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Abstract

Motivation: Convolutional neural networks (CNNs) have achieved great success in the areas of image processing
and computer vision, handling grid-structured inputs and efficiently capturing local dependencies through multiple
levels of abstraction. However, a lack of interpretability remains a key barrier to the adoption of deep neural net-
works, particularly in predictive modeling of disease outcomes. Moreover, because biological array data are gener-
ally represented in a non-grid structured format, CNNs cannot be applied directly.

Results: To address these issues, we propose a novel method, called PathCNN, that constructs an interpretable CNN
model on integrated multi-omics data using a newly defined pathway image. PathCNN showed promising predictive
performance in differentiating between long-term survival (LTS) and non-LTS when applied to glioblastoma multi-
forme (GBM). The adoption of a visualization tool coupled with statistical analysis enabled the identification of plaus-
ible pathways associated with survival in GBM. In summary, PathCNN demonstrates that CNNs can be effectively
applied to multi-omics data in an interpretable manner, resulting in promising predictive power while identifying
key biological correlates of disease.

Availability and implementation: The source code is freely available at: https://github.com/mskspi/PathCNN.

Contact: ohj@mskcc.org or mingon.kang@unlv.edu

1 Introduction

Deep neural network methods provide the capability to perform
non-linear modeling, while handling complex structures and
dependencies in data, in order to learn informative representations
through multiple levels of abstraction (LeCun et al., 2015; Lin et al.,
2020). In particular, the convolutional neural network (CNN) has
achieved great success in the field of image processing and recogni-
tion, dealing with grid-structured inputs or images and efficiently
capturing local dependencies between neighboring pixels (Cheng
et al., 2016; Yamashita et al., 2018; Zhang et al., 2019). There have
been several studies applying CNNs to bioinformatics problems
(Min et al., 2017), for example, in learning protein–RNA binding
preferences (Ben-Bassat et al., 2018), predicting the sequence specif-
icities of DNA/RNA-binding proteins (Alipanahi et al., 2015), and
identifying the functional effects of non-coding variants (Zhou and
Troyanskaya, 2015). On the other hand, it appears that traditional
neural networks rather than CNNs have been extensively employed
to solve biological problems due to the non-grid structured format
typically represented in biological array data. Recently, multiple
studies have utilized traditional neural networks on multi-omics
data provided by The Cancer Genome Atlas (TCGA) project for the

analysis of various molecular components in cancer genetics
(Spainhour et al., 2019), including the identification of cancer sub-
types (Mallavarapu et al., 2020) and prediction of cancer treatment
survival (Hao et al., 2019a,b). Comparatively, however, few studies
have adopted CNNs for multi-omics data analysis.

The lack of interpretability is a crucial factor that limits the
adoption of neural networks in the field of medicine, where bio-
logical interpretation of the trained models or results is particularly
important to better understand the biological mechanisms of com-
plex human diseases (Vamathevan et al., 2019). To increase the in-
terpretability of classical CNNs in image problems, an approach
called Class Activation Mapping (CAM) was developed using global
average pooling (Zhou et al., 2016). CAM produces a localization
map for a target class, visualizing the discriminative image regions
used by the CNN to predict the class. However, CAM has some lim-
itations: (i) to employ CAM, the CNN architecture used in modeling
should be modified by removing fully connected layers and adding a
global average pooling layer after the last convolutional layer where
class activation maps are generated, and (ii) the modified network
for CAM should be fine-tuned. A more generalizable approach,
called Gradient-weighted Class Activation Mapping (Grad-CAM),
was subsequently proposed, which uses the gradient information of
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any target class flowing into the last convolutional layer to produce
class activation maps (Selvaraju et al., 2017).

In this study, we propose a novel method, called PathCNN, to
build an interpretable CNN model of cancer outcomes using multi-
omics data. As input data to the CNN model, pseudo images of
biological pathways (called pathway images) are used, which are
generated in the low dimensional space of integrated multi-omics
data including mRNA expression, copy number variation (CNV)
and DNA methylation. After modeling, to identify the biological
pathways associated with outcomes, Grad-CAM is used, for which
attention maps superimposed on pathway images are analyzed to
pinpoint key pathways.

