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Abstract: There is growing interest in monitoring gait patterns in people with neurological condi-
tions. The democratisation of wearable inertial sensors has enabled the study of gait in free living
environments. One pivotal aspect of gait assessment in uncontrolled environments is the ability
to accurately recognise gait instances. Previous work has focused on wavelet transform methods
or general machine learning models to detect gait; the former assume a comparable gait pattern
between people and the latter assume training datasets that represent a diverse population. In this
paper, we argue that these approaches are unsuitable for people with severe motor impairments
and their distinct gait patterns, and make the case for a lightweight personalised alternative. We
propose an approach that builds on top of a general model, fine-tuning it with personalised data. A
comparative proof-of-concept evaluation with general machine learning (NN and CNN) approaches
and personalised counterparts showed that the latter improved the overall accuracy in 3.5% for the
NN and 5.3% for the CNN. More importantly, participants that were ill-represented by the general
model (the most extreme cases) had the recognition of gait instances improved by up to 16.9% for
NN and 20.5% for CNN with the personalised approaches. It is common to say that people with
neurological conditions, such as Parkinson’s disease, present very individual motor patterns, and
that in a sense they are all outliers; we expect that our results will motivate researchers to explore
alternative approaches that value personalisation rather than harvesting datasets that are may be
able to represent these differences.

Keywords: gait recognition; accelerometers; neurological conditions; motor impairments; personali-
sation; neural networks

1. Introduction

People with neurological conditions (PNCs) often present abnormal gait patterns [1].
Concomitantly, gait has been shown to be a good predictor of PNCs [2].

A first challenge in gait analysis in free-living environments is that of automati-
cally identifying gait (and non-gait) instances [3]. Recognising gait in free-living envi-
ronments enables the calculation of macro and micro features—e.g., step variability and
asymmetry [4,5]. The impact of classifying gait in free-living environments is severe to
these endpoints, as the misclassification of a set of windows is likely to have a large effect
on those micro characteristics and their interpretation [6].
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The recognition of gait in free-living environments is commonly performed by assess-
ing the movement data of accelerometers. Current methods can be split into two groups:
wave transformation methods and artificial intelligence algorithms. Wave transformation
methods [7–11] are based on recognising a general gait cycle. Artificial intelligence algo-
rithms use previous data to train machine learning (ML) models [12,13], and lately, also
Deep Learning (DL) models [14–17]. These models are then used to classify new data.
Analysis aims include the recognition of activities, fall-prediction, and disease progression
analysis.

Current wave transformation methods assume that every subject follows similar gait
patterns. These expert knowledge systems assume a set of assumptions based on heel strike
(HS) and peak detection [7,18]. Nevertheless, these algorithms tend to focus on capturing
the patterns of a broader target population. However, fluctuations between and within
subjects, a common aspect in PNCS, may not be captured when using a generic approach.

The current artificial intelligence paradigm, supported by the promise of Big Data, is
focused on improving existing general algorithms, aiming to have a large enough dataset
that is able to represent, and thus classify, anyone in the target group. General algorithms
neglect the personal features of gait which are more strongly expressed for PNCs. However,
gait is so personal that it is even used as a biometric to identify people [19,20]. The analysis
results cover the complete dataset, ignoring individual results. We found, along with others
(e.g., [21]), that the gait of many individual PNCs is not necessarily representable and
therefore neither predictable nor analysable—by other PNCs’ movement data. Hence, a
change of paradigm is presented herein, one that accommodates individual differences
along with the challenges that harvesting large-scale datasets entail.

Training a personal algorithm for every person is not considered feasible, as these
algorithms need a large, diverse dataset for training. Rodríguez-Martín et al. [22] solved
this issue by building their personal detection model with both personal and general data
but giving a bigger weight to the personal data. For every patient, a new model is trained,
making it extremely time-consuming. To circumvent this inconveniently excessive time
consumption, less-costly personalisation methods of general models have been developed.
One method, as developed by Cola et al. [21], uses a second, more accurate, accelerometer
that temporarily gives feedback to the model, which is being trained with data from the
main accelerometer. This method requires an undesirably complex interaction between
two devices.

