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Abstract
A web-based software, called MCDA Index Tool (https ://www.mcdai ndex.net/), is presented in this paper. It allows develop-
ing indices and ranking alternatives, based on multiple combinations of normalization methods and aggregation functions. 
Given the steadily increasing importance of accounting for multiple preferences of the decision-makers and assessing the 
robustness of the decision recommendations, this tool is a timely instrument that can be used primarily by non-multiple 
criteria decision analysis (MCDA) experts to dynamically shape and evaluate their indices. The MCDA Index Tool allows 
the user to (i) input a dataset directly from spreadsheets with alternatives and indicators performance, (ii) build multiple 
indices by choosing several normalization methods and aggregation functions, and (iii) visualize and compare the indices’ 
scores and rankings to assess the robustness of the results. A novel perspective on uncertainty and sensitivity analysis of 
preference models offers operational solutions to assess the influence of different strategies to develop indices and visualize 
their results. A case study for the assessment of the energy security and sustainability implications of different global energy 
scenarios is used to illustrate the application of the MCDA Index Tool. Analysts have now access to an index development 
tool that supports constructive and dynamic evaluation of the stability of rankings driven by a single score while including 
multiple decision-makers’ and stakeholders’ preferences.

Keywords Index development · Composite indicator · Software · MCDA · Normalization · Aggregation

1 Introduction

Decision-making problems are commonly based on multiple 
criteria and require to account for trade-offs between them 
before reaching a comprehensive evaluation of the alterna-
tives under consideration (Roy 2010). This comprehensive 
evaluation can be reached using methods that belong to the 
multiple criteria decision analysis (MCDA) domain (Greco 

et  al. 2016a). MCDA is a formal process that supports 
decision-making by leading the development/identification 
of the alternatives, the selection of the evaluation criteria 
(called also indicators) and the aggregation of the prefer-
ences of the stakeholders (Bouyssou et al. 2006; Cinelli 
2017; Cinelli et al. 2020). There is a wide and increasing 
number of MCDA methods (Bisdorff et al. 2015; Greco et al. 
2016a) and a main family is represented by composite indi-
cators (CI), or indices (Diaz-Balteiro et al. 2017; El Gibari 
et al. 2019; Greco et al. 2019), which lead to a score of the 
alternatives that can then be easily ranked. Indices are used 
by a multitude of institutions as they can support the analy-
sis of complex problems by means of a synthetic measure, 
leading to rankings and identification of trends. Some recent 
examples are the Covid-19-related vulnerability index by 
Swiss Re (SwissRe 2020), the Environmental Performance 
Index (Wendling et al. 2018), the Sustainable Society Index 
(Saisana and Philippas 2012), the Electricity Supply Resil-
ience Index (Gasser et al. 2020), and the Global Innovation 
Index (Cornell University et al. 2019), to name a few. The 
development of indices is not a trivial task as it involves two 
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key steps that can have crucial implications on the results. 
These are the normalization and the aggregation. The nor-
malization consists in making all the indicators comparable 
on the same scale, while aggregation consists in defining the 
mathematical operator that combines the normalized indica-
tors in the overall score/index.1 There are also studies which 
propose to develop frameworks of indicators by only using 
normalization, without any overarching aggregation. One 
example is the resilience matrix by Fox-Lent et al. (2015), 
where normalized indicators are used to relate the type of 
resilience function with the respective general management 
domains of any complex system (physical, information, cog-
nitive, social). It is also notable to point out that CI devel-
opment can be approached in a tiered manner. In this case, 
simpler models are developed first, constrained by limited 
resources and capital expenditures. These can then be sur-
passed by more complex models as more information and 
complexities can be accounted for in the process (Linkov 
et al. 2018). It has been shown that a multitude of normali-
zation and aggregation methods exists (see OECD (2008), 
Jahan and Edwards (2015) and Rowley et al. (2012) for an 
overview) and the combination of a certain normalization 
and aggregation leads to a certain index.

Few studies looked at the implications of using different 
combinations of normalization methods and/or aggrega-
tion functions (Jahan and Edwards 2015; Narula and Reddy 
2015; Pollesch and Dale 2016) and their effects on the final 
scores and rankings of the alternatives. The most compre-
hensive approach has been recently proposed by Gasser 
et al. (2020), where 38 combinations were used to develop 
the Electricity Supply Resilience Index (ESRI). ESRI is 
based on 12 indicators and it characterizes the resilience 
of 140 countries’ electricity systems. It comprehensively 
covers four distinct resilience functions (resist, restabilize, 
rebuild and reconfigure) as conceptualized in Heinimann and 
Hatfield (2017). This research has shown the added value 
of considering a multitude of perspectives of the decision 
makers as far as normalization of the raw data and their 
aggregation is concerned. In fact, the approach proposed in 
that article demonstrated how the robustness of the rank-
ings can be tested. However, that research has also shown 
pragmatic limitations in the use of a considerable number of 
combinations, including the need to consistently compile the 
calculations and the outcome of the computations and most 
importantly visualize the results. In particular, that research 
did not conceptualize the strategies to study the variability in 
the output provided by the index. This is one of the research 
gaps tackled by this study.

This paper has two main objectives. First, it proposes 
an implementation strategy for variability analysis in the 
output of CIs, based on uncertainty and sensitivity analy-
sis. Second, it contributes to the visualization of results by 
MCDA software supporting CI development. The focus is 
on software that allow to normalize and aggregate perfor-
mances of indicators to (i) obtain a score and (ii) rank the 
alternatives. These contributions have been implemented 
in a web-based software, called MCDA Index Tool (https 
://www.mcdai ndex.net/) that has been developed to tackle 
these limitations and make the methodology understandable 
by high-level DM and stakeholders. It allows the user to 
develop indices through the choice of several normaliza-
tion methods and aggregation functions. The tool consists 
of a set of steps that guide the analyst in the development of 
the index starting from data loading, moving to weighting, 
choice of normalization methods and aggregation functions, 
until providing an ample set of results’ visualization.

The paper is organized as follows: Sect. 2 presents the 
conceptual framework to expand uncertainty and sensitiv-
ity analysis for CIs and compares software used to visualize 
variability of outputs in CIs. Section 3 describes the MCDA 
Index Tool. Section 4 provides an overview of the case study 
on security and sustainability of electricity supply used to 
show the applicability of the web-software. Section 5 pre-
sents the application of the tool to the case study. Section 6 
discusses the main findings and Sect. 7 concludes by provid-
ing some recommendations for future research.

