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Abstract

Background: In early diagnostic trials, particularly in biomarker studies, the aim is often to select diagnostic tests
among several methods. In case of metric, discrete, or even ordered categorical data, the area under the receiver
operating characteristic (ROC) curve (denoted by AUC) is an appropriate overall accuracy measure for the selection,
because the AUC is independent of cut-off points.

Methods: For selection of biomarkers the individual AUC’s are compared with a pre-defined threshold. To keep the
overall coverage probability or the multiple type-I error rate, simultaneous confidence intervals and multiple contrast
tests are considered. We propose a purely nonparametric approach for the estimation of the AUC’s with the
corresponding confidence intervals and statistical tests. This approach uses the correlation among the statistics to
account for multiplicity. For small sample sizes, a Wild-Bootstrap approach is presented. It is shown that the
corresponding intervals and tests are asymptotically exact.

Results: Extensive simulation studies indicate that the derived Wild-Bootstrap approach keeps and exploits the
nominal type-I error at best, even for high accuracies and in case of small samples sizes. The strength of the correlation,
the type of covariance structure, a skewed distribution, and also a moderate imbalanced case-control ratio do not
have any impact on the behavior of the approach. A real data set illustrates the application of the proposed methods.

Conclusion: We recommend the new Wild Bootstrap approach for the selection of biomarkers in early diagnostic
trials, especially for high accuracies and small samples sizes.

Keywords: AUC, Diagnostic study, Resampling, Simultaneous intervals, Wild bootstrap

Background
The aim of early diagnostic trials, particularly of
biomarker studies, is often to select the most promising
markers from a candidate set. For convenience, all differ-
ent kinds of diagnostic tests, e.g., imaging techniques or
biomarkers, will be denoted by diagnostic tests through-
out the paper. In these studies, response variables are
often not binary, but measured on a continuous, discrete
or even ordinal scale and a cut-off value c has not yet
been chosen. Therefore, the sensitivity (i.e. true positive
proportion) and the specificity (true negative proportion)
both being computed based on c cannot be used as selec-
tion criteria. In contrast, the Receiver Operating Char-
acteristic (ROC) curve illustrates the overall diagnostic
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performance because it is independent of the chosen cut-
off values (see, e.g., DeLong, DeLong and Clark-Pearson
[1]). Because the ROC curve of a diagnostic test is invari-
ant with respect to any monotone transformation of the
test measurement scale, it is an adequate measure for
comparing diagnostic tests being measured even on dif-
ferent scales. The Area Under the ROC-curve (AUC) rep-
resents an accuracy measure which is independent from
the selected cut-off value c and which is invariant under
any monotone transformation of the data. Therefore, it
is an appropriate selection criterion for promising diag-
nostic tests, and in particular Xia et al. [2] (p. 286) state
in their tutorial about translational biomarker discovery
in clinical metabolomics that the “AUC is widely used
for performance comparison across different biomarker
models”.
As an example for the evaluation of different biomarkers

we consider the ICM trial by Derichs et al. [3], which aims
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to evaluate the diagnostic accuracy of intestinal current
measurement (ICM) with regard to questionable cystic
fibrosis (CF). This study was conducted with the approval
of the local ethics committee, MH Hannover, Germany
and all patients and/or parents and healthy controls gave
their written informed consent. In this trial, a total of
N = 67 children and adults were enrolled. The true
disease state of the patients was defined by a compos-
ite gold standard, which consists of typical CF symptoms
plus either a positive sweat test and/or gene mutations. By
this definition 26 patients were classified into CF (referred
to as cases) and 41 into ‘CF unlikely’ (referred to as
controls). Furthermore, four biomarkers were considered:
�Isc,carbachol, �Isc,cAMP/forskolin, and �Isc,histamine (abbrevi-
ated by �Icarb, �IcAMP , and �Ihista) as well as the sum of
the three measured values, �Isum. Boxplots of the data are
displayed in Figure 1.
In the ROC-curves in Figure 2 the corresponding esti-

mated AUC’s are added. It can be readily seen that the
diagnostic accuracy of �Icarb, �IcAMP , and �Ihista is quite
good, and that �Isum perfectly differentiates the cases and
the controls.
Thus, the remaining question is which biomarkers have

sufficient diagnostic accuracy. There is no consensus
about the threshold for sufficent diagnostic accuracy. Xia
et al. [2] characterize a biomarker with an AUC < 0.7 as
a quite “weak” biomarker. In their study about a blood-
based biomarker panel for stratifying current risk for

colorectal cancer Marshall et al. [4] accept a candidate
model with an AUC > 0.75 as a predictive model. In con-
trast, Broadhurst and Kell [5] refer to an AUC > 0.9 as
excellent and to an AUC > 0.8 as good. Depending on
previous knowledge or expectations a threshold for the
AUC as indicator for sufficient diagnostic accuracy should
be chosen during the planning of the trial.
Note that the aim of such trials is not to test multi-

ple hypotheses formulated in terms of AUC differences
across the biomarkers, but to verify sufficient diagnostic
accuracy for all biomarkers individually. Then comparing
the lower limit of the confidence interval for the esti-
mated AUC with this threshold indicates whether or not
the diagnostic test has sufficient diagnostic accuracy. The
“Guideline on the choice of the non-inferiority margin”
of the European Medicines Agency [6] recommends to
demonstrate non-inferiority by use of two-sided 95% or
one-sided 97.5% confidence intervals.
If several diagnostic tests are evaluated in the same trial,

it is important to adjust the confidence intervals for mul-
tiplicity. Otherwise there is a high risk that the accuracy
of some diagnostic tests is overestimated. Xia et al. [2]
(p.288) point out that “The probability of finding a random
association between a given metabolite and the outcome
increases with the total number of comparisons”. Further-
more they note that the Bonferroni correction is a simple
but very conservative method. If the diagnostic tests are
repeatedly measured on the same subjects, hence, these