Other promising work was conducted by Fu et al. [13]. To improve their models, they
used personalisation with unclassified personal data. These data are first labelled using
an improved pseudo-labelling algorithm, after which the models were enhanced for each
participant with that personal data, which had a major impact on classification results. In
the human activity recognition (HAR) of healthy individuals, transfer learning has been
researched, showing promising results [23–25]. Mainly, these projects show that complex
personalisation methods improve recognition for healthy individuals.

In this proof of concept, we show the relevance of personalisation for the gait recogni-
tion of PNCs. We train two of the most regularly used DL models for gait analysis, a Neural
Network (NN) and a Convolutional Neural Network (CNN) [17]. The models classify
accelerometer data into gait or non-gait data. This is a two-class problem, for the sake of
simplicity. This could be extended to a higher number of movement classes [26,27] and
tried with other classification approaches. The used data and the above described method
and models are introduced in more detail in Section 2.

The general and personalised models were compared using a leave-one-out cross-
validation method, similar to the method used by Bächlin et al. [28]. Promising results
showing an improvement in overall accuracy: 3.5% for the NN; and 5.3% for the CNN.
More importantly, we see the accuracy of individual participants with the most impaired
recognition accuracy to largely benefit from personalisation; a maximum of 16.9% for
NN; and a maximum of 20.5% for CNN; with only a few participants’ accuracies showing
decreases (maximum of 2% for both models).
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We compared the individual participant improvements with participants’ impair-
ments. This showed that participants with high immobility had high personalisation
improvements, showing the need for personalisation in for predictive models in order for
them to be inclusive. In a population with neurological conditions (e.g., people with PD or
stroke survivors), it is common for gait to be atypical. For a model to be representative of
the individual differences in such populations, a general training dataset would need to be
of large proportions, which is challenging (to say the least) to obtain in real environments.
Furthermore, even such a model would likely end up falling short of capturing the whole
population. Our results indicate that a general model fine-tuned with personalised data
is able to increase recognition accuracy, making up for the differences each individual
shows from the group. In addition to individual personalisation, these results also suggest
that personalisation can be applied within the same person, as the disease fluctuates or
progresses, enabling scenarios where personalised annotated data are collected at specific
times (such as during a clinical appointment or in a semi-supervised way—e.g., prompts
for activities with a mobile device).

2. Materials and Methods

The impact of the personalisation of DL models trained with the accelerometer data of
PNCs was tested using a simple personalisation method. This personalisation method was
applied to two DL models. These DL models were trained using data from 20 participants
considered as PNCs. We start by introducing the data collection and data pre-processing.
Thereafter, we put forward the two DL models. Lastly, we present the personalisation
method.

As the paper is focused on the importance of personalisation in gait analysis of
PNCs, we made some sub-optimal modelling decisions. We did not look for the best
data format, features, model (type, size, and parameters), nor personalisation method,
but used standard values from the state of the art. Research into the data format, feature
selection, and modelling was conducted, and is still a hot topic of research. Improving the
personalisation method for the gait analysis of PNCs is left to future research.

2.1. Data Collection

Study participants were recruited from the CNS—Campus Neurológico Senior, a
tertiary specialised movement disorders centre in Portugal. Patients were eligible if they
were diagnosed with a neurological disorder, had engaged in a specialised multidisciplinary
program in CNS, and had agreed to participate. Each participant wore an Axivity AX3
accelerometer on their lower back during an hour of clinical assessments administered by a
trained physiotherapist (Table 1) [29]. All sessions were video recorded for further analysis.

Table 1. Rundown of parameters used.

Type of Parameter Measurement Tool

Demographic and clinical data Clinical interview

Disease-specific symptoms PD patients—MDS-UPDRS and Hoehn and Yard scale
Stroke patients—STREAM and PASS

Disease severity Patient global impression (PGI)
Clinical global impression (CGI)

Gait 10 m walk test

Postural instability Mini-Best Test

Functional mobility The Timed Up and Go (TUG) test with and without a cogni-
tive and manual dual-task
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Table 1. Cont.