2  Revisiting uncertainty and sensitivity 
analysis in CIs

The development of CIs is a structured process that requires 
a sequential set of steps to be followed (Nardo et al. 2008). 
The initial one consists in the creation of the conceptual 
framework to be evaluated, which is pivotal to obtain an 
understanding of the measured multidimensional phenom-
enon. Indicators (also called criteria by some analysts) selec-
tion and missing data management are the subsequent steps, 
where the variables used to quantify the target phenomenon 
are chosen and strategies to deal with the missing informa-
tion are developed. Multivariate analysis is then required 
to understand the overall structure of the dataset as well as 
the correlations and dependencies between the indicators.2

At this point, the analyst has to select the preference 
model to aggregate the input information. Preference models 
represent the different philosophies of modeling in MCDA, 
which include (i) scoring functions, (ii) binary relations, 
and (iii) decision rules (Cinelli et al. 2020; Słowiński et al. 

1 Score, index and Composite Indicator (CI) are used interchange-
ably in the paper. They refer to the single outcome obtained from the 
aggregation of the indicators.

2 It is assumed that the user of the MCDA Index Tool has already 
conducted all these steps when starting to work with the tool.

https://www.mcdaindex.net/
https://www.mcdaindex.net/
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2002). CI belong to the first group (i.e., scoring functions), 
where the decision recommendation consists in a score for 
each alternative that can be used to rank the alternatives 
from the best to the worst one. Within such group, three 
choices need to be made to lead to the CI. The first consists 
in the selection of the normalization method, which allows 
transforming all the different measurement scales of the 
indicators in a consistent form, so that comparisons of per-
formances among indicators are possible. The second one is 
the weighting of the indicators, so that the relevant weight of 
the indicators can be assigned to each one. The third choice 
is the function to aggregate the normalized performances 
and the weights to obtain the final score (i.e., the index). 
As recently shown by Gasser et al. (2020), a CI can also be 
calculated by combining CIs obtained from several combina-
tions of normalization methods and aggregation functions.

Normalization is a delicate step that determines transfor-
mation of raw data into a comparable measurement scale. 
Several methods are available for this purpose, and they can 
be clustered in data-driven and expert-driven. The data-
driven ones include methods like the min–max, the target 
and the standardized, all based on the statistical properties 
of the raw dataset, including minimum and maximum value 
and standard deviation (discussed later in Sect. 3.3), while 
the expert-driven ones are those that depend on the direct 
or indirect input of the experts/DM, for example the value 
theory methodology. In the latter case, raw data are normal-
ized to a common scale by means of value functions elic-
ited from experts and/or DMs (Geneletti and Ferretti 2015; 
Kadziński et al. 2020).

It is also important to acknowledge that by changing the 
normalization method, the relative influence of each indi-
cator on the CI can change, as recently shown by Carrino 
(2017) and Gasser et al. (2019). This phenomenon is called 
implicit trade-offs, and it means that by changing the nor-
malization method, the trade-offs between the indicators raw 
measurement scales vary. This implies that different substi-
tution rates are needed to e.g., compensate the worsening on 
one indicator by improving another one.

Another recurrent distinction between normalization 
methods is between external and internal ones (Laurent 
and Hauschild 2015). External normalization is independ-
ent from the dataset and it uses reference points that do not 
vary if the input data changes. Internal normalization, on 
the contrary, provides normalized values that are depend-
ent on the dataset. One of the main issues with internal 
normalization is the rank reversal problem, which means 
that the addition or deletion of alternatives to the set can 
lead to inversion in the rankings that are difficult to explain 
and accept by the DM. As an example, rank reversal can 
result in a situation where if the recommendation is that 
alternative A is preferred to B, and B is preferred to C, 

then the removal of C or the addition of a new alternative 
D might lead to the conclusion that B is preferred to A 
(Wang and Luo 2009). Until now, there is no predefined 
rule to select a normalization method, though each one has 
its own implications, which should be clarified to the DM 
(Carrino 2016) (see Sect. 3.3).

The aggregation stage also conceals several complexi-
ties, the main one being the level of compensation that is 
accepted between the different indicators (Langhans et al. 
2014). In this context, compensation refers to the trade-off 
between the indicators, characterizing the improvement of 
performance needed on one indicator to offset the worsening 
on another indicator. One of the most common aggregation 
functions is the additive average, where full compensation 
between the indicators is assumed. This means that, indepen-
dently from the actual values of the indicators, the worsening 
of performance on one indicator can be fully compensated 
by the improvement on another one (Mazziotta and Pareto 
2017; Munda 2008). Several other functions have been 
proposed in the last decades, which allow reducing or even 
omitting the acceptance of compensation. Some examples 
are the geometric and harmonic averages (Langhans et al. 
2014), the Choquet integral (Bertin et al. 2018; Grabisch 
and Labreuche 2016; Meyer and Ponthière 2011; Pinar et al. 
2014), the outranking methods (Figueira et al. 2016), and 
the decision rules ones (Greco et al. 2016b). These less or 
non-compensatory methods are particularly useful when 
indicators that measure non substitutable dimensions have 
to be aggregated, like economic and social indicators (Ber-
tin et al. 2018), environmental, economic and social per-
formance (Cinelli et al. 2014; Pinar et al. 2014), strong and 
weak sustainability (Rowley et al. 2012), and river quality 
benchmarks (Reichert et al. 2015). One particular advantage 
of the Choquet algorithm is that it allows accounting for 
redundancies and positive interactions between the indica-
tors and dimensions of a CI (Bertin et al. 2018; Pinar et al. 
2014). Using interaction indices in the Choquet algorithm, 
it is possible, on the one hand, to assign a sort of “bonus” in 
the form of a reinforcement weight to the indicators which 
interact positively (Duarte 2018). On the other hand, for 
indicators that interact negatively, the Choquet algorithm 
permits to account for a redundancy effect so that the com-
bined effect of these indicators on the CI can be reduced 
(Duarte 2018).

