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Abstract: DNA methylation is an important regulator of gene expression that can influence tumor
heterogeneity and shows weak and varying expression levels among different genes. Gastric cancer
(GC) is a highly heterogeneous cancer of the digestive system with a high mortality rate worldwide.
The heterogeneous subtypes of GC lead to different prognoses. In this study, we explored the
relationships between DNA methylation and gene expression levels by introducing a sparse low-
rank regression model based on a GC dataset with 375 tumor samples and 32 normal samples
from The Cancer Genome Atlas database. Differences in the DNA methylation levels and sites
were found to be associated with differences in the expressed genes related to GC development.
Overall, 29 methylation-driven genes were found to be related to the GC subtypes, and in the
prognostic model, we explored five prognoses related to the methylation sites. Finally, based on a
low-rank matrix, seven subgroups were identified with different methylation statuses. These specific
classifications based on DNA methylation levels may help to account for heterogeneity and aid in
personalized treatments.

Keywords: low-rank sparse regression model; DNA methylation; prognosis; gene expression;
gastric cancer

1. Introduction

Gastric cancer (GC) is a cancer of the digestive system, and it has a high mortality
rate globally, ranking second among all cancers [1]. In recent years, GC morbidity and
mortality rates have increased because of changes in our diet and environment. Patients
are often diagnosed with GC at an inoperable stage, and recurrence is common after resec-
tion [1]. Tumor heterogeneity allows for early diagnosis and effective treatment of patients
with different types of GC. GC is highly heterogeneous and shows varying sensitivity to
chemotherapy among different clinical subtypes. Therefore, molecular oncology studies of
GC are urgently needed to obtain better prognostic outcomes. GC usually originates from
Helicobacter pylori infection, which may lead to chronic inflammation and consequent
tumorigenesis [2]. In addition, other risk factors have been identified, such as environmen-
tal, genetic, and epigenetic factors [3]. Because of tumor heterogeneity, the same treatment
can result in different prognoses for different GC subtypes. Identification of the genetic
heterogeneity of GC could help clinicians to better understand the mechanism of GC.

The functional heterogeneity of cancer cells within tumors involves weak and varying
genetic expression between cells or different functional cell subpopulations [4], indicat-
ing a more comprehensive understanding of tumor cells. One basic aspect of cancer cell
heterogeneity in the same tumor is the different levels of gene expression, which may be
influenced by many factors, for example, epigenetic changes which include DNA methyla-
tion, non-coding RNA, chromatin remodeling, and histone modifications [3]. Epigenetic

Genes 2021, 12, 854. https://doi.org/10.3390/genes12060854 https://www.mdpi.com/journal/genes

https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0002-6935-6895
https://doi.org/10.3390/genes12060854
https://doi.org/10.3390/genes12060854
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/genes12060854
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes12060854?type=check_update&version=2


Genes 2021, 12, 854 2 of 18

processes can regulate the expression of genes but without DNA sequencing changes and
is inheritable across generations. DNA methylation is a well-characterized epigenetic
modification that plays an important role in carcinogenesis [5,6], and is mediated by DNA
methyltransferase. DNA hypermethylation at promoter regions can silence the expression
of targeted genes [7], further influencing cell cycles, DNA repair, and even the signaling
pathways of tumor development. It plays an important role in promoting cancer [6,8,9].
However, not all CpG sites regulate gene expression. Only hypermethylation of CpG
islands in specific regions inhibits the expression of tumor suppressor genes (TSGs), DNA
repair genes, housekeeping genes, and cell cycle control genes. Currently, exploring the
relationships between gene expression levels and DNA methylation regions based on a
specific tumor is needed for tumor typing and prognosis prediction.

For GC, although several CpG sites are involved in the processes of GC develop-
ment [3], there is a lack of systematic analysis to establish an efficient model that can
provide insights into low gene expression levels in different GC subtypes affected by
specific DNA methylation sites, as well as further help to prioritize disease-associated
methylation sites and contribute to GC heterogeneity. Most abnormal changes, including
methylation or demethylation of specific DNA methylation sites, exist in different GC
TSGs or oncogenes. These changes often occur before tumor formation or development.
Accordingly, if their sites can be accurately confirmed, they can be considered to be early
diagnostic GC markers or predictors for people with a high risk of GC.