Type of Parameter Measurement Tool

Physical capacity 2 min step test
Five times sit to stand

Functionality in daily living Schwab and England Activities of Daily Living scale

Kinematic gait analysis Axivity sensors during the 10 m walk test (S&E)

For this study, four standardised assessments of the participants were used to charac-
terise the sample, namely the Movement Disorder Society’s Unified Parkinson’s Disease
Rating Scale (MDS-UPDRS), the Hoehn and Yahr (H&Y) scale, the Schwab and England
(S&E) Activities of Daily Living (ADL) scale, and the Mini-Best Test (MiniBEST). Further
information on the assessments can be found in Table 2.

Table 2. Rundown of standardised assessments.

Assessment Evaluates Pathology Scoring

S&E [30,31] Independence in ADL Any

0–100: Higher S&E
corresponds to a

higher independence
for ADL

MiniBEST [32] Balance Any 1

0–32: Higher rating in
MiniBEST

corresponds to a
better balance

MDS-UPDRS [33] PD disease severity PD
0–200: Higher rating

corresponds to higher
disease severity

H&Y [34] PD disease severity PD
1–5: Higher rating

corresponds to higher
disease severity

1 Tsang et al. [35] researched MiniBEST on stroke survivors and Leddy et al. [36] researched MiniBEST on
individuals with PD.

Our dataset included 12 patients with PD (9 males, 3 females); 2 stroke survivors
(1 male, 1 female); 1 patient with epilepsy (female); 1 patient with polyneuropathy (male);
1 patient with Lewy body dementia (male); 1 patient with dementia (female); 1 patient with
Alzheimer’s disease (female); and 1 person with mild cognitive impairment (male)—all
aged between 56 and 90 years. More detail about the participants can be found in Table 3.
Our data were collected during June and July of 2019. We mainly used S&E and MiniBEST
to rate participants’ motor impairments, as these allow comparing participants across
different pathologies.

Initially, we had 20 participants, but the accelerometer data showed problems due to
malfunctioning of the sensor in three participants (P2, P15, P19). These participants were
therefore excluded. Each second of the videos of the patients was manually labelled as
gait and non-gait data. A total of 10 h, 14 min and 22 s were annotated. After alignment,
a classified dataset was obtained. Notice that this annotation process is prone to errors.
First of all, the annotation of the videos was performed per second, whereas gait does not
necessarily cohere to partitions of full seconds. Second, the recognition of the start and end
of gait slots is not straightforward and is vulnerable to subjectivity. We addressed these
issues through the use of windows, explained in the following section.
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Table 3. Participants’ demographics and clinical information. G = gender; P = participant; YD = year
of diagnosis; NA = not available.

P Pathology YD S&E MiniBEST MDS-UPDRS H&Y Age G

P0 PD 2007 80 29 39 2 56 M

P1 PD 2006 60 14 79 4 86 M

P2 Epilepsy 1954 Accelerometer problems 84 F

P3 PD NA 80 29 49 2 79 M

P4 PD NA 100 29 56 1 68 F

P5 PD 2004 70 24 93 2 75 M

P6 PD 2014 50 11 115 4 78 M

P7 Stroke 2019 70 30 - - 65 M

P8 Polyneuropathy 2019 70 10 - - 80 M

P9 Lewy body dementia 2011 40 14 - - 79 M

P10 Alzheimer 2016 20 Aborted - - 81 F

P11 PD 2017 20 0 128 5 87 F

P12 Stroke 2018 80 25 - - 78 F

P13 Dementia 2017 20 6 - - 90 F

P14 Mild cognitive impairment 2019 40 20 - - 89 M

P15 PD 2013 Accelerometer problems 70 M

P16 PD 2001 90 31 43 2 57 M

P17 PD 2008 60 24 90 4 67 M

P18 PD NA 40 17 107 2 77 F

P19 PD 2009 Accelerometer problems 66 M

Pre-Processing

AX3 accelerometer data were extracted with the open movement (OM) project omcon-
vert [37]. Using the OM GUI, we were able to resample the data using linear interpolation
and make the data at 100 Hz. Furthermore, we calibrated the data using the approach from
Van Hees et al. [38] to guarantee that different devices have the same output under similar
conditions. The obtained data contained acceleration data in three directions, representing
the three dimensions of space, named x, y, and z, over time. We call each point in time an
instant.