Once the CIs are computed, their robustness should then 
be studied by means of uncertainty and sensitivity analysis. 
Uncertainty analysis (UA) focuses on how uncertainty in 
inputs, such as input data and/or CI development decisions, 
propagates through the CI to affect outputs (Burgass et al. 
2017). Sensitivity analysis (SA) studies the contribution of 
the individual source of uncertainty to the CI variability 
(Nardo et al. 2008; Saltelli et al. 2019).
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The last stages of CI construction include the analysis of 
the results and its visualization, to make sure the outcomes 
are clearly and transparently communicated.

2.1  Studying variability in the output of CIs

The assessment of the variability in the output of the CIs, 
being the score and ranking of the alternatives, is important 
to understand the stability of the provided recommenda-
tion. This variability can be studied by means of UA and 
SA. As described above, UA characterizes the effect of 
uncertainty in the CI outcome, without identifying which 
assumptions are primarily responsible (Saltelli et al. 2019). 
SA is “the study of how the uncertainty in the output of a 
model (numerical or otherwise) can be apportioned to dif-
ferent sources of uncertainty in the model input” (Saltelli 
and Tarantola 2002).

This paper proposes a framework, summarized in Table 1, 
to study output variability of CIs with UA and SA. UA and 
SA can be conducted on two different components of the CI, 
the input data, on one side, and the preference models of the 
CI, on the other side (Burgass et al. 2017). In this research, 
input data includes the indicators themselves and parameters 
like their weights, while preference models of the CI refer to 
the normalization and the aggregation stage.

The most common UAs have been applied to the input 
data. Notable examples are the inclusion of uncertain val-
ues for the performances and/or the weights of the indica-
tors (Dias et al. 2012; Pelissari et al. 2018). One of most 
common strategies is the use of stochastic input, which 
is conveniently modelled with probabilistic distributions 
(Pelissari et al. 2019). The reasons for the inclusion of 
uncertain input data instead of deterministic can be the 
presence of uncertainty in the measurement tools for the 
indicators’ performances, and/or the need to account for 
multiple weightings of the indicators themselves. Some-
times, the analysts voluntarily select uncertain input to 
assess how variable the results would be in case the avail-
able information is not certain or quantified variability 
can be foreseen, to study the stability of the decision 
recommendation.

An avenue of research rarely explored in UA of CI is 
the effect that different preference models, driven by the 
combined effect of normalization methods and aggrega-
tion functions can have on the final outcome. In this case, 
instead of looking at the variability of a single preference 
model (as in the case of UA on input data), the analyst 
can analyse the variability determined by multiple prefer-
ence models. These combinations constitute the second 
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type of UA for CI, as shown in Table 1. The rationale 
for such category of UA is that the analyst can consider 
different preferences of the DM(s) by accounting for dif-
ferent strategies to normalize the data and to aggregate 
them. The former (i.e., normalization) accounts for the 
desired harmonization of measurement scales, the latter 
(i.e., aggregation) considers the different degree of com-
pensation that can be accepted between the indicators, 
ranging from a full to a null level, with gradual variations 
in between (Langhans et al. 2014). This type of modeling 
can be useful when the preferences of a group have to be 
included, for example. In fact, the different perspectives 
and value choices can result in several preference models. 
This proposed UA permits to jointly consider multiple 
preferences of the actors involved in an MCDA process 
and assess how variable the results can be.

As far as SA is concerned, substantial research efforts 
have been devoted to studying the effect of input data on 
the outcome (Saltelli et al. 2019). Some examples are the 
sequential (i.e., one-at-a-time) exclusion of the indicators, 
the change of the performances informed by variance esti-
mation, or the multiple options for estimation of missing 
data (OECD 2008). Another avenue for SA on input data 
is to study the structure of the input dataset by means of 
statistical analysis tools, to identify for example the most 
influential indicators (Becker et al. 2017). When looking 
at the weighting, use of alternative plausible weights is 
a common example (Ferretti and Degioanni 2017; Tri-
antaphyllou and Sánchez 1997). Another example is the 
exploration of the whole preference (weight) space, so 
that weights can be varied systematically to cover all pos-
sible combinations of stakeholders’ preferences (Burgh-
err and Spada 2014). As the SA is focused on studying 
the effect of each source of uncertainty, the SA on the 
preference models is distinguished by looking at the role 
of normalization methods on one side, and aggregation 
functions on the other side (Nardo et al. 2008). For this 
reason, they are presented separately in Table 1.

These UAs and SAs on the preference models are opera-
tional solutions to assess the influence of different strategies 
to develop the decision recommendation (i.e., scores and 
rankings), when using a CI.

2.2  Visualizing variability in the output of CIs

All these UAs and SAs provide multiple scores and rankings 
of the alternatives, which should be visualized to discuss 
the variability of the outputs with the DM(s). This phase 
is fundamental to guarantee that the results are communi-
cated properly and effectively (Burgass et al. 2017). For this 
reason, several software have been developed with multi-
ple graphical interface capabilities to support this delicate 
interpretation and discussion phase. So far, limited literature 

has been provided on the comparison of visualization of 
output variability analysis in MCDA software for scoring 
and ranking. The main focus has been on the presentation 
of the methods and respective software themselves (see e.g. 
Weistroffer and Li (2016), Alinezhad and Khalili (2019) and 
Ishizaka and Nemery (2013)). A recent article by Mustajoki 
and Marttunen (2017) compared 23 software for support-
ing environmental planning processes, and focused on their 
capability to support the different MCDA stages. As far as 
analysis of results is concerned, the authors considered the 
presence or lack of visual graphs, overall values of the CIs 
(with bar charts), sensitivity analysis, x–y graphs, and writ-
ten reports.