In contrast, high concordance in methylation and gene expression predicts tumor
immune infiltration levels [10] and immune-informative CpG sites show significant prog-
nostic value [10]. Therefore, identification of specific CpG sites associated with disease
would allow the prediction of relationships between methylation CpG sites and cancer
prognosis, which would provide a reference for clinical practices of cancer prognosis. One
approach is to determine which aspects of DNA, such as gene expression levels, are affected
by DNA methylation. Naively, such association can be identified using a simple statistical
test on all paired combinations of DNA methylation and gene transcripts.

However, gene expression levels are influenced by many factors, including DNA
methylation, changes in DNA sequence, and other hidden factors, such as cellular state [11],
environmental factors [12], and experimental conditions [13]. The interaction of most epige-
netic variations with genetic variation is diverse. Moreover, a wide variety of confounders
lie hidden in the data, leading to both spurious associations and missed associations if not
properly addressed. An interesting problem is how to distribute the linkage between epi-
genetic and genetic variations. In particular, an association analysis of these RNA-directed
DNA methylation regions with genetic variants could identify the methylation quantitative
trait loci, which are related to GC.

In this study, we introduce an alternative formulation to address these problems. We
make use of sparse regression for RNA-directed DNA methylation mapping and propose a
low-rank representation to account for the DNA sequence changes and other nongenetic
hidden factors. Our methodology is inspired by the following linear mixed model [14]:
y = Xβ + Zµ + e, where y is the vector of data; β is a vector of fixed effects; µ is a vector of
random effects; and X and Z are the model matrices corresponding to β and µ, respectively.
This linear mixed model has been used to model the hidden factors in eQTL mapping
problems [15].

We aimed to establish the relationship between DNA methylation and genetic vari-
ation (here, we focused on gene expression levels) related to GC subtypes. We rewrote
this mixed model because it could be separated passively. We used sparse regression
X1β1 to account for DNA methylation mapping, which was related to differential gene
expression levels. We put the DNA sequence changes and hidden factors related to GC
tumor subtypes, separately, into X2β2 and Zµ. Then, we merged these two parts into one
low-rank matrix representation, L, for the expression heterogeneity (EH). Thereby, the
regression model could be rewritten as follows: y = Xβ + L+ e. Because a low-rank matrix
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can always be written as L=WH, our model can be regarded as an equivalent form of the
linear mixed model.

There are two main advantages of our model as follows: Multiple gene expression
levels and confounder effects can be jointly analyzed in disease-associated DNA methyla-
tion site studies, and the low-rank matrix, L, represents different patients’ sample clusters
according to the confounder effects. Then, we can identify the differentially expressed
genes of the GC subtypes, which also have specific methylation sites.

2. Materials and Methods
2.1. Methods

Let Y be a n× q matrix corresponding to a gene expression dataset where n is the
number of samples and q is the number of genes. Let X be an n× q matrix corresponding
to a DNA methylation dataset, where p is the number of DNA methylation sites. To model
the relationship between Y and X, we propose decomposing Y as follows:

Y = XB + L + e (1)

where B ∈ Rp×q is the coefficient matrix and e ∈ Rn×q is a Gaussian random noise term
with zero mean and variance σ2, i.e., eij ∼ N(0, σ2). Here, we introduce L ∈ Rn×q to
our model to account for the variations caused by EH, including DNA sequence changes
and other hidden nongenetic factors. This model implies that gene expression levels are
influenced by DNA methylation, EH is related to tumor subtypes, and random noise.

To make the decomposition (1) possible, we made the following assumptions:

• There are only a few expression heterogeneous factors related to tumor subtypes that
influence differential gene expression levels. Thus, L is a low-rank matrix. Then, we
can obtain gene clusters according to the matrix L.

• The gene expression level is only affected by a small fraction of DNA methylation
sites. This implies that the coefficient matrix B should be sparse.

On the basis of these assumptions, Formula (1) can be rewritten as per the following
optimization problem:

min
B,L
‖Y−XB−L‖2

F

s.t. rank(L) ≤ r0, ‖B‖1 ≤ t0
(2)

where |B‖1 is the element-wise l1 norm and |W‖2
F =

√
∑ij Wij

2 is the Frobenius norm. To
make this minimization problem a convex surrogate, we relax the rank operator on L with
the nuclear norm, which has been previously proven to be effective [16], as follows:

min
B,L

1
2
‖Y−XB−L||2F + ρ‖B‖1 + λ‖L‖∗ (3)

where ‖L‖∗ is the nuclear norm of L. ρ and λ are regularization parameters that control the
sparsity of B and the rank of L.