Figure 1 Boxplots of the biomarkers. Boxplot of the four biomarkers in the example, separately for cases and controls.
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Figure 2 ROC-curves of the biomarkers. ROC-curves of the four biomarkers in the example and corresponding AUC’s in the legend.

measurements are correlated in general. Therefore it is
of highly practical importance to take into account these
correlations in the estimation of the diagnostic accuracy.
The multiplicity expert group of the ‘Statisticians in the

Pharmaceutical Industry’ [7] (p.258) states that “The par-
ticipants did, however, agree that for non-inferiority and
equivalence trials, compatible simultaneous CIs for the
primary endpoint(s) should be presented in all cases”. Fur-
thermore Strassburger and Bretz [8] recommend the use
of single-step procedures if the aim is not to reject as many
hypotheses as possible. Therefore we will confine our-
selves to simultaneous confidence intervals from single-
step procedures which are compatible with the results
obtained by hypotheses tests. Among others, Hothorn
et al. [9] proposed parametric simultaneous confidence
intervals, which correspond to multiple contrast tests.
However, since these parametric approaches are limited
to normally distributed data, Konietschke et al. [10] pro-
posed nonparametric multiple contrast tests and com-
patible asymptotic simultaneous confidence intervals for
relative treatment effects for independent samples (based

on some theoretical results developed by Brunner et al.
[11]). In the particular case of two samples (cases and
controls) the relative treatment effect is equivalent to the
AUC (see Bamber [12]). In this article we will use this
approach in the framework of diagnostic studies, but for
paired samples in a multivariate layout.
The challenge in early diagnostic trials is often that

smaller sample sizes and higher AUC’s occur. For example
in the systematic review of 10 studies about the diagnostic
accuracy of pleural fluid NT-pro-BNP for pleural effu-
sions of cardiac origin, performed by Janda and Swiston
[13], the median total sample size was 104 (mean 112),
and the pooled AUCwas 98%.Wang et al. [14] reported in
another systematic review about cardiac testing for coro-
nary artery disease in potential kidney transplant recipi-
ents AUC’s between 0.78 and 0.92. Kottas et al. [15] found
that the Logit tranformation based confidence interval
for a single AUC leads to slightly conservative results
for small sample sizes. Here we suggest Wild Bootstrap
based simultaneous confidence intervals to obtain robust
methods for small sample sizes and potentially quite large
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AUC’s. Hereby, we generalize the method proposed by
Arlot et al. [16] for multivarite high-dimensional normal
data.
In this article nonparametric simultaneous confidence

intervals for multiple AUC’s in diagnostic studies are pre-
sented. Asymptotic intervals will be derived as well as
intervals using the Wild Bootstrap approach. The proper-
ties of these simultaneous intervals are investigated in a
simulation study regarding the type-I error rate and the
statistical power. Furthermore, the results of all intervals
are given for the example data set presented before in
this section. In the next section we present the methods,
including the statistical model with the corresponding
hypotheses, and the point estimators with their asymp-
totic distribution. Furthermoremultiple contrast tests and
corresponding simultaneous confidence intervals (with or
without Logit transformation) are derived, and the Wild
Bootstrap approach is presented (in particular for small
sample sizes). The results of a simulation study includ-
ing robustness evaluations, and the application of the
methods to the example presented above are given in the
Results section. Finally, all results are summarized and
discussed, and a recommendation is given.

Methods
Statistical model and hypotheses
We consider a within-subject multi-modality diagnos-
tic trial given by independent and identically distributed
random vectors

Xis =
(
X(1)
is , . . . ,X(d)

is

)′ ∼ Fi, i = 0, 1(control, case);

subject s = 1, . . . , ni,
(1)

with marginal distributions

X(�)
is ∼ F(�)

is , � = 1, . . . , d, (2)

where d denotes the number of diagnostic tests. The par-
tition of the data in cases (i = 1) or controls (i =
0) is based on the gold or reference standard, which
is assumed to represent the true disease status of the
subjects. In order to allow for continuous, discrete or
even ordered categorical data in a unified way, we use
the normalized version of the marginal distribution func-
tions, i.e., F(�)

i (x) = 1
2

(
F(+,�)
i (x) + F(−,�)