In this paper, we propose a comparison of MCDA 
software for scoring and ranking with a specific focus on 
output variability, which has not been conducted so far, 
according to the authors’ knowledge. The MCDA software 
included in this review were selected from the available 
compendia (Baizyldayeva et al. 2013; Ishizaka and Nem-
ery 2013; Mustajoki and Marttunen 2017; Vassilev et al. 
2005; Weistroffer and Li 2016). The search also incorpo-
rated software listed in the dedicated web pages of MCDA 
societies (EWG-MCDA 2020; MCDM 2020; Oleson 2016). 
To ensure comparability between the software results, the 
inclusion of software had to be limited to those that use 
UA and/or SA using scoring functions based on normali-
zation. Lastly, the focus for type of software was on users 
labelled as “target 1” users by Mustajoki and Marttunen 
(2017). These are experts in a specific application domain 
(e.g., environmental management, energy modeling, health 
technology assessment, urban planning, econometrics), who 
want to use MCDA methods to facilitate the decision mak-
ing process and enhance the visualization of the results for 
DMs/stakeholders. For this reason, some advanced software 
that require programming skills or solid knowledge of the 
building blocks of each method have not been included (e.g., 
Analytica (Lumina 2020), Diviz (Meyer and Bigaret 2012)). 
Eleven (11) software (including the one proposed in this 
paper) did fit with the inclusion requirements and they are 
presented in Tables 2 and 3. It is possible that some software 
might have been omitted in the search, but for achieving the 
objective of providing an overview of the main strategies 
used to conduct and visualize outputs variability in MCDA 
software for scoring and ranking, the authors think that the 
selected set of software was broad and diversified enough.

2.2.1  Comparison features

The features used to compare the software were tailored to 
the capabilities of representing multiple indices and rankings 
derived from the UAs and SAs. Output variability analysis 
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was thus at the core of the comparison and it was divided in 
tabular and graphical results.

2.2.1.1 Tabular results Tabular results are those that 
are provided in tables and can include:

1. Normalized indicators: according to the chosen normali-
zation method, the indicators have different normalized 
scales. The possibility of comparing different normaliza-
tion methods allows to study the effect that each method 
has on the alternatives with respect to their raw perfor-
mances;

2. Normalized indices: according to the normalization 
method(s) and the aggregation function(s), the final 
score is provided to the user, which will then be used to 
obtain the ranking(s);

3. Pairwise confrontation table: a comparison table which 
indicates the (maximum) advantage (difference of index) 
of each alternative over each other one. It allows to see 
if and by how much each alternative performs better (or 
worse) on a pairwise basis.

4. Rankings table: the indices are used to rank the alter-
natives from the best to the worst. A table (or more, if 
more than one index is obtained) as in the MCDA Index 
tool, can thus be used to summarize the results, listing 
alternatives in a preference-ordered list.

2.2.1.2 Graphical results Graphical results are those that 
are provided in the form of graphs and illustrations. They 
include:

1. Normalized indices with bar/line charts: the index for 
each alternative is shown in a bar or line chart;

2. Range of the indices: the variability of the indices can 
be visualized in the range of value for each alternative, 
with the possibility of ranking the alternatives by input 
order or by the output one (e.g., minimum value) (Dias 
and Climaco 2000). This condenses the variability of the 
indices in an appealing fashion;

3. Rank frequency matrix: it shows the proportion of indi-
ces that rank each alternative in a certain position;

4. Bar charts with rank frequency matrix: these charts visu-
alize the rank frequency matrix in bars whose height 
varies according to the proportion of indices that rank 
each alternative in a certain position;

5. Rankings comparison with line graph: it allows selecting 
and comparing the rankings according to the chosen UA 
and/or SA settings. For example, if multiple aggregation 
functions are chosen, the user can visualize the impact 
of changing the function on a ranking from e.g., a fully 
compensatory (additive) to a very low compensatory 
degree (harmonic).

2.2.2  Results of software comparison

Table 2 summarizes the available normalization methods, 
aggregation functions, UAs and SAs in the eleven (11) soft-
ware selected for the comparison. Only two use data-driven 
normalization, the MCDA Index tool and D-Sight, while all 
the others implement DM’s-driven normalization, specifi-
cally the value function approach.

The first main finding is that the MCDA Index Tool offers 
many (i.e., eight) options for normalizing the dataset, while 
all the others allow only the use of one method. As far as 
aggregation is concerned, all the software implements only a 
function with a full compensation level. The only exception 
is the MCDA Index tool, which provides five aggregation 
functions with variable compensation levels (see details in 
Sect. 3.3 and Table 6).

UA and SA on preference models can only be performed 
by the MCDA Index Tool, as all the others implement only 
one preference model. One exception is Decerns, which pro-
vides a value function SA to compare how different shapes 
of the value functions affect the results. These different func-
tions can actually be interpreted as different normalization 
strategies (e.g. linear, piece-wise linear, exponential).

Almost all the software (i.e., Decerns, GMAA, JSMAA, 
Logical Decisions, WINPRE) that support UA on input 
data accept uncertain performances of indicators as well as 
of weights. The exceptions are Smart Decisions that only 
accepts uncertain performances of indicators and V.I.P., 
which is specifically tailored to the imprecision on weights.

The focus of SA on input data is devoted to the explora-
tion of different sets of weights, as just over 80% of the soft-
ware (i.e., 9 out of 11; Decerns, D-Sight, GMAA, Hiview 3, 
JSMAA, Logical Decisions, Smart Decisions, Web-Hipre, 
WINPRE) are equipped with this capability. Almost 55% of 
the software (i.e., 6 out of 11; Decerns, GMAA, JSMAA, 
Logical Decisions, Smart Decisions; WINPRE) also support 
SA on the input data, with the main feature being the accept-
ance of uncertain performances on the indicators.

As far as the visualization of the results is concerned, 
Table 3 provides an overview of their capabilities of visu-
alization of output variability, and well-defined trends can 
be found. Tabular results are mostly presented using the 
obtained indices. This is the case in 9 out of the 11 software 
(i.e., MCDA Index Tool, Decerns, D-Sight, GMAA, Hiview 
3, Logical Decisions, Smart Decisions, V.I.P., Web-Hipre, 
WINPRE). Five of these software (i.e., GMAA, Hiview 3, 
logical Decisions, Smart Decisions, V.I.P.) also provide a 
pairwise confrontation table.

This is an interesting feature as it can boost the compara-
tive analysis between alternatives to identify their strengths 
and weakness. Only the MCDA Index Tool, Decerns, 
D-Sight, and GMAA explicitly provide the ranking of the 
alternatives in a table format. The MCDA Index Tool is the 
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only one that uses multiple normalization methods, which 
justifies it being the only one that provides comparisons of 
normalized scores.