In some cases, the devices were not positioned in the same way. This resulted in the
vertical axis being flipped. A simple multiplication of −1 with the vertical axis solved this
issue.

After this, the data were split into windows, as is usual for activity recognition [39].
This split was done because gait cannot be detected from a single instant; it is a procession
of multiple instants. We chose overlapping windows of 2 s and the distance between the
starting points of windows was 0.4 s. Windows that were not unambiguously classifiable
were removed from the dataset, leaving us only with windows that were either completely
gait or completely non-gait. As such, transition windows were excluded, hence solving
the subjectivity and per second video annotation issues put forward above. Excluding
transitions, explicitly or by adding a moment’s “rest” between activities, is common practice
(e.g., in Chong et al. [40] and Khan et al. [41]). Notice that transition windows are very
interesting in their own right, but not especially interesting for this study.

Finally, before feeding the data into our models, we undersampled the skewed dataset.
Basically, we randomly removed some windows which were classified as non-gait to obtain



Sensors 2022, 22, 3980 6 of 13

a balanced dataset. This is usual in ML techniques, as the prediction of less-represented
classes is otherwise “underestimated” [42].

After the pre-processing steps, we ended up with window data from 17 participants.
Each window contained 2 s of data, consisting of 200 instants, 10 ms apart, with acceleration
data in 3 directions: x, y, and z. These windows were classified as either gait or non-gait. In
total, we used 26,002 windows, among which half (13,001) were classified as gait.

2.2. Deep Learning Models

To test the hypothesis that algorithm personalisation is highly relevant for gait detec-
tion for PMIs, we trained two models: a simple (41 trainable parameters) Neural Network
(NN) based on extracted features; and a more complex (2599 trainable parameters) Con-
volutional Neural Network (CNN). These models are commonly used for human activity
recognition, where CNNs are probably the most commonly used model [17]. Other mod-
els that could be used, e.g., LSTMs, Random Forests, or Support Vector Machines, were
excluded as they are beyond the scope of this paper which is focused on assessing the
benefits of personalisation (as mentioned in Section 1). Additionally, studies have shown
that CNNs have very good results compared to other models [43,44]. Both models predict
whether a 2-second window of accelerometer data represents gait data or non-gait data.

2.2.1. Neural Network Based on Extracted Features

The input of the NN is a set of 8 features extracted from each window. For each instant,
the 3 directions, namely x, y, and z, are combined to form the vector magnitude (vm),

vm =
√

x2 + y2 + z2.

The features extracted from each window are the mean and the variance of x, y, z, and
vm, a total of 8 features. These features are commonly used, as studied by Chong et al. [40].

We built a simple NN with the input layer, one fully connected layer with 4 neurons,
and an output layer. The activation function used was the sigmoid (sigmoid(a) = 1

1+e−a )
for both non-input layers.

2.2.2. Convolutional Neural Network

The input of the CNN included the complete windows. After the input layer, the
first layer was a 1-dimensional convolutional layer, with 8 filters of size 32. This layer was
followed by the conventional max pooling layer, for which we used a pool size and stride of
3. This was followed by a drop out layer with rate 0.2. The above layers were then repeated
with the only change being the halving of the filter size of the convolutional layer; instead
of 32 filters, we used 16 filters. After this, the data were run through a flattening layer.
Lastly, we added a fully connected layer with 3 neurons, ending with the output layer.
The convolutional, fully connected and output layers used the ReLU (relu(b) = max{0, b})
activation function.

In some cases, the CNN model became stuck in local error minima or saddle points.
These models were discarded and retrained.

