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ABSTRACT Here, we report the draft genome sequences of two Geobacter sp.
strains, AOG1 and AOG2, isolated from enrichment cultures using crystalline Fe(lll)
oxides as electron acceptors. Strains AOG1 and AOG2 possess numerous genes
encoding multiheme c-type cytochromes and pilA-N genes encoding the pilin mono-
mer of nanowires in their genomes.

eobacter species are of significance in understanding direct electron transfer from

microbes to inorganic acceptors located outside the cells, such as crystalline Fe(lll)
oxides (1, 2). Recent multidisciplinary research has reported that protein nanowires
and multiheme c-type cytochromes are responsible for extracellular electron transport
(3-7). Yet the mechanisms underlying crystalline Fe(lll) oxide reduction are largely
unknown. In our previous work, the ferric iron-reducing Geobacter sp. strains AOG1
and AOG2 were isolated from enrichment cultures, using rice paddy and wetland soils
as the inocula and lepidocrocite and magnetite as the electron acceptors, respectively,
indicating their involvement in the reduction of these crystalline Fe(lll) oxides (8). Here,
we report the draft genome sequences of the two strains, AOG1 and AOG2.

The genome sequences of strains AOG1 and AOG2 were obtained as previously
described (9). Briefly, the strains were grown anaerobically on Fe(lll)-nitrilotriacetic acid
(NTA) as the electron acceptor, and their genomic DNA was extracted using phenol
extraction with chemical cell lysis (10). For both strains, two kinds of DNA libraries were
generated; one was a paired-end library (insert size, ~500 bp), prepared using a
NEBNext Ultra DNA library prep kit for lllumina (New England BioLabs, Ipswich, MA,
USA), while the other was a mate-pair library (insert size, ~4,000 bp), prepared using a
Nextera mate pair sample prep kit (Illumina, San Diego, CA, USA). These libraries were
sequenced on an Illlumina MiSeq platform with 250-bp paired-end reads. Low-quality
reads were removed using Sickle software v1.33 (https://github.com/najoshi/sickle/
releases/tag/v1.33) with the default quality score threshold (Q > 20). The high-quality
reads were preassembled using Unicycler v0.4.8 (11) with default parameters and then
assembled using the trusted-contigs tool in SPAdes v3.13.0 software (12) with a coverage
cutoff of 30-fold. GenoFinisher v2.1 software (http://www.ige.tohoku.ac.jp/joho/gf/index
.php) was used to close the genome sequences; however, unclosed scaffolds of 3.68 Mb
and 3.92 Mb were obtained for strains AOG1 and AOG2, respectively. A summary of the as-
sembly statistics of the strains is shown in Table 1. The genome sequences of both strains
were annotated using DFAST v1.2.2 with all the built-in databases (13). The genome com-
pleteness was assessed using the CheckM lineage workflow (14). Multiheme c-type cyto-
chromes were identified using a Python script, as previously reported (15, 16).

The draft genome sequence of strain AOG1 contains 2 rRNA operons, 51 tRNA loci, and
3,292 protein-coding sequences (CDSs), with 99.95% genome completeness, whereas that
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TABLE 1 Assembly information, genome features, and data accession numbers of the
Geobacter sp. strains AOG1 and AOG2

Data for strain:

Characteristic AOG1 AOG2

No. of paired-end reads 1,950,584 2,122,640

No. of mate-pair reads 800,232 725,682
Assembly level Scaffold Scaffold
Genome size (bp) 3,677,207 3,921,358
G+C content (%) 57.4 57.2

Genome coverage (x) 157 211

No. of scaffolds 1 1

N5, (bp) 3,677,207 3,921,358
Genome completeness (%) 99.95 99.35

No. of rRNAs 6 6

No. of tRNAs 51 52

No. of CDSs 3,292 3,515

No. of genes for multiheme c-type cytochrome 51 49

No. of copies of pilA-N 1 2
DDBJ/ENA/GenBank accession no. BLIZ01000001 BLJA01000001
SRA accession no. DRA009323 DRA009324
SRA accession no. for paired-end reads DRR200236 DRR200239
SRA accession no. for mate-pair reads DRR200237 DRR200238
BioSample accession no. SAMDO00196143 SAMDO00196144

of strain AOG2 contains 2 rRNA operons, 52 tRNA loci, and 3,515 CDSs, with 99.35% com-
pleteness (Table 1). The draft genome sequences of AOG1 and AOG2 include at least 51
and 49 genes encoding multiheme c-type cytochromes, as well as 1 and 2 copies of the
pilA-N gene encoding the pilin monomer of nanowires, respectively (Table 1). The draft ge-
nome sequences of Geobacter sp. strains AOG1 and AOG2 will be useful for a comprehen-
sive understanding of the microbial reduction of crystalline Fe(lll) oxides.

Data availability. The genome sequences of Geobacter sp. strains AOG1 and AOG2
have been deposited at DDBJ/ENA/GenBank under the BioProject accession number
PRJDB9051, with the individual accession numbers shown in Table 1. The raw data sets
are available under the SRA accession numbers DRA009323 and DRA009324 for strains
AOG1 and AOG2, respectively.
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