i (x)
)
, where

F(+,�)
i (x) = P

(
X(�)
i1 ≤ x

)
denotes the right-continuous

and F(−,�)
i (x) = P

(
X(�)
i1 < x

)
denotes the left-continuous

version of the distribution function respectively. In the
context of nonparametric models, the normalized ver-
sion of the distribution function was first mentioned by
Kruskal [17] and generally dates back to Lévy [18]. Later
on, it was used by Ruymgaart [19], Munzel [20], Brunner
and Puri [21], Kaufmann et al. [22], among others, to
derive asymptotic results for rank statistics including the

case of ties. We note that F(�)
i (x) may be arbitrary distri-

bution functions, with the exception of the trivial case that
both distributions are one-point distributions (see Lange
and Brunner [23]).
The within-subject design given in (1), which means

that all diagnostic tests are performed in each individual,
is recommended in the EMA guideline about diagnostic
agents [24] and refers to Design 1 in Brunner and Zapf
[25].
For each of the d diagnostic tests the true AUC is given

by

AUC(�) = P(X(�)
01 < X(�)

11 ) + 0.5 · P(X(�)
01 = X(�)

11 )

=
∫

F(�)
0 dF(�)

1 , � = 1, . . . , d.
(3)

For a convenient derivation of asymptotic results, the
AUC’s are collected in the vector AUC = (

AUC(1), . . . ,
AUC(d)

)′.
In order to select the most promising diagnostic tests

from the candidate set of the d different methods, it is our
aim to test the non-inferiority null hypotheses

H0 :
d⋂

�=1

{
H(�)
0 : AUC(�) ≤ AUC0

}
versus

H1 :
d⋃

�=1

{
H(�)
1 : AUC(�) > AUC0

} (4)

with strong control of the familywise error rate (FWER)
α simultaneously. The non-inferiority margin AUC0 is
assumed to have been fixed during the planning phase of
the trial. Thus, the set of promising diagnostic tests con-
sists of all markers, whose corresponding AUC(�) have
been declared to be larger than AUC0 by an adequate
multiple testing procedure.

Point estimators and asymptotic distribution
Unbiased and L2-consistent point estimators for the
AUC’s defined in (3) are derived by replacing the unknown
distribution functions F(�)

0 and F(�)
1 by their empirical

counterparts

F̂(�)
i (x) = 1

ni

ni∑
s=1

c(x − X(�)
is ), i = 0, 1; � = 1, . . . , d,

where c(x) denotes the normalized version of the count
function, i.e. c(x) ∈ {0, 12 , 1} corresponding to {x < 0, x =
0, x > 0}, respectively. The point estimator

ÂUC
(�) =

∫
F̂(�)
0 dF̂(�)

1 = 1
N

(
R(�)

1. − R(�)

0.

)
+ 1

2
(5)

can easily be computed using the means R(�)

i. =
n−1
i

∑ni
s=1 R

(�)
is of the (mid-) ranks R(�)

is , i = 0, 1. Here,
R(�)
is denotes the rank of X(�)

is among all N = n0 +



Zapf et al. BMCMedical ResearchMethodology  (2015) 15:43 Page 5 of 13

n1 observations X(�)
01 , . . . ,X

(�)
0n0 , X

(�)
11 , . . . ,X

(�)
1n1 per marker

� = 1, . . . , d. Further let Ris =
(
R(1)
is , . . . ,R(d)

is

)′

denote the vectors of the midranks and let ÂUC =(
ÂUC

(1)
, . . . , ÂUC

(d)
)′

denote the vector of the point
estimators.
Brunner et al. [11] have shown that the vector√
N(ÂUC − AUC) follows, asymptotically, as N → ∞,

a multivariate normal distribution with expectation 0 and
covariance matrix

VN = Cov(
√
NB), (6)

where B = (
B(1), . . . ,B(d)

)′ denotes a random vector the
components of which are sums of independent random
variables

B(�) = 1
n1

n1∑
s=1

F(�)
0 (X(�)

1s ) − 1
n0

n0∑
s=1

F(�)
1 (X(�)

0s ) + 1 − 2 · AUC(�).

(7)

The covariance matrix VN with elements v(�,m), how-
ever, is unknown and has to be estimated. Let R(i|�)

is denote
the so-called internal rank of X(�)

is among all ni obser-
vations X(�)

i1 , . . . ,X(�)
ini for the diagnostic test � in disease

status group i, and letR(i)
is =

(
R(i|1)
is , . . . ,R(i|d)

is

)′
denote the

vectors of these internal ranks. Furthermore, let

Zis = 1
N − ni

(
Ris − R(i)

is

)
(8)

denote the vectors of the normed placements

F̂(�)
0 (X(�)

1s ) = 1
n0

(
R(�)
1s − R(1|�)

1s

)
and

F̂(�)
1 (X(�)

0s ) = 1
n1

(
R(�)
0s − R(0|�)

0s

)
,

respectively. Then a consistent estimator of the covariance
matrix is given by V̂N = N

(
V̂N ,0/n0 + V̂N ,1/n1

)
, where

V̂N ,i = 1
ni − 1

ni∑
s=1

(
Zis − Zi.

) (
Zis − Zi.

)′ , i = 0, 1. (9)

Here,Zi· = 1
ni
∑ni

s=1 Zis denotes the vector of means of the
normed placements. For more details we refer to Brunner
et al. [11] and Kaufmann et al. [22].