Then, we adopted an alternating strategy to solve problem (3).

• For fixed B, the optimization problem becomes:

min
L

1
2
‖Y−XB−L||2F + λ‖L||∗ (4)

The solution of L is Formula (5), according to [16], as follows:

L = Sλ(Y−XB) (5)

where Sλ(W) = UDλVT , with Dλ = diag[(d1 − λ)+, . . . , (dr − λ)+], and UDVT is the
singular value decomposition (SVD) of W, D = diag[d1, . . . , dr], and t+ = max(t, 0).



Genes 2021, 12, 854 4 of 18

• For fixed L, the optimization problem becomes:

min
B

1
2
‖Y−XB−L||2F + ρ‖B||1 (6)

It can be decomposed into q independent Lasso problems [17] as follows:

min
Bj

1
2
‖Yj − XBj − Lj‖2

F + ρ‖Bj‖1, j = 1, . . . , q

where Yj, Lj, and Bj are the jth columns of Y, L, and B. The Lasso problem can be solved
efficiently by the coordinate descent algorithm [15,18].

After the two alternative steps, we selected the top d DNA methylation sites for each
gene (based on the absolute value of the coefficients) and the low-rank matrix L. Then,
we built the methylation prognosis subtypes based on specific methylation sites, and
relationships between the methylation sites and gene expression levels. Meanwhile, the
low-rank matrix L also provided a classification of tumor samples that may indicate the
different GC subtypes caused by different methylation sites and epigenetic levels, which
was defined as EH in our model.

2.2. Synthetic Data

To demonstrate the effectiveness of our model, while avoiding the simulation setup
favoring it, we generated the synthetic data, as in the setup in [19], as follows:

• For the methylation effects, each methylation site is generated independently and
uniformly from a binomial distribution with the probability p = 0.25 denoted by matrix
X with dimension n× p. The coefficient matrix B is a sparse matrix with dimension
p × q, with 2% non-zero entries, which are generated using a standard Gaussian
distribution. Let G denote the methylation effect G = XB.

• EH: The covariance matrix is Σ generated by HHT , with H ∈ Rn×K and Hi,j ∼ N(0, 1).
Here, K is the number of hidden factors. The random variable Lj was drawn from
N(0, τΣ). Let L = [L1, . . . , Lq]

• Let e ∼ N(0, σ2
e I)

Now the synthetic data are:

Y=XB+µ+e=G+µ+e (7)

2.3. Gastric Cancer Data

The GC datasets were downloaded, including the mRNA expression, methylation, and
clinical datasets, from The Cancer Genome Atlas repository (http://portal.gdc.cancer.gov/,
aceessed on 2 June 2021).

3. Results
3.1. Synthetic Results Demonstrated Our Model Benefited High Dimensional Data

We used the synthetic dataset, constructed as described in the Materials and Methods,
to test the performance of our method under different settings, i.e., we varied n, p, and q.
Figure 1 shows the receiver operating characteristic curves of different settings. From the
simulation results, we observed that our method is beneficial with high dimensional data;
is robust with a larger q, which is the dimension of the response variable in the regression
model; that the higher the number of samples, the better the regression results; and if the
number p is larger than q and n, this may result in overfitting.

http://portal.gdc.cancer.gov/
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Figure 1. ROC curves of different parameters.

3.2. Gastric Cancer Transcription and Methylation Datasets Filtration

We downloaded the gastric cancer dataset from The Cancer Genome Atlas repository
(http://portal.gdc.cancer.gov/, aceessed on 2 June 2021). There were 407 patients with
375 tumor samples and 32 normal samples with 56,753 gene expression profiles for each
sample in this gastric cancer dataset and 469 patients with 443 tumor samples and 27 normal
patients with 19,755 DNA CpG sites. First, in more than 70% of the samples, we deleted the
methylation sites that had missing values; these were located in the second chromosome,
and CpGs from above 2 kb upstream to 0.5 kb downstream (gene promoter regions). The
clinical samples were also filtered if the follow-up duration was less than 30 days, or there
were no follow-up data. Then, we took the intersection of samples based on the mRNA
expression and methylation datasets to use in our model. There were 378 patients with
351 tumor samples and 27 normal patients. Furthermore, the number of gene expression
profiles was too large to provide significant information. We selected the differentially
expressed genes between tumor and normal samples as response variables.