2.3. Personalisation Method

We used a form of domain adaptation to personalise a general algorithm. The general
DL model was trained using the classified movement data of PNCs. The personalisation
step consists of a second training session with PNC-specific data. This extra training was
done with a small learning rate, so that the model was only tweaked. The general model is
often referred to as the pre-trained model, whereas the personalised model is a fine-tuned
version of the pre-trained model [45]. This method is called domain adaptation, which is a
certain form of transfer learning. For our dataset, fine-tuning the pre-trained model (NN:
1 s, CNN: 3 s) takes considerably less time than training the general model (NN: 50 s, CNN:
285 s).
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As mentioned previously, we have data from 17 participants. To test our personal-
isation method, we used the same leave-one-out cross-validation method employed by
Bächlin et al. [28]. Practically, for each participant, we trained the pre-trained model with
the data of the other 16 participants. After that, the model was fine-tuned using part of
the personal data (data size averaged 925 windows). The other part of the personal data
was used for validation. Validation was done both on the pre-trained model and on the
personalised model.

3. Results

For every participant, we ran the personalisation method five times to average out
inconsistencies. As we had a balanced dataset, we evaluated our DL algorithms with the
accuracy metric, measuring the proportion of correctly classified windows [46]. For every
participant, the average of the accuracy of the gait/non-gait classification for both the gen-
eral and the personalised model were collected. These averages were compared, together
with the overall accuracy average of all participants. On average, there was an improve-
ment per participant for both models; 3.5% for the NN; and 5.3% for the CNN, as visualised
in Figure 1. More interesting are the individual participants’ improvements. As mentioned
previously, individual participants improved by a maximum of 16.9% for NN; and a maxi-
mum of 20.5% for CNN. Only a few participants’ accuracies showed decreases (maximum
of 2% for both models). Compared to other studies, our personalisation approach has
similar accuracy improvements over general models [21,47]. In Sections 3.1 and 3.2, we
look at the impact of personalisation on each individual participant for both models.

Figure 1. Comparison of the accuracy of general and personalised methods for both the NN and
CNN models.

3.1. Neural Network Based on Features

For the NN based on features, the accuracy of the general method and personalised
method can be seen in Figure 2. Overall, we see that the personalised models perform
better than or similar to the general model. The only exceptions are P0, P1 and P3, which
have slight decreases in accuracy.
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Figure 2. Neural networks: comparison of the accuracy of general and personalised models for each
participant.

On the other hand, we see very large improvements for P10 and P11. Looking at
Table 3, we notice that these are the participants with the lowest movement scores for most
tests. For these participants, S&E score is very low, and the MiniBEST was aborted for P10,
and scored as 0 for P11. P11 also had a high MDS-UPDRS score and the highest possible
H&Y score. In summary, these are the participants that could be seen as the participants
with the largest movement impairment. Other large improvements were observed for
P4, P7 and P18. Both P4 as P7 have good scores overall, where P4 even has the best S&E
score. P18 has a bad S&E score and the third highest MDS-UPDRS score, even though the
MiniBEST and H&Y scores are average. In summary, the largest improvements are seen
for the participants that are on the extremes of the spectrum of motor impairment, having
either a large motor impairment or a slight motor impairment.

3.2. Convolutional Neural Network

For the CNN based on features, the accuracy of the general method and personalised
method were compared in Figure 3. Overall, we see that the personalised models perform
better than or similar to the general model. The exceptions are P0, P1 and P6, which have
a slight decrease in accuracy. There is a larger group of patients that significantly benefit
from the personalisation method than for the NN based on features.

Large improvements were booked for P9, P10, P11, P17 and P18. As discussed above,
P10 and P11 could be seen as the participants with the greatest movement impairment.
Looking at Table 3 again, P9 and P18 have low S&E and MiniBEST scores. Furthermore,
P18 scores quite high on the MDS-UPDRS score, but not so high on the H&Y score. P17 has
average scores for S&E and MiniBEST but quite high scores for PD disease severity. Most
importantly, we see that the personalisation step has the biggest effect on the participants
whose gait was least accurately predicted by the general model.
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Figure 3. Convolutional neural networks: comparison of the accuracy of general and personalised
models for each participant.