We demonstrate the method applied to predicting long-term sur-
vival in patients diagnosed and treated for glioblastoma multiforme
(GBM). GBM is one of the most malignant tumors with poor prog-
nosis and outcomes with a median survival of 14–15 months after
diagnosis (Hanif et al., 2017; Hou et al., 2006). The identification
of key biomarkers associated with survival in GBM patients could
further help elucidate the underlying biological mechanisms that
play a role in the biology of GBM. Through the proposed methods,
we show that the resulting CNN model achieves much better pre-
dictive performance compared to other methods. Furthermore, the
model employing Grad-CAM is interpretable, enabling the visual
identification of influential biological pathways.

2 Materials and methods

2.1 Data
Multi-omics data for GBM, including mRNA expression, CNV and
DNA methylation, denoted as G, C and M 2 R

n�r, respectively,
were downloaded from the cBioPortal database (Cerami et al.,
2012), where n and r indicate the numbers of samples and genes, re-
spectively. Long-term survival (LTS) was defined as survival
> 2 years after diagnosis, whereas non-LTS was defined as survival
� 2 years. Individuals who survived with the last follow-up
� 2 years were excluded in further analysis.

2.2 Pathway image
Each type of omics data at a gene level was converted into pathway
level profiles. To do this, pathway information was first extracted,
along with the associated genes for each pathway from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database (Kanehisa
et al., 2016). After excluding disease-specific pathways, 146 path-
ways were used. For a pathway pi, the mRNA expression data of
associated genes were extracted from the mRNA expression matrix
(G), producing an intermediate matrix B 2 R

n�ri , where ri is the

number of genes involved in the pathway pi. That is, the matrix B
consists of samples in rows and genes for a given pathway in col-
umns. Using principal component analysis (PCA), the matrix B was
decomposed into uncorrelated components, yielding Gpi

2 R
n�q,

where q is the number of principal components (PCs). This task for
the pathway pi was also carried out on the CNV matrix (C) and
DNA methylation matrix (M), yielding Cpi

; Mpi
2 R

n�q, respective-
ly. The process was repeated for all 146 pathways, resulting in the
merged matrices Gp, Cp and Mp 2 R

n�146q for the 146 pathways.
Lastly, by rearranging the matrices for each sample sj, a set of matri-
ces, Gsj

; Csj
; Msj

2 R
146�q, was produced. A combined matrix of the

three matrices, Ksj
2 R

146�3q, is called the pathway image of the
sample sj, where rows represent 146 pathways, and columns repre-
sent 3�q PCs combined for the three omics types, which was input
into a CNN model. In this study, a few PCs (q¼1–5) were used; for
example, a sample (pathway image) is represented by a matrix with
146�6 elements for q¼2, where the first and second columns are
from mRNA expression, the third and fourth columns are from
CNV, and the fifth and sixth columns are from DNA methylation,
representing the first two PCs of each omics type. Figure 1 illustrates
the process to generate the pathway images.

2.3 Order of pathways
To identify the important pathways associated with LTS in GBM,
Grad-CAM was used, which is a technique to localize discriminative
image regions. Thus, if correlated pathways are clustered on path-
way images, Grad-CAM is more likely to identify key pathways.
This is also consistent with the nature of CNNs that capture local
patterns in input images through various filters. It is intuitively rea-
sonable to place correlated pathways in proximity on the pathway
images to better localize important regions. Hence, the 146 path-
ways were ordered in the following manner: Pearson correlation be-
tween pathways was computed on a matrix of 146 by (number of
samples � number of PCs � 3), generated by combining all resultant
pathway images. The two most correlated pathways were placed on
the top two rows on the pathway images, and then a pathway that
was the most correlated with the pathway in the second row was
placed on the third row. This process was repeated for all 146 path-
ways. Note that the ith pathway was located among those not previ-
ously selected, and it was the most correlated with the pathway in
the row i�1. As a result, all pathway images had the same order of
pathways.

2.4 CNN architecture
The input layer was provided with pathway images. The CNN
architecture consisted of two convolutional layers with 32 and

Fig. 1. Generation ofpathway images from multi-omics data using principal component analysis (PCA). PCA was carried out for individual pathways with associated genes in

each omics type. A pathway image for a sample was produced by combining a few principal components of all omics types. PCA, principal component analysis; CNV, copy

number variation; DM, DNA methylation
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64 filters, with a size of 3�3, followed by a 4�2 max-pooling
layer, and a dropout layer with a dropout rate of 25%. Each convo-
lutional layer was immediately followed by a rectified linear unit
(ReLU) activation function (Nair and Hinton, 2010). The output
from the dropout layer was flattened to a 1D vector and connected
to a fully connected layer of 64 nodes, followed by a dropout layer
with a dropout rate of 50%, and a softmax layer. A clinical variable,
age, was connected to the fully connected layer. Figure 2 illustrates
the CNN architecture. The training epoch was set to 30, and the
batch size was set to 64 for all runs. Adam was used as an optimizer
with a learning rate of 0.0001. We used Keras 2.3 with Tensorflow
2.0 as the backend; the code was run in Google Colab using GPUs.