Test statistics and confidence intervals
In order to test the null hypotheses formulated in (4), we
first need to derive an univariate test statistic for testing
the individual null hypothesis H(�)

0 : AUC(�) ≤ AUC0.
It follows from the asymptotic multivariate normality of
the vector

√
N(ÂUC−AUC) that

√
N(ÂUC

(�) −AUC(�))

has, asymptotically as N → ∞, a univariate normal dis-
tribution with mean 0 and variance v(�,�), i.e. N(0, v(�,�)).

Here, v(�,�) denotes the �-th diagonal element of VN in (6).
Hence, by Slutzky’s theorem, it follows that

T (�) =
(
ÂUC

(�) − AUC(�)

)√
N

v̂(�,�)
D→ N(0, 1), as N → ∞,

(10)

where v̂(�,�) denotes the diagonal elements of V̂N ,
defined in (9). In particular, each statistic is studen-
tized with an individual consistent variance estima-
tor and thus, the set of hypotheses and test statistics
� =

{(
H(�)
0 ,T (�)

)
, � = 1, . . . , d

}
constitutes a joint-

testing family in the sense of Gabriel [26]. Attention
should be paid to the fact that the estimated variance v̂(�,�)

is equal to zero if ÂUC
(�) = 0 or 1. Thus, the test statis-

tic T (�) can not be computed. One possibility to solve this
problem is to modify the data slightly (see the analysis of
the example in the Results section).
A quite conservative selection approach can be derived

by applying the Bonferroni method (denoted as ‘Bonf ’),
i.e., the individual null hypothesis H(�)

0 : AUC(�) ≤ AUC0
will be rejected at multiple level α, if T (�) ≤ z1−α/d,1,
where z1−α/d,1 denotes the one-sided (1 − α/d)-quantile
of the standard normal distribution. Asymptotic one-
sided simultaneous confidence intervals for the treatment
effects AUC(�) are then given by

CI(�)Bonf =
[
ÂUC

(�) − z1−α/d,1

√
v̂(�,�)
N ; 1

]
. (11)

The global null hypothesis H0 : AUC ≤
AUC0 · 1 as defined in (4) will be rejected, if
max{T (1), . . . ,T (d)} > z1−α/d,1 or, equivalently, if the
maximum of the lower limits of the confidence intervals
max{CI(1)Bonf ,l, . . . ,CI

(d)

Bonf ,l} > AUC0. Here 1 = (1, . . . , 1)′
denotes a d-dimensional vector of 1s. The Bonfer-
roni method is, however, a quite conservative selection
approach (see Results section for more details). The rea-
son for this is that the apparent correlations among the
different pivotal quantitites T (1), . . . ,T (d) are not taken
into account by this method.

Multiple contrast tests and simultaneous confidence intervals
In order to use the correlation in the selection approach,
it is our idea to apply the multiple contrast test principle
(denoted by MCP), which uses the correlation among dif-
ferent test statistics. The key point of these procedures is
to use the joint distribution of a set of statistics to adjust
for multiplicity. Thus, the asymptotic multivariate distri-
bution of the vector T = (

T (1), . . . ,T (d)
)′ is required. The

details are stated in the next theorem.

Theorem 1. Under the assumption that N → ∞ such
that N/ni ≤ N0 < ∞, i = 0, 1, the vector T fol-
lows, asymptotically, a multivariate normal distribution
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with expectation 0 and correlation matrix R, where R =
[ r(�,m)]�,m=1...,d, and r(�,m) = v(�,m)√

v(�,�)v(m,m)
.

The joint distribution ofT can be used for the derivation
of a simultaneous test procedure. Let z1−α,1(R) denote the
one-sided (1−α) equicoordinate quantile of themultivari-
ate normal distribution with expectation 0 and correlation
matrix R, i.e., N(0,R), that is

P

⎛⎝ d⋂
�=1

{
T (�) ≤ z1−α,1(R)

}⎞⎠ = 1 − α.

For details see Bretz et al. [27]. Then, the individual
null hypothesis H(�)

0 AUC(�) ≤ AUC0 will be rejected at
multiple level α, if

T (�) ≥ z1−α,1(R). (12)

Asymptotic one-sided simultaneous confidence inter-
vals for AUC(�) are given by

CI(�)MCP =
[
ÂUC

(�) − z1−α,1(R)

√
v̂(�,�)
N ; 1

]
. (13)

The global null hypothesis will be rejected if
max{T (1), . . . ,T (d)} > z1−α,1(R) or if max{CI(1)MCP,l, . . . ,
CI(d)

MCP,l} > AUC0. The correlation matrix R, however, is
unknown and must be replaced by a consistent estimator
R̂. We propose to replace R by R̂ in the considerations
above, where R̂ =[ r̂(�,m)]�,m=1,...,d and r̂(�,m) = v̂(�,m)√̂

v(�,�)̂v(m,m)
,

respectively.

Simulation studies indicate, however, that the speed
of convergence of T to a multivariate normal distribu-
tion is quite slow, particularly when smaller sample sizes
and larger numbers of diagnostic tests are considered. In
a variety of applications, see e.g. Zou and Yue [28] or
Konietschke et al. [10], it turns out that the use of adequate
transformations (e.g., the Logit-transformation) tend to
increase the speed of convergence. Therefore, simultane-
ous confidence intervals with Logit transformation will be
derived in the next section.