Graphical results are primarily (63% of the software) 
based on visualizing the indices using bar and line charts. 
This is the case for the MCDA Index Tool, Decerns, D-Sight, 
Hiview 3, Logical Decisions, Smart Decisions, and Web-
Hipre. The other solution, used only in cases of multiple 
indices as output, is to represent them using the range of 
variation. This feature is provided by GMAA, Logical Deci-
sions, Smart Decisions, V.I.P., and WINPRE.

The visualization of the rankings of the alternatives is less 
explored when compared to the previous software capabili-
ties. Only four software (i.e., MCDA Index Tool, Decerns, 
GMAA, and JSMAA) provide a rank frequency matrix, and 
all these, except the MCDA Index Tool, show such frequen-
cies in the form of bar charts. Lastly, the comparison of the 
rankings with a line graph is only supported by the MCDA 
Index Tool.

3  Tool description

The MCDA Index Tool3 (https ://www.mcdai ndex.net/) is a 
web-based software that provides a practical and straightfor-
ward guide for the development of indices and rankings. It 
implements the UA and SA on multiple preference models, 
which are capabilities not available in any of the reviewed 
software as discussed in Sect. 2.2 (except for Decerns that 
supports SA on normalization methods). In particular, it 
contains a set of steps that can help develop indices by learn-
ing and assessing the quality of the outputs. Key features 
include robustness assessment of the outcomes and a wide 
range of results’ visualization. The workflow of the tool fol-
lows the guidelines for the development of indices described 
in the literature (Greco et al. 2019; Mazziotta and Pareto 
2017; OECD 2008). The user manual for the tool, including 
the technical details on how to prepare the input data can be 
found in Zhang et al. (2020). An important assumption that 
the authors of the tool made is that before using the tool, the 

user has properly formulated the decision making problem, 
by developing a dataset with a series of alternatives evalu-
ated according to a coherent set of indicators, as described 
in several MCDA guidelines (Bouyssou et al. 2006; OECD 
2008).

The flowchart of the tool is presented in Fig. 2 and its 
steps include input data upload, definition of the polarity 
of the indicators and weighting, choice of normalization 
method(s) and aggregation function(s), results computation 
in tabular forms and finally results visualization. Each step 
is described in detail in the following Sections.

3.1  Input data

The data of input can be imported in a.csv format. The data 
file structure resembles a conventional performance matrix 
with the alternatives listed in the first column, and the indi-
cators in the successive ones. An example is shown in Fig. 1.

3.2  Define settings and weighting

The user has to choose the polarity of each indicator (Mazzi-
otta and Pareto 2017). Positive polarity indicates that the 
higher the value of the indicator the better, while negative 
polarity indicates that the lower the value of the indicator 
the better for the evaluation. It is also possible to explicitly 
include the measurement units of the indicators, which can 
be of help during the weighting. The weights of the indica-
tors have to be then chosen. They can be assigned (i) with 
a simple sliding bar, (ii) by typing them indirectly, or (iii) 
using the so-called SWING method (Riabacke et al. 2012). 
The weights are used to define the different priorities of 
the indicators and they represent the trade-offs that are in 
place between them. In other words, with respect to pairs 
of indicators, the weight represents how much the loss on 
one of them can be compensated with the improvement on 
the other one.

3.3  Choose the building blocks of the indices

As introduced in Sect. 2, normalization and aggregation are 
key to define how the input data are made comparable and 
integrated in the final score. There are several normaliza-
tion methods available in the literature, and those included 

Fig. 1  Example of .csv input 
file

3 From now onwards, the term “tool” is referred to the “MCDA 
Index Tool”.

https://www.mcdaindex.net/
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in the tool are presented in Table 4, together with a brief 
description, as well as their pros and cons. The methods 
based on the ordinal scale (i.e., rank, percentile rank and 
categorical) only exploit the ordinal character of the input 
data, making their working procedure quite easy to under-
stand. In addition, they are not affected by the presence of 
extreme values in the dataset, which can cause skewness in 
the normalized data.4 On the other hand, there is a loss of 
information between the actual performances, meaning that 
equal intervals are assumed between consecutive values.

The other normalization methods consider the informa-
tion on the quantitative differences of performances. The 
standardization one provides an overview of how distributed 
the indicators’ value are from the mean, but does not pro-
vide a bounded range of variation, which can be difficult to 
communicate to stakeholders. Min–max, on the other hand, 
offers a bounded range the normalized indicators that can 
enhance comparisons among indicators, at the expense of 
not maintaining the ratios between the performances and 
being strongly affected by the presence of outperformers. A 
method that maintains the ratios of performances between 
alternatives is the target one, which measures the relative 
position of a given indicator with respect to a reference 
point. In this case only the upper limit is fixed and the range 
is variable. Lastly, a more complex formulation is the logis-
tic method, which reduces the effect of the outperformers 
by transforming the data into a sigmoid curve (S-shaped) 
between 0 (for − inf) and 1 (for + inf).

An illustrative example of the effect of normalization 
functions on raw data is presented in Table 5. The ordinal 
methods (i.e., rank, percentile, categorical) do not preserve 
the actual distances between alternatives and they may 
receive the same normalized value, for the ternary scale in 
this example. The limited differentiation between perfor-
mances is one of the disadvantages of using the weakest 
type of information, as the ordinal methods do. The Z-score 
(standardization) provides an indication of how distant the 
performances are from the mean, which in this case is 5.33. 

Min–max has the advantage of providing a bounded range, 
in this case [0–1], which easily supports relative compari-
sons. The target method preserves the ratios between the 
performances, leading to the same average and standard 
deviation as the raw data. Lastly, the logistic method reduces 
the effect of top and worst performers, in fact the normalized 
values are closer together compared to the standardization, 
min–max and target (linear methods).

Similarly to normalization, also for the aggregation there 
is a multitude of available options (Blanco-Mesa et al. 2019). 
The ones selected for the tool are focused on implementing 
different levels of compensation between the indicators, as 
presented in Table 6. As discussed in Sect. 2.1, aggregation 
functions with different degrees of admissible compensabil-
ity between performances can be used to consider stakehold-
ers/DMs with different preferences. The selected aggregation 
functions, in a decreasing compensation order, are additive, 
geometric, harmonic, and minimum. The median operator is 
included too, though the compensation level actually varies 
according to the distribution of the values themselves.