3.3. Application of Our Model to Gastric Cancer Dataset

Here, the Y matrix was read from the mRNA expression dataset, and X was read
from the DNA methylation dataset. Our regression-decomposed model gave two matrixes,
i.e., B and L, where B denoted the relationships between DNA methylation sites and
gene expression levels and L denoted a low-rank matrix. Similar genes shared the same
rank. Figure 2 shows the linkage peaks in this GC study given by our model; the top
1000 associations based on abs (B) are shown here. Figure 3A shows the methylation levels
of the top 100 methylation sites based on abs (B) and Figure 3B shows gene expression levels
of the genes corresponding to the 100 sites. These 100 CpG sites indicated the important
influence of DNA methylation on gene expression in GC samples. In addition, Figure 4
shows the gene ontology (GO) (A) and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) (B) enriched functional items of these methylation sites (p-value of <0.05). Most of
these sites were associated with carcinogenesis, metabolism, and ECM-receptor interaction
functions and most of the genes corresponding to them took part in receptor ligand activity
and collagen-containing extracellular pathways.

http://portal.gdc.cancer.gov/
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3.4. 29 Genes Were Identified as Gastric Cancer-Associated Methylation-Driven Genes

To find more information related to DNA methylation sites with gene expression levels,
we used R package “Methylmix” [20] to find the methylation-driven genes with low mRNA
expression and high methylation levels and negative correlations between methylation
and expression in cancer samples (p < 0.05). There were 31 genes selected by “Methylmix,”
and 29 genes overlapped with those corresponding to 100 associations based on abs
(B). These genes were RPP25, PLXNC1, BOP1, HOXC13, BST2, TMEM26, ARHGAP20,
TONSL, CLEC7A, STC2, HOXA13, MCMDC2, DNAH14, PRELID1P1, HOXA11, "DPY19L1,
CDKN2A, GPR84, ZNF525, FAM24B, ZFPM2-AS1, RANBP17, C3AR1, SAC3D1, RPS6KA6,
PIWIL1, CCNI2, BZW2, and PALB2. They were the important methylation-driven genes
associated with GC whose corresponding methylation sites might affect gene expression
levels. The other two genes HOXA10-AS and HOXA11-AS, which were not recognized by
our model had been demonstrated do not have obvious differential methylation levels be-
tween tumor and normal samples in Figure 5. Figure 6 shows the GO and KEGG functional
items of these genes with different log FC values, which were denoted as upregulated if
log FC > 0, otherwise, they were denoted as downregulated. Here, we defined upregu-
lated genes as having higher methylation levels in cancer subtypes and lower methylation
levels in normal subtypes, otherwise, they were downregulated genes. Figure 5 shows
the methylation and gene expression level heatmap results of the 31 methylation-driven
genes, where the genes HOXA10-AS and HOXA11-AS do not have obvious differential
methylation levels between tumor and normal samples. In the Supplementary Informa-
tion, we also provide the correlation relationship results between the 29 GC-associated
methylation-driven gene expression levels and methylation levels Figures S1–S29.
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3.5. Methylation Markers Associated with Prognosis of GC

For patients with GC, one important problem is poor prognosis because of different
GC subtypes, with complex genetic heterogeneity. In this study, we aimed to identify
specific biomarkers that could help clinicians to better understand the mechanism of GC.
We merged the clinical data with the mRNA expression profiles and DNA methylation
profiles of these 29 methylation-driven genes associated with GC. A prognostic assessment
model was established, and the Cox risk regression model was used to identify independent
prognostic methylation sites, implemented by using the R package “survival” [21]. First,
using univariate Cox regression analysis, we obtained 17 methylation sites related to
patient prognosis (p < 0.05). Then, a multivariate Cox regression was used to analyze these
sites. Five methylation CpG sites were observed, and the risk score was computed. The
genes that corresponded to these CpG sites were cg01531665 (NOL6), cg01201519 (FEZF1),
cg00484488 (ADPGK), cg00730266 (PPP1R14A), and cg00333849 (KLHL35), which were
prognosis-related sites. Figure 7A shows the methylation heatmap of tumor samples based
on these five genes and Figure 7B shows the heatmap of risk scores based on these five
genes for all tumor samples and the grouping results of samples with low or high risk.
Next, according to the risk score, we grouped the patients into high- and low-risk groups if
their risk scores were higher than the median of all risk scores. The risk assessment showed
that high-risk patients had a poorer prognosis than low-risk patients. The methylation
levels of the selected sites in the established model decreased as the risk scores increased.
Figure 7C shows the survival curve with different risk subgroups. Figure 7D shows the
hazard ratio of the risk score to other multi-covariates, such as age, gender, grade, and
cancer stage. According to this hazard ratio, the risk score based on these methylation CpG
sites could be regarded as a prognostic factor.
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3.6. Exploration of the Subtype-Associated GpG Sites