Multiple contrast tests and simultaneous confidence intervals
with Logit transformation
To derive simultaneous Logit-transformed confidence
intervals let

g(AUC) = (
g(AUC(1)), . . . , g(AUC(d))

)
: (0, 1)d → Rd,

denote the vector of Logit-transformed AUC’s, where

g(AUC(�)) = log
(

AUC(�)

1−AUC(�)

)
.

Furthermore, let

� = diag
(

1
AUC(1)(1 − AUC(1))

, . . . ,
1

AUC(d)(1 − AUC(d))

)

denote the diagonal Jacobianmatrix of g(AUC). Under the
additional assumption that N → ∞ such that N/ni → fi,
it follows from Cramer’s multivariate δ-theorem (see, e.g.,
Ferguson [29], Theorem 7.4) that

√
N

(
g
(
ÂUC

)
− g (AUC)

) D→ N (0, SN ) (14)

where SN = �VN� ′ and VN is given in (6). To estimate
the asymptotic covariance matrix SN , let

�̂ = diag
(

1

ÂUC
(1)

(1 − ÂUC
(1)

)

, . . . ,
1

ÂUC
(d)

(1 − ÂUC
(d)

)

)

denote the estimated Jacobian matrix of g(AUC) and note
that the estimator ŜN = �̂V̂N �̂ is a consistent estimator
of SN . Again there is a problem if ÂUC

(�) = 0 or 1. Here,
�̂ and in turn ŜN cannot be calculated. This problem is
addressed in the analysis of the example in the Results
section. To test the individual hypothesis H(�)

0 : AUC(�) ≤
AUC0 define the pivotal quantities

T̃ (�) =
(
g(ÂUC

(�)
) − g(AUC(�))

)√
N

ŝ(�,�)
D→ N(0, 1),

N → ∞, � = 1, . . . , d,
(15)

where ŝ(�,�) denotes the �-th diagonal element of ŜN . The
joint distribution of the vector T̃ = (T̃ (1), . . . , T̃ (d))′ is
given in the next theorem.

Theorem 2. If N → ∞ such that N/ni → fi < ∞,
then the vector T̃=(T̃ (1), . . . , T̃ (d))′ follows, asymptotically,
a multivariate normal distribution with expectation 0 and
correlation matrix R, where R is given in Theorem 1.

It follows from Theorem 2 that both the vectors T
and T̃ have, asymptotically, as N → ∞, the same joint
distribution. Both the correlation matrices of T and T̃
asymptotically coincide due to the diagonal structure of
� . Now, a simultaneous test procedure, which takes the
correlation into account can be derived.
The individual null hypothesisH(�)

0 : AUC(�) ≤ AUC0 will
be rejected at multiple level α, if

T̃ (�) ≥ z1−α,1(R̂), (16)

where z1−α,1(R̂) denotes the one-sided equicoordinate
quantile of the corresponding multivariate normal distri-
bution where the correlation matrix R is replaced with
the consistent estimator R̂. One-sided simultaneous con-
fidence intervals for AUC(�) are then given by

CI(�)Logit =
⎡⎣expit

⎛⎝g
(
ÂUC

(�)
)

− z1−α,1(R̂)

√
ŝ(�,�)
N

⎞⎠ , 1

⎤⎦ ,

(17)
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where expit(y) = exp(y)
1+exp(y) denotes the inverse Logit-

transformation. The global null hypothesis H0 : AUC ≤
AUC0 · 1 will be rejected, if max

{
T̃ (1), . . . , T̃ (d)

} ≥
z1−α,1(R̂), or if max{CI(1)Logit,l, . . . ,CI

(d)

Logit,l} > AUC0. Since
the Logit-function is monotone, the procedure asymptoti-
cally controls the familywise error rate in the strong sense
[26].

Small sample approximations with Wild Bootstrap
In the previous section approaches for the selection of
diagnostic tests based on the AUC’s have been derived.
The procedures are based on the asymptotic joint distri-
bution of the vectors T or T̃, respectively. The proposed
approaches for selection of diagnostic tests are valid for
large sample sizes. In order to investigate the accuracies of
the procedures in terms of (i) controlling the pre-assigned
type-I error level under the null hypothesis, (ii) maintain-
ing the nominal coverage probability of the corresponding
simultaneous confidence intervals, and (iii) their powers
to detect certain alternatives, extensive simulation studies
were conducted.
These simulation studies indicate, however, that both

the statisticsT in (12) and T̃ in (15) tend to result in liberal
or conservative decisions in case of smaller sample sizes
(N ≤ 100) and larger AUC (AUC ≥ 0.8). The results are in
concordance with the simulation results proposed for uni-
variate statistics by Kottas et al. [15] or Qin and Hotilovac
[30]. Therefore, we propose a Wild Bootstrap approach to
approximate their sampling distributions for small sample
sizes.
Resampling procedures are widely known to be quite

robust methods, even for small sample sizes. However,
permutation methods cannot be used in this setup, since
the distributions of the test statistics and the resampling
statistics do not coincide, not even asymptotically (Pauly
M, Asendorf T, Konietschke F: Permutation tests and
confidence intervals for the area under the ROC curve,
submitted). Simulation studies indicate that the use of
the conventional Bootstrap from Efron [31] results in lib-
eral conclusions, particularly when confronted with an
AUC ≥ 0.7 (see Table 1). Therefore, we did not fur-
ther investigate the conventional Bootstrap. In contrast,
the Wild Bootstrap approach ensures that the resampling
distribution of the statistics mimics the distribution of T