Table 7 presents an example of the selected aggrega-
tion functions using three alternatives and two normalized 
indicators, assuming their scale is [0–1]. Alternative A is 
the best on indicator 1 (i.e., i1) and it performs very well 
on it, while its performance is very low and the worst in 
the set for indicator 2 (i.e., i2). Alternative C performs 
average on both indicators, while Alternative B is between 
the performances of both alternatives. The first notable 
finding is that due to the full compensation of the additive 
function, the index for alternative A is the very close to the 
one of alternative B and C. As the level of compensation 
gradually decreases from the additive, to the geometric, 
harmonic and minimum functions, the index of alternative 
A and B gradually decreases, until reaching its lowest for 
the minimum function. This phenomenon does not happen 
for alternative C, as there is no compensation between the 
performances as the indicators values are the same, show-
ing that a less compensatory DM should prefer this type 
of alternatives in the dataset. In this example, the median 
function provides the same results as the additive function 
because the data set consists of two indicators only. 

Based on the preferences of the involved DM(s), the 
user can select the normalization methods and aggregation 

Table 5  Example to illustrate the effect of different normalization methods (Adapted from Gasser (2019))

Rank
Percentile 

rank
Categorical 

(-1, 0, 1)
Z-score Min-max Target Logistic

A 10 1 0.75 1 1.03 1 1 0.74
B 5 2 0.5 0 -0.07 0.44 0.5 0.48
C 1 3 0.25 0 -0.96 0 0.1 0.28

Normalized values
Raw valuesAlternative

3-color scale: the best performance is in green, the worst in red and the one in the middle in yellow

4 These values are usually called outperformers or outliers. They are 
extreme performances of the indicators when compared to the other 
values for the same indicator (Ghasemi and Zahediasl 2012).
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functions to build the indices. After confirming the selec-
tion, a combination table is shown to depict the combina-
tion of normalization and aggregation that will be used to 
build the results. In total, 31 combinations are available in 
the tool, by accounting for multiple compensation levels 
and approaches to render the indicators on a comparable 
measurement scale (see Table 8).

3.4  Compute results

Once the combinations of normalization(s) and 
aggregation(s) are confirmed by the user, tabular results 
are calculated (see Fig. 2). These include the normalized 

indicators, which allow to directly comparing the alterna-
tives across indicators. In addition, the raw and normalized 
indices, as well as the rankings are provided.

3.5  Visualize results

The results are also shown in a visual form, in order to 
enhance the comprehensibility and the comparability 
between the alternatives (see Fig. 2). The first are indices 
with bar charts according to the normalization methods 
or the aggregation functions, empowering a sensitivity 
analysis on the chosen preference models. The rank fre-
quency matrix, showing the proportion (in %) of indices 
which rank alternative x at the k th position allows to study 
whether a trend in the rankings can be found, and if not, 

Table 6  Aggregation functions used in the MCDA Index Tool (Adapted from Gasser (2019))

Aggregation function Formula Level of compensation Comments

Additive scorec =
∑n

i=1
Iic x wi Full Suitable if the decision-makers’ preference values are linear, 

meaning that the decision-makers accept that the perfor-
mance of indicators can compensate each other. For exam-
ple, low-performing indicators can be fully compensated by 
high-performing indicators

Geometric scorec =
∏n

i=1
Iic

wi Partial Suitable for decision-makers’ who do not accept full compen-
sation between indicators and want to penalize the alterna-
tives that do perform poorly even on only one

This use of this function is not possible if normalized indica-
tors’ values are negative or 0 (lowest performing indica-
tor), as the function cannot be applied. Hence, it is only 
usable with normalized data sets containing strictly positive 
numbers

Harmonic scorec =
n∑n

i=1

wi

Iic

Partial (less than geometric) Same considerations apply as to the geometric. It is even bet-
ter for more “demanding” decision-makers who desire even 
less compensation. It is only usable with normalized data 
sets containing strictly positive numbers

Minimum scorec = min
(
I1c, I2c, ..., Inc

)
None Particularly suitable if stakeholders want the assessment to be 

driven by the worst performing indicator
Median scorec =

∼

I
(
I1c, I2c,… , Inc

) Depends on the distribution 
of the indicators’ values

It allows to identify overall trends as one half of an alterna-
tive’s indicators are above and the other half below the 
median

Low-performing indicators can be overcompensated by well-
performing indicators

scorec : composite score for alternative c
Iic : the normalized value of indicator i for alternative c
wi ∶ weight of indicator i

n: the number of indicators
min(): minimum value of all the indicators∼

I: median of the indicators’ values

Table 7  Example to illustrate the effect of different aggregation functions (Adapted from Gasser (2019))

i1 i2 Additive Geometric Harmonic Minimum Median
A 1 0.01 0.51 0.10 0.02 0.01 0.51
B 0.75 0.25 0.50 0.43 0.38 0.25 0.50
C 0.5 0.5 0.50 0.50 0.50 0.50 0.50

Normalized indicators Aggregation functions
Alternative

Color scale: the best performance is in green, the worst in red. All other values are coloured proportionally by linear interpolation
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for what reason. Lastly, selected combinations can be cho-
sen by the user to visualize the rankings of interest with 
a line graph.

4  Case study description

This Section presents the application of the MCDA Index 
Tool to a case study for the assessment of the energy secu-
rity and sustainability implications of different global 
energy scenarios. The analysis uses the results generated in 
the European Union project SECURE (Security of Energy 

Considering its Uncertainty, Risk and Economic implica-
tions)conducted between 2008 and 2010 (Burgherr et al. 
2016; Eckle et al. 2011). The choice of this case study is 
twofold. Firstly, the establishment of a complete dataset for 
energy scenarios is not trivial, and the SECURE project 
represents one of the few examples of detailed and real-
istic energy modeling on a global scale with a large and 
diversified set of indicators. Secondly, the case study is 
mostly for demonstration of the tool and for this purpose, 
it is more pragmatic and informative to use a real-world 
example that has been extensively analyzed before and is 
well documented.