On the one hand, the GC molecular subtype seemed to influence the prognoses of the
patients in this study, while, on the other hand, the expression heterogeneity (EH) in our
model indicated the different GC subtypes caused by different methylation sites and epige-
netic levels. In order to explore the subtype-associated CpG sites based on classifications
of tumor samples, we used the low-rank matrix L as classification features to obtain the
samples’ classifications. Because L is low rank, variables sharing the same rank could be re-
garded as being in one group [22]. In our algorithm, when optimal problems converge, the
rank of matrix L is seven. Therefore, we grouped GC samples into seven clusters according
to their ranks. A heatmap of the methylation levels of GC subtypes is shown in Figure 8A.
The boxplot of methylation levels based on these seven clusters is shown in Figure 8B.
According to the clustering results obtained by matrix L, we evaluated all methylation sites
for different clusters, finding eight subtype-associated CpG sites which had differential
methylation levels in more than two clusters with p-values <e-10 (cg01201519 (FEZF1),
cg00388897 (KLHL35), cg01531665 (NOL6), cg02422011 (PPP1R14A), cg00563678 (RNF150),
cg01192487 (SAMD12), cg00328900 (VCAN), and cg00112309 (ZFPM2)).
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3.7. Association between the Eight Subtype-Associated CpG Sites and Prognosis

We constructed the prognosis survival curves for all the GC samples grouped by
hypermethylation with low expression and hypomethylation with high expression of the
eight subtype-associated CpG sites (Figure 9). In this figure, the Kaplan–Meier curves show
that the prognostic results differed significantly between the two groups.
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Figure 9. Prognosis survival curves of eight different expressed methylation sites.

3.8. Identifying Four Subtype-Specificity Prognosis-Related Sites

Finally, the intersection analysis between the five prognosis-related sites and the
eight subtype-associated sites was carried out, and four factors, i.e., cg01531665 (NOL6),
cg01201519 (FEZF1), cg02422011 (PPP1R14A), and cg00388897 (KLHL35) were found to
be overlapped. These four CpG sites were prognosis-related sites that influenced gene
expression levels and also were related to GC subtypes, denoted as subtype-specificity
prognosis-related sites. Gene ontology (GO) and the KEGG items of genes according
to these four CpG sites are shown in Table 1. Then, we used an online analysis tool
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“MEXPRESS” (https://mexpress.be/, aceessed on 2 June 2021) to verify the correlations
among the expression levels of these four genes and DNA methylations. Figure 10A–D
show the results of different genes. On the right of each subfigure, the r values are the
Pearson correlation coefficients between one specific gene expression level and DNA
methylation levels of different methylation sites. Meanwhile, each subfigure also shows
the relationships of other factors such as sample type, tumor stage, and gender.

Table 1. GO and KEGG items of NOL6, FEZF1, PPP1R14A and KLHL35.

Gene Name GO KEGG

FEZF1 negative regulation of transcription from RNA
polymerase II promoter None

KIHL35 protein binding None

NOL6 rRNA processing, tRNA export from nucleus Ribosome biogenesis in eukaryotes

PPP1R14A regulation of protein dephosphorylation, cellular
response to drug, phosphatase inhibitor activity Vascular smooth muscle contraction
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3.9. Determining the Influential Power of the Subtype-Specificity Prognosis-Related Sites on
Expression Levels—Important Prognostic Markers and Regulation of Gene Expression Factors