Table 1 Empirical type-I error (theoretical 2.5%) of the
normal Bootstrap for d = 5 andN = 50with varying
case-control-ratio and varying AUC

ccr
AUC

0.5 0.6 0.7 0.8 0.9

1 : 1 1.68% 2.28% 3.10% 5.00% 7.80%

1 : 4 1.90% 2.96% 4.70% 6.40% 12.10%

and T̃, asymptotically. The Wild Bootstrap technique is
motivated by the residual bootstrap commonly applied
in regression analysis [32-35], and in time-series test-
ing problems [36-38]. It is also proposed in the context
of survival analysis [39-42], and will be explained in the
following.
Let (

W01, . . . ,W0n0 ,W11, . . . ,W1n1
)

(18)

denote independent and identically distributed random
weights with E(Wis) = 0 and Var(Wis) = 1, which
are independent of the data. We will investigate three
different kinds of random weights Wis in our extensive
simulation study:

• Rademacher weights:
P(Wis = 1) = P(Wis = −1) = 1

2 .• Standard normal weights:W01, . . . ,W1n1 ∼ N(0, 1).
• Uniform weights:W01, . . . ,W1n1 ∼ U

[
−

√
12
2 ,

√
12
2

]
.

Let

Z∗
is = Wis · (Zis − Zi·

)
=

(
Wis ·

(
Z(1)
is − Z(1)

i·
)
, . . . ,Wis ·

(
Z(d)
is − Z(d)

i·
))

,

i = 0, 1, s = 1, . . . , ni,

(19)

denote N resampling vectors, where Zis is given
in (8). Furthermore, let Z∗

i· = n−1
i

∑ni
k=1 Z

∗
is =(

Z∗(1)
i· , . . . ,Z∗(d)

i·
)′

denote their means and let

v̂ ∗(�,�)
i = 1

ni − 1

ni∑
s=1

(
Z∗(�)
is − Z∗(�)

i·
)2

denote the empirical variance of Z∗(�)
i1 , . . . ,Z∗(�)

ini , � =
1, . . . , d. In the next theorem it will be shown that the
conditional resampling distribution of the vector

T∗ =
(
T∗(1), . . . ,T∗(d)

)′
, where

T∗(�) = √
N

Z∗(�)

1· − Z∗(�)

0·√̂
v ∗(�,�)
1 /n0 + v̂ ∗(�,�)

0 /n1
,

(20)

mimics the distribution of both the vectors T and T̃,
asymptotically.

Theorem 3. If N → ∞ such that N
ni converges to some

finite constant fi, then the conditional distribution of T∗
given the data X converges in probability to the multivari-
ate normal distribution with expectation 0 and correlation
matrix R.
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For proof see Additional file 1. Note that Theorem 3
is valid under the null as well as under the alterna-
tive, i.e., the resampling distribution mimics the distri-
butions of T and T̃ for arbitrary values of AUC =(
AUC(1), . . . ,AUC(d)

)′. Next we will explain the computa-
tion of the simultaneous confidence intervals:

1. Given the data X, compute the point estimators
ÂUC and V̂N as given in (5) and (9), respectively.

2. Generate N = n0 + n1 random weights
W01, . . . ,W1n1 as described in (18)

3. Compute A∗
j := max{T∗(1), . . . ,T∗(d)} as given in

(20).
4. Repeat the steps 2. - 3. nboot times (e.g.

nboot = 10, 000) and obtain the values
A∗
1, . . . ,A∗

nboot .
5a. Compare each A∗

j withmax
{
T̃
}
. Then the individual

p-value for H(�)
0 : AUC(�) ≤ AUC0 is obtained from

1
nboot

∑nboot
j=1 I{T̃ (�) ≥ A∗

j }, where I{·} denotes the
indicator function.

5b. Estimate the quantile z1−α,1(R) by the one-sided
(1 − α)-quantile z∗1−α,1 of A∗

1, . . . ,A∗
nboot to obtain

the one-sided (1 − α) simultaneous confidence
intervals given by

CI∗(�)
WB =

⎡⎣expit
⎛⎝g

(
ÂUC

(�)
)

− z∗1−α,1

√
ŝ(�,�)
N

⎞⎠ , 1

⎤⎦ . (21)