2.5 Cross validation
Modeling used a 5-fold cross validation (CV) approach with 30
repeats. In each 5-fold CV, samples were randomly assigned as fol-
lows: 20% of data were assigned as a test set for performance evalu-
ation, and the remaining data were further split into a training set
(80% of the remaining data) and a so-called validation set (20% of
the remaining data) used to tune hyper-parameters. The modeling
was carried out using the training set and optimizing hyper-parame-
ters in the CNN model using the validation set. The model was built
in each CV and was evaluated on the test set. Predictive performance
was quantified by the area under the curve (AUC).

2.6 Biological interpretation using Grad-CAM
Grad-CAM for class-discriminative localization mapping was
employed to identify the important pixels (pathways) on pathway

images associated with LTS in GBM patients (Fig. 3A) (Selvaraju
et al., 2017). Class activation maps were generated by computing
the gradient of a score (yc) for each class c with respect to feature
maps A of the last convolutional layer. More specifically, neuron
importance weights wc for a class c were computed as follows:

wc
k ¼

1

Z

X

i

X

j

@yc

@Ak
ij

(1)

where k is the number of feature maps and Z is the number of pixels
in the feature map. An activation map for the class c was then pro-
duced using the following equation:

Lc ¼ ReLUð
X

k

wc
kAkÞ (2)

where Lc is a weighted sum of feature maps followed by a ReLU.
The motivation of the ReLU is to highlight pixels whose intensities
contribute to increasing yc, having a positive influence on the target
class. A localization map for each class was normalized to lie be-
tween 0 and 1. Since the class activation map has the same size as
the feature maps, it was up-sampled to the size of the input pathway
image.

Unlike the modeling with cross validation, for biological inter-
pretation using Grad-CAM, a CNN model was built using all sam-
ples. Each sample was fed into the model, leading to two activation
maps (for LTS and non-LTS). A difference map between the two ac-
tivation maps was thereby produced. After repeating this process for
all samples, a statistical analysis was conducted. For a given pixel,
the statistical difference between the LTS and non-LTS groups was

Fig. 2. The convolutional neural network architecture used in this study for long-term survival prediction in glioblastoma. The input layer was provided with pathway images.

A clinical variable, age, was connected to the fully connected layer. LTS, long-term survival; Non-LTS, non-long-term survival

A

B

Fig. 3. An illustration of biological interpretation. (A) Grad-CAM procedure to generate class activation maps. The two images on the left bottom represent an example of the

class activation maps for a sample in the cohort, which were generated from Grad-CAM procedure; (B) statistical analysis to identify significantly different pathways between

the LTS and non-LTS groups. LTS, long-term survival; CNN, convolutional neural network; ReLU, rectified linear unit
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assessed using the Wilcoxon rank-sum test (Fig. 3B). The P-values
were corrected for multiple testing using the Bonferroni correction.

2.7 Comparison with benchmark methods
The predictive performance of PathCNN was compared with several
machine learning methods, including logistic regression, support
vector machines (SVMs), fully connected neural networks and the
recently proposed Multi-omics Integrative Net (MiNet) (Hao et al.,
2019a). For all experiments, the same experimental settings were
used as described in the above Cross validation section. For SVM,
several kernels, including radial basis function (RBF), polynomial
and sigmoid kernels were assessed. For the fully connected neural
network, a neural network architecture was empirically tuned,
which consisted of an input layer, five hidden layers and an output
layer. The numbers of nodes in the hidden layers were 10k, 7.5k,
5k, 2.5k and 500, respectively. ReLU was used as an activation
function between the hidden layers and a sigmoid function in the
output layer. The rate of dropout in the hidden layers was set to
80%. The architecture of MiNet, originally designed to compute a
concordance index, was modified, by replacing the loss function of
negative log partial likelihood with binary cross entropy to compute
an AUC. Both the neural network and MiNet models were trained
by the Adam optimizer. For all experiments, the multi-omics data
and a clinical variable of age were input to each machine learning
model.