It can be observed that there is one position of the gene NOL6 that had a significantly
positive correlation with its expression (Figure 10A), 26 positions of the gene FEZF1 CpG
site have significantly negative correlations with its expression, while 12 CpG sites have
significantly positive correlations with its expression. Actually, it has been demonstrated
that the gene FEZF1-AS1 (FEZF1 antisense RNA) can epigenetically repress the expression
of P21 which is a demethylase [23]. Studies have found that the gene FEZF1-AS1 can act as
an “oncogene” for gastric cancer partly through suppressing P21 expression and may serve
as a candidate prognostic biomarker for new therapies of gastric cancer patients. Simul-
taneously, there were 14 positions of the gene PPP1R14A CpG site that had significantly
negative correlations with its expression, while there were 12 positions of the gene KLHL35
CpG site that had significantly negative correlations with its expression. In addition, the
gene PPP1R14A, which is regulated by promoter region methylation, has been proven to
play a key role in the initiation and progression of gastric cancer, colorectal cancer, and
lymphomas [24–26]. At the same time, hypermethylation of the gene KLHL35 has also been
demonstrated to be associated with the development of hepatocellular carcinoma [27,28].
These results demonstrate the predictive accuracy of our model, which can identify the
significant CpG sites that have an influence on gene expression, meanwhile, exploring
prognosis-related sites associated with GC subtypes. These results demonstrated that the
four CpG sites were not only associated with the GC subtypes and patients prognosis, but
also had significant correlation with the gene expression levels. It means that they had
potential to be important prognostic markers and regulate of gene expression factors.
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4. Discussion

Epigenetic changes, such as DNA methylation, are closely associated with the devel-
opment and malignant transformation of GC. DNA methylation changes accumulated
as oncogenesis may result in different GC subtypes. Therefore, identification of specific
DNA methylation sites which associated with gene expression and prognosis of tumor
patients, might aid in the development of personalized treatment plans. In this study, we
introduced a linear regression model to prioritize the relationship of disease-associated
methylation sites and gene expression levels in different sample groups, and then provided
an epigenetic explanation of tumor heterogeneity.

Our model made use of matrix decomposition theory by introducing a sparse re-
gression to account for DNA methylation mapping and a low-rank matrix to contain the
expression heterogeneity (EH), resulting in one sparse coefficient matrix B and one low-
rank matrix L. According to the top abs (B), we obtained the specific DNA methylation
sites that were related to GC related to different gene expression levels. Because our model
does not perform statistical significance tests, we were not able to report our results based
on statistical significance. Alternatively, we were more interested in the top signals. Thus,
we only showed the top 1000 associations based on the absolute value of B in Figure 2 and
selected the top 100 methylation sites for subsequent research. Concurrently, we used the
low-rank matrix L to obtain seven tumor sample clusters, from which we selected eight
subtype-associated CpG sites.

In this article, our study firstly identified 29 Gastric Cancer-associated methylation-
driven genes, whose corresponding methylation sites might affect gene expression levels,
based on the top 100 abs (B). Then we used the Cox risk regression model to obtain five
important prognosis-associated methylation sites that can be regarded as prognostic factors:
cg01531665 (NOL6), cg01201519 (FEZF1), cg00484488 (ADPGK), cg00730266 (PPP1R14A),
and cg00333849 (KLHL35). By using them to compute the risk score to predict the survival
curves, we classified patients into high-risk and low-risk groups, in which patients with
high-risk scores were corresponding to poor prognosis, and on thecontrary, low risk
corresponded to relatively good prognosis.

Then according to the low-rank matrix L, our model explored seven Gastric Cancer
subtypes, by which we can evaluated all methylation CpG sites with the methylation levels
to find the differentially methylated sites among different GC tumor groups. In this way, we
identified eight subtype-associated CpG sites: cg01201519 (FEZF1), cg00388897 (KLHL35),
cg01531665 (NOL6), cg02422011 (PPP1R14A), cg00563678 (RNF150), cg01192487 (SAMD12),
cg00328900 (VCAN), and cg00112309 (ZFPM2). Kaplan-Meier curves demonstrated that
these sites also had relationships with prognosis. Therefore, an intersection analysis be-
tween the five prognosis-associated methylation sites and the eight subtype-associated sites
was conducted, resulting in four sites: cg01531665 (NOL6), cg01201519 (FEZF1), cg02422011
(PPP1R14A), and cg00388897 (KLHL35). The downstream analysis demonstrated that they
were not only associated with the GC subtypes and patients prognosis, but also had a sig-
nificant correlation with the gene expression levels, which indicated that they had potential
to be important prognostic markers and regulate of gene expression factors.

Despite the advantages of our approach, the limitation is that we did not provide a
rigorous statistical significance test of the estimated coefficient matrix B. Researchers can
rank associations and select those that they are interested in.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes12060854/s1, Figures S1–S29: The correlation relationship results of gene methylation
levels and expression levels. They also contains DNA methylation data matrix, mRNA data matrix
in txt format text preprocessed by us and the clinical data download link from TCGA.
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