Results
Simulation results
We performed a simulation study to investigate the prop-
erties of the different approaches. All simulations were
conducted with R environment, version 2.15.2. (R Devel-
opment Core Team, 2010), each with 5, 000 simulation
runs and 5, 000 bootstrap repetitions. The nominal type-
I error was set to 2.5% one-sided and the global null
hypothesis according to (4) was rejected, if at least one
of the one-sided p-values was smaller than α = 2.5%.
This means, the family wise error rate in the strong sense
(FWER) is controlled, and the one-sided empirical type-
I error should be closed to 2.5%. It is also possible to use
the corresponding confidence intervals for decision. Then
the global null hypothesis is rejected if the lower limit of
at least one confidence interval was above AUC0.
We generatedmultivariate normally distributed random

vectors with compound symmetric correlation structure
and defined the following scenario as standard scenario: a
total sample size N = 100 with a case-control ratio (ccr)
of 1 : 1, d = 5 diagnostic tests and a correlation of ρ = 0.9
between the tests (motivated by [2,13,24]; and the example
data set). The different parameters and conditions were
varied afterwards as follows:

• The true AUC (0.5,. . . , 0.9)
• The number of diagnostic tests d (5, 10, 20)
• The total sample size N (50, 100, 200)
• The case-control ratio ccr (1:1, 1:2, 1:4, 1:9)
• The true correlation between the diagnostic tests ρ

(0.3, 0.6, 0.9)
• The covariance structure in the data (compound

symmetry, unstructured, and diagonal matrix with
heterogeneous variances and positive or negative
pairing)

• The distribution of the data (normal, skewed =
log-normal, ordinal)

The different parameter constellations and all
simulation results can be seen in the Additional file
2. Due to computational complexity, and its weak
behavior in standard situations, we did not further
investigate the conventional Bootstrap in our simulation
study.
In a first step, this standard scenario was used for

the comparison of the three random weights for the
Wild Bootstrap: Rademacher (WB-Rade), standard nor-
mal (WB-Normal) and uniform (WB-Unif ) weights. The
results are displayed in the Additional file 3. For an AUC
of 0.5 the three weights lead to nearly the same empir-
ical type-I error and are quite conservative (empirical
α ≈ 0.015). For larger AUC’s the results are less con-
servative and for AUC’s above 0.8 the empirical type-I
error is around 2.5%. The Wild Bootstrap approach with
uniform weights is, however, more conservative, while
the standard normal and the Rademacher weights lead
nearly to the same results. Therefore, and to present the
simulation results more clearly, we only consider the stan-
dard normal weights in the following. The simulation
results for the other weights are provided in the Additional
file 2.
In practice often unadjusted (with the local type-I error

α0 equal to the global type-I error α) or Bonferroni
adjusted confidence intervals for the single AUC’s are
used (see for example Shiotani et al. [43]). Therefore,
in a second step, we compared these approaches (again
for the standard scenario) using the multiple contrast
test (‘MCP’), the simultaneous Logit (‘Logit’) and the
Wild Bootstrap (‘WB-Normal’) approach. In Figure 3 it
becomes apparent that unadjusted intervals (‘Unadj’) lead
to highly liberal conclusions (empirical type-I error 8 −
9%), while the Bonferroni correction (‘Bonf ’) is too con-
servative (1.1−1.5%). Therefore we will not consider these
approaches in the sequel. The MCP approach keeps the
type-I error for an AUC of 0.5, but becomes more and
more liberal for larger AUC’s (up to 14% for AUC = 0.9).
The empirical type I error of the Logit and the WB-
Normal approach is comparable and between 1.5% and
2.9%. In the following we will investigate the influence of
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Figure 3 Empirical type-I error for varying AUC’s. Empirical type-I error of the different approaches for the standard scenario (see text) with varying
AUC’s.

the different parameter settings on the type-I error of the
Logit and theWB-Normal approach, and also of the MCP
approach as the basis of both the approaches (despite of
its liberal behavior).
The strength of the correlation, the type of the covari-

ance structure and a skewed distribution do not have any
impact on the behavior of the test (see figures and tables
in the Additional files 2, 4, 5, and 6).
The impact of the sample size N and the number of

diagnostic tests d is shown in Figure 4. As expected,
for a larger sample size and a small number of diagnos-
tic tests the type-I error is better exploited. As already
seen in Figure 3 the Logit and the WB-Normal approach
are comparable if AUC ≤ 0.8 (independent of N and
d). For larger AUC’s, the WB-Normal approach leads to
a larger empirical type-I error. On the one hand, this
means that α is better exploited, on the other hand, this
means that the results are liberal. The empirical type-I
error of the Logit approach for AUC = 0.9 ranges from
1.3% to 2.1%, and of the WB-Normal approach from 2.2%
to 2.9%.
If the case-control ratio (ccr) is not balanced, the empir-

ical type-I error increases with increasing imbalance (see
Figure 5). For an AUC of 0.8 or smaller both approaches
are robust to an imbalance up to 1 : 4. For AUC = 0.9 the
liberality of the WB-Normal approach is a disadvantage

here, the empirical type-I error is above 2.5%. For a case-
control ratio of 1 : 9, both approaches are far too liberal.
Ordinal data was generated using discretised normal

distributions with a given AUC. For this data, represent-
ing a 5-point grading scale, the empirical type-I error
decreases with increasing AUC (AUC = 0.5: Logit
= 2.3%, WB-Normal = 2.2% to AUC = 0.9: Logit =
1.7%, WB-Normal = 1.6%). For details see Additional
file 2.
The power was calculated for one example scenario

(N = 200, d = 5, ccr = 1 : 1, ρ = 0.9, AUC0 = 0.7),
where the empirical type-I error of the Logit and of the
WB-Normal approach was nearly the same. The true AUC
is increasing from 0.7 (which is equal to AUC0) to 0.85,
according �AUC = 0, . . . , 0.15. The power of the two
approaches is basically the same. For an �AUC of 0.1 (i.e.
AUC = 0.8 vs. AUC0 = 0.7) the power is greater than 80%
(see Additional file 2).