Table 8  List of the 31 combinations of normalization methods and aggregation functions used in the MCDA Index Tool

Aggregation function Normalization method Comments

1 Additive Rank The additive aggregation function is one of the most used. In order to support 
analysts studying the widest possible variability of the outcomes, it was 
combined with all types of normalization methods

2 Percentile rank
3 Standardized
4 Min–max
5 Target
6 Logistic
7 Categorical (− 1, − 0, − 1)
8 Categorical (0.1, 0.2, 0.4, 0.6, 0.8, 1)
9 Geometric Percentile rank All the normalization methods were used with the geometric function, except 

the rank-based one to avoid redundancy with the combination Geometric—
Percentile rank (the final scores are almost identical)

The treatment of negative and null values was tackled as follows. The stand-
ardized data are linearly transformed to positive numbers by adding x, i.e., 
minimum number to make all values positive (“Standardized + x”)

The range of the min–max normalization method was is modified to [0.1–1] 
and [0.01–1] instead of [0–1]. The target method was set to a minimum 
value of 0.1. Finally, the ternary categorical scale was changed to (0.1, 1, 2) 
and the senary one to (0.1, 0.2, 0.4, 0.6, 0.8, 1)

10 Standardized + x
11 Min–max 0.1–1
12 Min–max 0.01–1
13 Target 0.1
14 Logistic
15 Categorical (0.1, 1, 2)
16 Categorical (0.1, 0.2, 0.4, 0.6, 0.8, 1)

17 Harmonic Percentile rank The same normalization methods and the same treatment of negative and 
null values of the indicators were used for the harmonic function as or the 
geometric function

18 Standardized + x
19 Min–max 0.1–1
20 Min–max 0.01–1
21 Target 0.1
22 Logistic
23 Categorical (0.1, 1, 2)
24 Categorical (0.1, 0.2, 0.4, 0.6, 0.8, 1)
25 Minimum Standardized The minimum function was only applied with the normalization methods 

that allow a diversification of alternatives based on their worst values. This 
is only the case for standardized and logistic normalization methods. The 
others (i.e., rank, percentile rank, min–max, target and categorical) lead 
alternatives to the same minimum values, providing results that are not use-
ful for a comparative analysis

26 Logistic

27 Median Percentile rank The median function was applied to the percentile rank, standardized, min–
max, target and logistic normalization methods

The categorical scales were omitted as they lead to pre-defined normalized 
values, making the methods not suitable for a function that looks at evenly 
splitting an ordered set

The rank normalization method is not included as it is specular to the percen-
tile rank one

28 Standardized
29 Min–max
30 Target

31 Logistic
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In the SECURE project, MCDA was used to comprehen-
sively assess the energy security and sustainability implica-
tions of different global energy scenarios, using 13 indica-
tors. However, only one index was used to score and rank the 
scenarios, resulting from the combination of target normali-
zation and additive weighted sum. The target normalization 
was chosen as the stakeholders preferred the ratios between 
the performances to be maintained. The additive weighted 
sum was used as the aggregation function, assuming that 
full compensation between the indicators was acceptable. 
This research aims to explore the application of an exten-
sive robustness assessment of the results by means of an 
uncertainty and sensitivity analysis on the preference mod-
els. The presented MCDA Index Tool has been developed 
for this specific type of analysis. It is applied to this case 
study to evaluate its capacity to include and visualize mul-
tiple stakeholders’ perspectives, as well as identification of 
trends in the results. A detailed description on the scenarios 
formulation as well the selected indicators is available in 
Eckle et al. (2011). The next sub-sections briefly present the 
alternatives and the indicators used for this illustrative case 
study of the tool.

4.1  Alternatives

In the SECURE project, the alternatives are global energy 
scenarios, which were defined with the Prospective Outlook 
on Long-term Energy Systems (POLES) model (Checci 
et al. 2010). POLES allows the identification of scenarios by 
defining the drivers and constraints for energy development, 
fuel supply, greenhouse gas emissions, international and 
end-user prices, from today to 2050. In total, 14 scenarios 
were analyzed, which consisted of five basic scenarios, and 
three shock conditions combined with the basic scenarios 
that resulted in 9 shock scenarios (Checci et al. 2010; Eckle 
et al. 2011). The basic scenarios included:

• Baseline (BL): development of energy systems until 2050 
in the absence of climate policy. Key characteristics of 
this scenario are that human population grows over nine 
billion in 2050, global real GDP triples, and global pri-
mary energy consumption rises by 70%;

• Muddling through (MT): countries decide to individu-
ally manage their energy needs and security, leading to 

Percentile 

rank

Categorical 6 

points

Input data 

(Fig. 3)

Aggregation 

functions

Define settings: polarity, 

units (optional) (Fig. 4)

Start

Check combinations of normalization methods and aggregation 

functions to generate the indices (Fig. 5)

Additive Geometric Harmonic

Raw indices table

Weighting

Sliding 

bar
Direct input SWING

Normalization 

methods

Rank
Min max Target Minimum Median

Selection of

Standardized Logistic
Categorical 3 

points

Normalized indices 

table (Fig. 6)

Normalized 

indicators

Normalized indices with 

bar charts (Fig. 11)

Rank frequency matrix 

(Fig. 8, 9, 12)

Rankings comparison with 

line graph (Fig. 10, 13)
Rankings table (Fig. 7)

Fig. 2  Flowchart of the MCDA Index Tool. Instructions (grey), input (yellow), menu choices (green), tabular results (blue), graphical results 
(orange)
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non-coordinated efforts to mitigate climate change.  CO2 
stabilizes to above 500 parts per million by 2100;

• Europe alone (EA): climate policy with target of reducing 
GHG emissions by 60% in 2050 compared to 1990 levels 
only in Europe;

• Global regime, full trade (FT): emerging international 
consensus to tackle climate change leads to agreement 
of reducing global GHG emissions by 50% compared to 
1990 levels. Two sub-scenarios are defined. FT 1: two 
global markets for  CO2 (industrialized. vs. developing 
countries) and FT 2: fully integrated, global market for 
 CO2.

The shock scenarios were:

• Nuclear accident (Nuc): due to a nuclear accident the 
phase-out of existing nuclear plants, with a significant 
reduction in Europe by 2050;

• Fossil fuel price shock (Sh): increase in the price of oil 
and gas by a factor of three leads to decrease in their con-
sumption by 10–20% in the short term and an increase in 
nuclear energy;

• No carbon capture and storage (CCS): the deployment 
of CSS does not take place due to safety and economic 
limitations.

