doi:
10.1083/jcb.200104049

Wilson, R. L., Frisz, J. F., Klitzing, H. A., Zimmerberg, J., Weber, P. K., and
Kraft, M. L. (2015). Hemagglutinin clusters in the plasma membrane are not
enriched with cholesterol and sphingolipids. Biophys. J. 108, 1652–1659. doi:
10.1016/j.bpj.2015.02.026

Wu, Q. Y., and Liang, Q. (2014). Interplay between curvature and lateral
organization of lipids and peptides/proteins in model membranes. Langmuir

30, 1116–1122. doi: 10.1021/la4039123
Yeagle, P. L. (2014). Non-covalent binding of membrane lipids to

membrane proteins. Biochim. Biophys. Acta 1838, 1548–1559. doi:
10.1016/j.bbamem.2013.11.009

Yeung, T., Gilbert, G. E., Shi, J., Silvius, J., Kapus, A., and Grinstein, S.
(2008). Membrane phosphatidylserine regulates surface charge and protein
localization. Science 319, 210–213. doi: 10.1126/science.1152066

Zhang, F., Crise, B., Su, B., Hou, Y., Rose, J. K., Bothwell, A., et al. (1991).
Lateral diffusion of membrane-spanning and glycosylphosphatidylinositol-
linked proteins: toward establishing rules governing the lateral mobility of
membrane proteins. J. Cell Biol. 115, 75–84. doi: 10.1083/jcb.115.1.75

Zidovetzki, R., and Levitan, I. (2007). Use of cyclodextrins to manipulate
plasma membrane cholesterol content: evidence, misconceptions
and control strategies. Biochim. Biophys. Acta 1768, 1311–1324. doi:
10.1016/j.bbamem.2007.03.026

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Bernardino de la Serna, Schütz, Eggeling and Cebecauer. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) or licensor are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 17 September 2016 | Volume 4 | Article 106

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive

	There Is No Simple Model of the Plasma Membrane Organization
	Basic Structure of Cell Membranes
	Box 1 | Membrane Fluidity, Viscosity and Mobility
	Membrane Fluidity, Viscosity and Mobility
	Intrinsic Properties of Cell Membranes Essential for Their Function
	Extrinsic Factors Influencing the Plasma Membrane Organisation
	Plasma Membrane Organisation–general Models and Concepts
	There is No Universal Model of the Plasma Membrane Lateral Organisation
	Box 2 | Sequential Events Influencing the Plasma Membrane Organisation
	Sequential Events Influencing the Plasma Membrane Organisation
	Author Contributions
	Funding
	Acknowledgments
	References