Results for the analysis of the example
The point estimators for the AUC’s are presented in the
Background section in Figure 2. The number of 26 cases
and 41 controls correspond to a case-control ratio of 1 :
1.6. The Spearman correlation coefficients between the
biomarkers range from 0.64 to 0.95. For �Isum the result
was AUC=1. Because logit(1) = ∞, we modified the
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Figure 4 Empirical type-I error for varying N and d. Empirical type-I error of the MCP, the Logit and the WB-Normal approach for varying sample size
and number of diagnostic tests.

Figure 5 Empirical type-I error for varying ccr. Empirical type-I error
of the MCP, the Logit and the WB-Normal approach for varying
case-control ratios.

data for �Isum such that we replaced the largest measure-
ment of the controls with the smallest measurement of
the cases. This minimal change leads to a point estima-
tor for the AUC of 0.9999, and enables us to calculate the
confidence intervals. This replacement strategy is conser-
vative, since the effect is decreased, and the variance is
increased. The one-sided 97.5% confidence intervals for
all biomarkers using the MCP, the Logit, and the Wild
Bootstrap approach are displayed in Figure 6. The results
of the Wild Bootstrap with the three different weights dif-
fered just in the third decimal place. For consistency we
displayed the WB-Normal approach here. The pattern of
the results is the same for all four biomarkers. Accord-
ing to the simulation results, the MCP intervals are the
shortest, the Logit intervals are the broadest, and the WB
intervals are in between.
In the article of Derichs et al. [3] no threshold is defined.

In Figure 6 four possible thresholds (0.8,0.85,0.9,0.95) are
marked by solid horizontal lines. In Table 2 for each
of these thresholds the numbers of selected biomarkers,
depending on the individual approach, are listed. Appar-
ently, the Logit approach is a more conservative selection
criterion than theWild Bootstrap approach. Although the
MCP intervals are clearly shorter than theWild Bootstrap
intervals, the number of selected biomarkers is the same



Zapf et al. BMCMedical ResearchMethodology  (2015) 15:43 Page 11 of 13

Figure 6 Confidence intervals for the biomarkers. One-sided 97.5% confidence intervals for the four biomarkers using the MCP, the Logit, and the
WB-Normal approach.

for the MCP and the WB approach for three thresholds.
Only for the threshold of 0.85 the MCP approach would
select one biomarker more. Considering the simulation
results of this section we would recommend to use the
WB-Normal approach.

Discussion
It is widely discussed in the literature, whether the type-
I error should be adjusted for multiplicity and whether
the Bonferroni correction is an appropriate approach.
Among many others, Wittes [44] states that lack of adjust-
ment can lead to a misinterpretation of the study results
as well as Bonferroni adjustment can do. Furthermore

Table 2 Number of selected biomarkers of theMCP, the
Logit, and theWB-Normal approach for different
thresholds (based on one-sided 97.5% confidence
intervals)

Threshold MCP Logit WB-Normal

0.8 4 3 4

0.85 4 3 3

0.9 3 2 3

0.95 2 1 2

Perneger [45] states that “In summary, Bonferroni adjust-
ments have, at best, limited applications in biomedical
research, and should not be used when assessing evidence
about specific hypotheses”. Nevertheless, in practice often
Bonferroni adjusted or even unadjusted confidence inter-
vals for the single AUC’s are used (see for example [43]).
Konietschke et al. [10] proposed nonparametric multiple
contrast tests and simultaneous confidence intervals for
adequate correction of the type-I error, which take the
dependencies within the data into account. Furthermore
the authors recommended the transformation method
(for example the Logit-transformation) to get less liberal
results. However, Qin and Hotilovac [30] noticed that
the Logit-transformed intervals are conservative for high
accuracies. The reason is that the estimator logit(ÂUC) is
quite unstable if ÂUC is close to 0 or 1 because of a possi-
bly larger variance. Obuchowski and Lieber [46] compared
different confidence intervals for the AUC and concluded
that for small sample sizes none of them provides ade-
quate coverage for high accuracies.

Conclusion
In this article we derived a Wild Bootstrap approach,
which exploits the type-I error much better than the
Logit-approach, even for high accuracies and small
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samples. Neither the strength of correlation, nor the struc-
ture of the covariance matrix, nor a skewed distribution,
nor a moderate imbalanced case-control ratio has any
impact on this desirable property of the Wild Bootstrap
approach. Corresponding to these results we recommend
to use the Wild Bootstrap approach with standard nor-
mally distributed weights for the selection of biomark-
ers in early diagnostic trials with the AUC as selection
criterion.
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