4. Discussion

In the previous section, we showed the results of personalising two DL models, a
simple NN and a more complex CNN. We found that the personalised models gave more
balanced gait detection accuracy for all the different participants. The general models
were worse at detecting the gait of participants with very low ADL and balance scores and
high PD disease severity. We argued that these are the participants with the largest motor
impairment. Furthermore, the general models had problems with detecting the gait of
healthier participants. Overall, these participants can be seen as the outliers of our dataset.
The personalised models drastically raised the model accuracies of these outliers, showing
the importance of personalisation of DL models for the gait analysis of PNCs.

For DL models, one can argue that, given enough data and model parameters, one can
train a model that predicts well for both general data and outliers. Apart from the obvious
logistical problems (having enough data and training a large number of parameters), one
should note the uniqueness of gait of PNCs. A general model is trained using general
data that theoretically correctly represents future individuals. In the case of PNCs, all
participants have a motor impairment and therefore are probably outliers. Hence, general
data are unlikely to represent them.

Following the trend of Big Data, we are now witnessing the challenges of harvesting
large datasets in challenging environments. Not only is collecting data from a diverse set of
PNCs challenging in itself, but other issues arise including sharing and using these models
among institutions. We argue for an approach that benefits from the advances of machine
learning models but adapts to the scarcity of data by focusing on a personal one. The reason
for this approach, variability between people, is also likely to apply for variations within
the same person. For example, different sets of data can be used to personalise a model for
different parts of the day (before and after medication), and personalisation can regularly
happen to make sure that the model is evolving with the person’s condition.

In recent years, we have witnessed an increasing promise of objective outcomes in
free-living environments with the goal of assessing and monitoring diseases, particularly
neurological and neurodegenerative conditions. Gait has been one of if not the most
relevant condition explored in this domain [48]. The approach that we present in this
paper brings opportunities but also challenges. What is the future of personalised gait
(and other activities) recognition systems and their application in real-life scenarios? We
foresee scenarios, built on top of usable interactive systems, wherein patients are able to
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provide annotated data in controlled or uncontrolled scenarios and that enable the regular
personalisation of models.

In this proof of concept, we showed the potential of personalisation in gait recognition
for PNCs. The proposed method is simple yet effective. More complex methods could be
more effective and should be explored. Methods such as those proposed by Cook et al.
[23] and Ding et al. [24] should be considered. Furthermore, personalisation for clustered
groups, a method proposed by An et al. [25], can easily be extended to our method. In
their research, they cluster participants using k-means clustering, and they personalise for
each cluster. This method eases the personalisation costs, but diminishes the performance
improvement. We could do something similar, or use one of our standardised assessment
measures to cluster. Furthermore, we could have different personalisation stages, where
we first personalise per cluster, and then personalise per participant. This would be most
beneficial for larger datasets.

These results and their implications should be of interest for researchers looking at gait
in free-living environments as a relevant endpoint for neurological conditions. It calls the
attention for personalisation approaches and launches opportunities for accurate machine
learning approaches with not-so-big data.

5. Conclusions

Monitoring gait for PNCs is an emergent topic. Wearable inertial sensors open the
opportunity to obtain more information about one’s gait in uncontrolled environments.
To obtain valuable information from someone’s gait pattern, it is of utmost importance
that gait instances are accurately recognised, even for people with abnormal gait. Current
approaches are based on finding an expected gait cycle or training a gait classifier with
data from others; these approaches are deemed to fail in the presence of unexpected gait
patterns, a common occurrence in people with neurological conditions.

In our work, we compare general machine learning (CNN and NN) methods with a
fine-tuned personalised version of each one of them. This approach enables a model to be
trained with a not-so-large general model, and then personalised with individual data in a
fine-tuning step. We showed that the latter improved the overall accuracy by 3.5% for the
NN, and 5.3% for the CNN, and that those that were outliers (i.e., with the worst accuracy)
in the results of the general version of the models were on par with the recognition accuracy
expected from the larger group.

In this proof-of-concept, we encourage that personalisation be considered an avenue
that can capture the different gait patterns and fluctuations in populations where differences
are common and unexpected. This work opens opportunities for personalisation to each
individual, but also for models to be fine-tuned for fluctuations from period to period (e.g.,
fine-tuning models to fluctuations that happen during the day).
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