3 Results

3.1 Data
The TCGA multi-omics data of GBM consisted of mRNA expres-
sion, CNV and DNA methylation, measured at the gene level:
mRNA expression for 12 042 genes in 528 cases, CNV for 24 776
genes in 577 cases and DNA methylation for 11 807 genes. For
DNA methylation data, two Illumina Infinium DNA methylation
bead arrays (HM27 and HM450) were used for 285 and 155 cases,
respectively. Removing 5 duplicate cases, 435 cases were evaluable
for DNA methylation data. In total, 8037 genes were common in
the three omics types, and 343 cases had all three omics types. After
removing individuals who survived with the last follow-up
� 2 years, LTS and non-LTS groups had 55 and 232 cases, respect-
ively. To handle imbalanced data, class weights were set in the mod-
eling according to the ratio of the number of samples between the
two groups.

In total, 4989 unique genes were involved in 146 KEGG path-
ways with an average of 68 genes per pathway. PCA tests were per-
formed for individual pathways separately on each omics type to
convert gene level information to pathway level information. When
genes belonging to a given pathway were not available, PCA was
conducted without the missing genes. The number of missing genes
in each pathway was on average 13, 2 and 20 for mRNA expression,
CNV and DNA methylation, respectively.

The average age in LTS and non-LTS groups was 48 and
61 years, respectively, and the difference in age between the two
groups was statistically significant with a P-value < 0.001 using a
two-sample t-test. Due to the significance of age in terms of survival,
the variable was added to the fully connected layer in the CNN
model. IDH-wildtype GBM is more common and has a worse prog-
nosis, whereas IDH-mutant GBM is more frequently observed in
younger patients and has been associated with longer survival
(Burgenske et al., 2019). There were IDH mutations in only 6 and 2
cases in the LTS and non-LTS groups, respectively; however, the dif-
ference was statistically significant with Fisher’s exact test
P¼0.0013.

3.2 Modeling performance
The CNN model trained to classify LTS and non-LTS groups in
GBM using pathway images was tested in a 5-fold CV scheme. The
pathway image representation consisted of 146 rows (each row rep-
resents the same pathway) and 3�q columns, where q denotes the

number of PCs. For example, for q¼2, the columns were formed
with the first two PCs for each omics type in the following order:
mRNA expression, CNV and DNA methylation. In the modeling,
various sizes of pathway images were assessed with q¼1 through 5.
In each experiment, an average AUC over 30 iterations of the 5-fold
CV was reported. As shown in Figure 4, when two PCs (q¼2) were
used, the performance was saturated with an average AUC of 0.753,
and there was no significant additional improvement with more
PCs. When q¼2, a model without age achieved an average AUC of
0.677, demonstrating the significance of age.

All possible arrangement combinations of mRNA expression,
CNV and DNA methylation in pathway images with two PCs were
tested. Interestingly, an arrangement of (CNV, mRNA expression
and DNA methylation) resulted in the worst AUC of 0.736.
Arrangements of (CNV, DNA methylation and mRNA expression)
and (DNA methylation, mRNA expression and CNV) achieved
average AUCs of 0.741 and 0.747, respectively. Other arrangements
resulted in average AUCs of 0.755 which is similar to that of the ar-
rangement order of (mRNA expression, CNV and DNA methyla-
tion) used in this study. The performance differences, though small,
may be due to the relatedness of the different data types.

To assess which omics type is more informative to the model,
CNN modeling on pathway images, generated using combinations
of two omics types, was conducted with q¼2. As shown in Figure
5, a combination of mRNA expression and CNV, and a combin-
ation of CNV and DNA methylation, achieved comparable perform-
ance with average AUCs of 0.749 and 0.748, respectively. A
combination of mRNA expression and DNA methylation showed
much worse performance with an average AUC of 0.704. In

Fig. 5. Performance comparison of convolutional neural network models with a

combination of two omics types. AUC, area under the curve; CNV, copy number

variation; DM, DNA methylation

Fig. 4. Performance comparison of convolutional neural network models. The dif-

ferent size of pathway image was assessed with the top one principal component

through five principal components in the generation of pathway images. PC, princi-

pal component; AUC, area under the curve
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addition, the CNN modeling on pathway images with a single omics
type showed average AUCs of 0.699, 0.715 and 0.687 for mRNA
expression, CNV and DNA methylation, respectively. Here, q¼3
was used due to the filter size of 3�3. Overall, the use of multi-
omics types in modeling showed improved performance. However,
DNA methylation did not significantly improve the predictive power
compared to mRNA expression and CNV, which is likely due to the
relatively high rate of missing genes in DNA methylation. By con-
trast, the low missing rate in CNV explains its contribution in pre-
dictive power.

3.3 Comparison with benchmark methods
The predictive performance of PathCNN was compared with four
different machine learning methods, including logistic regression,
SVMs, fully connected neural networks and MiNet. In addition to
GBM, multi-omics data, including RNASeq gene expression, CNV
and DNA methylation, were downloaded from the TCGA and
assessed for three other cancers, including kidney cancer, low-grade
glioma (LGG) and lung adenocarcinoma (LUAD). Table 1 lists the
number of evaluable genes in each cancer. Because these three can-
cers are relatively less malignant compared to GBM, a threshold of
3 years was used to define LTS. That is, LTS was defined as survival
> 3 years. After removing individuals who survived but had their
last follow-up � 3 years, the LTS and non-LTS groups had 154 and
69, 156 and 75 and 110 and 115 cases for kidney cancer, LGG and
LUAD, respectively. Class weights were set in the modeling accord-
ing to the ratio of the number of samples between the two groups.
For LGG, age was also input to each machine learning model.
Modeling was not conducted with the threshold of 3 years for GBM,
due to worse survival and the resulting extreme class imbalance
(LTS and non-LTS groups at 3 years had 23 and 256 cases, respect-
ively.) In each experiment, an average AUC over 30 iterations of the
5-fold CV was reported. As shown in Table 2, for most cancers,
PathCNN outperformed other machine learning modeling methods.
However, in LGG, SVM with RBF had slightly better performance
than PathCNN. It should be noted that in all experiments,
PathCNN had the smallest standard deviation, implying an
increased stability compared with other approaches.

3.4 Identification of key pathways
To assist biological interpretations, the CNN model was retrained
using all samples of the pathway images generated with the first two
PCs for individual omics types. To identify the biological mecha-
nisms associated with survival in GBM patients and independent
from age, the clinical variable age was removed from the CNN

model. Individual pathway images were fed into the trained model,
as shown in Figure 3A. Grad-CAM then generated two activation
maps (LTS and non-LTS) for each sample in the last convolutional
layer. Let LLTS

i and Lnon�LTS
i denote the two activation maps for LTS

and non-LTS for a sample si, respectively. If the model is well
trained, and an input sample si belongs to the LTS group, LLTS

i is
more likely to be activated than Lnon�LTS

i , and vice-versa. After up-
sampling the two activation maps to the original input size, the ab-
solute intensity differences of individual matched pixels between the
two activation maps were computed in a normalized range, i.e.
Di ¼ jLLTS

i � Lnon�LTS
i j. After the Grad-CAM procedure for all sam-

ples, a set of matrices D ¼ ðD1;D2; . . . ;DnÞ was produced, where n
is the number of samples. Based on the original class of each sample,
D was split into two groups, DLTS and Dnon�LTS. For a pixel with an
index (j, k), i.e. jth row and kth column on each matrix in the set D,
the difference in values between DLTS and Dnon�LTS was assessed
using a Wilcoxon rank-sum test, yielding a P-value. After statistical
tests for all pixels, P-values were corrected using the Bonferroni
correction.

As a result of the statistical tests, four activation areas with
adjusted P-values < 0.001 were found, which consisted of 15 pixels
(pathways) with 10 unique pathways (Fig. 6, Table 3). Note that
each pixel indicates a PC. All 15 pixels in the four hot spots were
found in PCs of either mRNA expression or CNV. Three pathways,
including the cytokine-cytokine receptor interaction, chemokine sig-
naling pathway and NOD-like receptor signaling pathway, were
enriched in both PC 1 and PC 2 for mRNA expression. Two path-
ways, including the alpha linolenic acid metabolism and linoleic
acid metabolism, were enriched in both PC 1 and PC 2 for CNV.
Clearly, the linoleic acid metabolism and alpha linolenic acid metab-
olism are highly correlated, consisting of 29 and 19 genes, respect-
ively, with 16 common genes. A Kaplan-Meier analysis was
performed to compare survival time between two groups dichotom-
ized by a median split of PC values in the key pathways. That is,
given a key pathway (pixel), PC values across all samples were
dichotomized by a median split. Figure 7 shows the results for four
pathways, including the cytokine-cytokine receptor interaction, che-
mokine signaling pathway, NOD-like receptor signaling pathway
and ECM-receptor interaction, in PC1 of mRNA expression. All
were statistically significant on log-rank tests. Kaplan-Meier curves
dichotomized by a median split of PC1 values in CNV are shown in
Figure 7E and F. The linoleic acid metabolism had statistical signifi-
cance with a log-rank P-value of 0.0275. The neuroactive ligand-
receptor interaction had borderline significance with a log-rank
P-value of 0.0744 whereas other pathways were not statistically
significant.

4 Discussion

GBM is one of the most aggressive and malignant forms of cancer,
with mostly poor outcomes (Hanif et al., 2017; Hou et al., 2006).
Although GBM is rare with an annual incidence of <10 per 100 000
people, a poor median survival of 14–15 months after diagnosis
makes it a major public health concern (Chou et al., 2018; Hatoum
et al., 2019). The identification of key biomarkers that play a role in
the biology of GBM could help better understand the underlying

Table 2. Comparison of predictive performance with benchmark methods in terms of the area under the curve (AUC: mean 6 standard devi-

ation) over 30 iterations of the 5-fold cross validation

Cancer PathCNN Logistic regression SVM with RBF Neural network MiNet

GBM 0.755 6 0.009 0.668 6 0.039 0.685 6 0.037 0.692 6 0.030 0.690 6 0.032

LGG 0.877 6 0.007 0.816 6 0.036 0.884 6 0.017 0.791 6 0.031 0.854 6 0.027

LUAD 0.637 6 0.014 0.581 6 0.028 0.624 6 0.034 0.573 6 0.031 0.597 6 0.042

KIRC 0.709 6 0.009 0.654 6 0.034 0.684 6 0.027 0.702 6 0.028 0.659 6 0.030

Note: AUCs for PathCNN were obtained with three principal components. Bold ¼ Highest AUC for each dataset.

SVM, support vector machine; RBF, radial basis function; MiNet, Multi-omics Integrative Net; GBM, glioblastoma multiforme; LGG, low-grade glioma; LUAD,

lung adenocarcinoma; KIRC, kidney cancer.

Table 1. The number of genes in each omics type

Cancer type RNASeq expression CNV DNA methylation

Low-grade glioma 20 440 24 776 16 603

Lung adenocarcinom 20 440 24 776 16 565

Kidney cancer 20 440 24 776 16 459

CNV, copy number variation.
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Fig. 6. A matrix of adjusted P-values. The row represents the 146 KEGG pathways ordered on pathway images. The columns represent the first two principal components of

each omics type. The red color indicates key pathways with adjusted P-values < 0.001

Table 3. Key pathways associated with the long-term survival in GBM patients

Row Pathway Gene expression CNV

PC 1 PC 2 PC 1 PC 2

3 Cytokine-cytokine receptor interaction 0.0003 0.0008

4 Chemokine signaling pathway 0.0001 0.0001

5 NOD-like receptor signaling pathway 0.0003 0.0001

6 ECM-receptor interaction 0.0006

53 Regulation of autophagy 0.0006

54 Glycosylphosphatidylinositol (GPI) anchor biosynthesis 0.0005

81 Neuroactive ligand-receptor interaction 0.0005

82 Long term depression 0.0008

115 Alpha linolenic acid metabolism 0.0001 0.0002

116 Linoleic acid metabolism 0.0008 0.0007

Note: The column Row indicates the row numbers of pathways on pathway images.

PC, principal component; CNV, copy number variation.

Fig. 7. Kaplan–Meier curves for two groups dichotomized by a median split in PC1 of mRNA expression: (A) cytokine-cytokine receptor interaction; (B) chemokine signaling

pathway; (C) NOD-like receptor signaling pathway; and (D) ECM–receptor interaction, and Kaplan–Meier curves dichotomized by a median split in PC1 of CNV: (E) neuro-

active ligand-receptor interaction; and (F) linoleic acid metabolism

i448 J.H.Oh et al.



biological mechanisms of GBM aggressiveness. Many studies have
reported putative survival-associated biomarkers in GBM using a
single-omics platform (Dong et al., 2019; Karsy et al., 2015).
However, the analysis of data from individual assays currently lacks
the capability of finding robust biomarkers that are able to guide
therapeutic decisions in GBM (Xiong et al., 2014). An integrated
analysis of multi-omics data can potentially provide useful insights
into the complex biology and molecular heterogeneity of cancer,
taking into account the interactions of different types of biomarkers
(Montaner et al., 2020).

In recent years, CNNs have been successfully applied to com-
puter vision and image processing problems, achieving state-of-the-
art performance (Cheng et al., 2016; Li et al., 2018). However, there
is a limitation of applying CNNs to bioinformatics problems, since
in general, biological data are represented as non-grid structures.
Another limitation of using deep learning techniques on biological
data lies in the interpretability of the trained model and findings,
often treated as a ‘black box’. The interpretation of deep neural net-
work models is particularly important in biological data analysis to
derive the underlying biology of diseases.

To adapt CNNs to biological pathway analysis, we have pro-
posed using a new formulation of ‘pathway images’ to represent
multi-omics data. To leverage CNN capabilities, pathways with
greater correlated activity were arranged more closely in the path-
way image. Use of principle components effectively summarizes cor-
related pathway activity. The resulting CNN modeling on the
integrated multi-omics data at the pathway level improved predict-
ive power, adding complementary information to the model. It is
likely that such an analysis at the pathway level removes noisy infor-
mation that may exist in individual omics types, representing each
pathway as a linear combination of relevant genes in the principal
component space. The adoption of Grad-CAM after the CNN mod-
eling effectively enabled biological interpretations, and thus, identi-
fying pathways likely associated with survival in GBM patients.
Non-linear dimensional reduction techniques, such as t-distributed
stochastic neighbor embedding (t-SNE) and uniform manifold ap-
proximation and projection (UMAP), will be further considered in
future work.

In the 146 pathways, the number of genes involved in each path-
way ranged from 10 (taurine and hypotaurine metabolism) to 389
(olfactory transduction). For the sake of simplicity and efficiency in
CNN modeling and Grad-CAM based biological interpretation, the
size of the pathway image for each sample was fixed with 146 path-
ways in rows and a predefined number of PCs in columns. For the
dimensional reduction of each pathway, if there were missing genes
in the omics data, PCA was performed without those genes, which
removed the difficulty of handling missing data. Despite the linear
nature of PCA, the non-linear relationships among pathways can be
captured by the CNN model.

The resulting pathway based CNN model effectively predicted
LTS for GBM patients. When all three omics types were used, an
average AUC of 0.753 was obtained, using the first two PCs for
each omics type. When two omics types (mRNA expression with
CNV and CNV with DNA methylation) were used, similar perform-
ance was achieved with average AUCs of 0.749 and 0.748, respect-
ively. Predictive power worsened when mRNA expression with
DNA methylation data were used, with an average AUC of 0.704.
Overall, the use of multi-omics data significantly improved predict-
ive performance compared to modeling using any single omics type.

For the biological interpretation of the class activation maps that
were derived using a Grad-CAM technique, a matrix was produced
that represents the intensity difference between the two class activa-
tion maps for each sample. Then, for a specific pixel on the differ-
ence maps, a statistical analysis was conducted to assess the value
differences between the LTS and non-LTS groups. Before that, a
normality test, using the Kolmogorov-Smirnov method, was per-
formed. For all pixels, the Kolmogorov-Smirnov test produced P-
values < 0.05, indicating that all tests rejected the null hypothesis
that the data came from a normal distribution at the 5% significance
level. Therefore, non-parametric tests with a Wilcoxon rank-sum
method were carried out.

Using the Grad-CAM, four significant regions with adjusted P-
values < 0.0001 were found, in which at least two correlated path-
ways were localized together, consisting of 15 pixels and 10
unique pathways: (i) cytokine-cytokine receptor interaction, chemo-
kine signaling pathway, NOD-like receptor signaling pathway,
ECM-receptor interaction; (ii) regulation of autophagy, glycosyl-
phosphatidylinositol (GPI) anchor biosynthesis; (iii) neuroactive lig-
and-receptor interaction, long term depression and (iv) alpha
linolenic acid metabolism, linoleic acid metabolism.

The resulting biological pathway analysis was consistent with
prior studies. For example, the cytokine-cytokine receptor inter-
action pathway was reported to be the most enriched KEGG path-
way associated with survival in GBM, using a network-based
method (Jiang et al., 2015). Another study reported that a panel of
18 cytokines discriminated GBM patients from healthy individuals,
and the cytokine-cytokine receptor interaction and JAK-STAT path-
ways were the most enriched in pathway analysis (Nijaguna et al.,
2015). In particular, two cytokines (IL17 and IL4) were independ-
ently found to be good prognostic indicators. Arimappamagan et al.
found 76 differentially expressed genes between low and high risk
groups in GBM, and showed that these 76 genes were enriched in
three KEGG pathways, including the cytokine-cytokine receptor
interaction, NOD-like receptor signaling pathway and chemokine
signaling pathway (Arimappamagan et al., 2013), which are related
to the inflammatory and immune response pathways. It has been
found that GBM tumors secrete chemokines that are indirectly
involved in angiogenesis by activating stromal cells, and can pro-
mote tumor growth and progression (Somasundaram and Herlyn,
2009). Remarkably, all three of these pathways were included in the
first hot spot, resulting from the Grad-CAM procedure. Further,
Tong et al. identified two modules from a protein-protein inter-
action network that were associated with survival in GBM, and
showed that genes involved in the two network modules were main-
ly associated with the chemokine signaling pathway, neuroactive lig-
and-receptor interaction, ECM-receptor interaction and focal
adhesion (Tong et al., 2018). Moreover, some molecules in the
ECM-receptor interaction pathway were shown to be associated
with Temozolomide (TMZ) resistance (Zeng et al., 2017).
Consequently, these pathways are likely to be linked to prognosis in
GBM.

The second hot spot included the neuroactive ligand receptor
interaction and long-term depression pathways, both of which previ-
ously were not linked to GBM. However, Liu et al. demonstrated
that some genes implicated in major depressive disorder were
enriched with the neuroactive ligand receptor interaction pathway
(Liu et al., 2019). A study by Zhou et al. (2018) investigated differ-
entially expressed genes between GBM samples and normal brain
samples, and found that upregulated genes in a KEGG analysis were
enriched in the neuroactive ligand-receptor interaction, cytokine-
cytokine receptor interaction and JAK-STAT signaling pathways,
implying that some common biological mechanisms exist between
the neuroactive ligand receptor interaction and GBM-related path-
ways. Interestingly, the cytokine-cytokine receptor interaction and
chemokine signaling pathways described above were found to be
commonly enriched pathways in both major depressive disorder and
GBM (Xie et al., 2018). A report by Pal et al. (2018) also indicated
that GBMs with the defective neuroactive ligand receptor inter-
action pathway had significantly worse prognoses.

The third hot spot included the pathways of GPI anchor biosyn-
thesis and regulation of autophagy. Johnson et al. reported that GPI
anchors are implicated in the tumorigenicity of GBM, and may indi-
cate novel therapeutic alternatives (Johnson et al., 2018). A study by
Abdul Rahim et al. (2017) showed that ATG9A is essential for gen-
eral GBM cell survival as a novel regulator of autophagy induction,
and the inhibition of autophagy could be an effective therapy in
GBM. However, targeting of autophagy in GBM treatment is still a
matter of debate, and further in-depth investigations are needed to
clearly understand the role of autophagy in GBM biology (Colella
et al., 2019).

The fourth hot spot included the linoleic acid metabolism and
alpha linolenic acid metabolism, consisting of 29 and 19 genes,
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respectively, with 16 common genes. The linoleic acid metabolism
and alpha linolenic acid are two essential fatty acids. Alpha linolenic
acid is an isomer of gamma-linolenic acid. Recently, a paper
reported that gamma-linolenic acid reduces the proliferation and mi-
gration of GBM cells and increases apoptosis, suggesting that
gamma-linolenic acid has promising therapeutic potential in GBM
(Miyake et al., 2020).

An inherent limitation of our approach is that the identification of
joint pathway hot spots requires contiguous alignment of the path-
ways in the pathway image. Pathway ordering currently maximizes
the correlation of neighboring pathways. This could be extended in a
future extension to include more neighboring configurations.

5 Conclusions

We have described PathCNN, a novel algorithm to build interpret-
able CNN models based on the concept of a ‘pathway image’,
generated using multi-omics data. The model was able to predict
long-term survival of GBM patients better than other common ma-
chine learning methods. Furthermore, the application of Grad-CAM
directly on the pathway image enabled the identification of plausible
pathways that affect survival in GBM. In summary, this study shows
the potential of using CNNs on multi-omics data, along with Grad-
CAM, to identify complex and non-linear biological correlates of
disease aggressiveness.
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