The whole set of scenarios considered in the SECURE 
project is summarized in Table 9. There are a few scenarios 
that have not been included in the simulation results as they 
do not substantially differ from other scenarios, and they are 
indicated with a “–” in Table 9. The first is Nuc shock in EA, 
which compares to the MT Nuc scenario, with increasing 
use of fossil fuels to substitute some of the nuclear energy 
and increasing CO2 emissions on a long-term perspective, 
despite available CCS technologies. The second is FT with 
Sh shock, where as a result of a global lower dependence 
on fossil fuels, the price shock has less impact on long-run 
demand for oil and gas than in previous scenarios. Lastly, 
CCS shock in BL is not explicitly shown since CCS plays 
no role in the Baseline scenario, so this shock does not have 
an effect on the results.

4.2  Indicators

The sustainability implications and security of supply of the 
energy scenarios were evaluated with 13 indicators, which 
included indicators from each of the sustainability pillars, 
namely environment, economy and society, and from secu-
rity of supply domain. Table 10 provides a summary of the 
indicators, together with a brief description, the measure-
ment unit and the polarity. Further details on the indica-
tors can be found in Eckle et al. (2011). Compared to the 
analysis within SECURE, where four dimensions provided 
the first level of the hierarchy, and in the case of diversity of 
resources, severe accidents and oil spills there was a second 
hierarchy level, in this case study a flat structure of indica-
tors was used. This choice was driven by the current lack 
of the capability of hierarchical structuring of indicators 
in the tool, which could be a useful avenue for its further 
expansion.

5  MCDA Index Tool in action: application 
to the SECURE project

The MCDA Index Tool was applied to the SECURE project 
case study, using the 14 scenarios in Table 9, characterized 
according to the 13 indicators shown in Table 10. The fol-
lowing Sections describe and illustrate each step of the pro-
cess of applying the tool.

5.1  Upload input data

In the “Input data” page, the.csv file named “Secure_data” 
was imported for analysis as it is shown in Fig. 3.

5.2  Define settings and weighting

In the “Settings and weighting” page, the polarity, meas-
urement unit, and weight can be defined for each indica-
tor (see Fig. 4). In this case, a balanced weighting profile 
was selected, which aims to reduce global emissions in the 
defined scenarios. Therefore, the focus is on worldwide 
instead of European (EU27) emissions (Eckle et al. 2011). 

Table 9  Scenarios developed for the SECURE project (Eckle et al. 2011)

The basic scenarios are in the second row. The 3 × 4 matrix with the shock scenarios is then the combination of basic scenarios and shock events

Basic scenarios
Baseline (BL) Muddling through (MT) Europe alone (EA) Global regime—full 

trade (FT 1 & 2)

Shock events Nuclear accident
(Nuc)

BL Nuc MT Nuc – FT Nuc

Fossil fuel price Shock (Sh) BL Sh MT Sh EA Sh –
No carbon capture & storage (CCS) – MT CCS EA CCS FT CCS
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Table 10  Indicators used to evaluate the scenarios in the SECURE project (Eckle et al. 2011)

↑: positive polarity = the higher the value of the criterion the better; ↓: negative polarity = the lower the value of the criterion the better
The weights represent trade-offs between the indicators

Area Indicators Description Unit Polarity Weight

Environment i1 CO2 emissions world Worldwide  CO2 emissions per capita t  CO2/capita ↓ 0.17
i2 CO2 emissions EU27 EU 27  CO2 emissions per capita t  CO2/capita ↓ 0.08

Economy i3 Energy expenditure world Global energy expenditure per Gross Domestic Prod-
uct (GDP)

USD/GDP ↓ 0.17

i4 Energy expenditure EU 27 EU 27 energy expenditure per Gross Domestic Prod-
uct (GDP)

USD/GDP ↓ 0.08

Society i5 Cumulated number of fatali-
ties from accidents

Cumulated number of fatalities from severe (≥ 5 
fatalities) accidents in fossil, hydroelectric and 
nuclear energy chains

Fatalities ↓ 0.07

i6 Fatalities of worst accident Maximum number of fatalities from severe (≥ 5 fatali-
ties) accidents in fossil, hydroelectric and nuclear 
energy chains

Fatalities ↓ 0.02

i7 Oil spills risk Risk of oil spills, proportional to oil used Mtons ↓ 0.04
i8 Terrorism risk Number of fatalities based on a cumulated terrorism 

risk for EU 27, involving a European Pressurized 
Reactor (EPR), hydropower dam, refinery and Liq-
uified Natural Gas terminal

Fatalities ↓ 0.13

Security of supply i9 Diversity EU27 consumption Diversity index of EU gross inland energy consump-
tion

Factor 0–1 ↑ 0.11

i10 Import independence EU27 Ratio of primary production/gross inland consump-
tion

Factor 0–1 ↑ 0.11

i11 Diversity world oil market Diversity index of net oil exporters from 23 world 
regions

Factor 0–1 ↑ 0.01

i12 Diversity world gas market Diversity index of net gas exporters from 23 world 
regions

Factor 0–1 ↑ 0.01

i13 Diversity world Coal Market Diversity index of net coal exporters from 23 world 
regions

Factor 0–1 ↑ 0.01

Fig. 3  Imported dataset
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Among the security of supply indicators, those with larger 
differences between scenarios received higher weights to 
increase discrimination between scenarios (i.e., Diversity 
EU27 consumption ( i9 ), Import independence EU27 ( i10)). 
As far as social indicators are concerned, lower weight is 
given to Fatalities of worst accident ( i6 ) given to the low 
probability of such an event. Terrorism risk ( i8 ) receives the 
highest weight in this area, while the remaining ones have 
weights in between.

5.3  Choose construction of the SECURE indices

The next step of index development consists in (i) the selec-
tion of the normalization method(s), which allow transform-
ing all the indicators on the same scale and make them com-
parable; and (ii) the choice of the aggregation functions, 
which aggregate all the indicators on the same scale into an 
index. As mentioned in the Sect. 4, only one normalization 
method (i.e., target) and one aggregation function (i.e., addi-
tive average) were used to develop the index in the SECURE 
project. For this combination, additional analysis of the 
weights was conducted to assess when the baseline scenario 
receives the top rank and, in addition, SA on the weights 
was performed to explore the effect of different weighting 
profiles on the rankings (Eckle et al. 2011). However, the 
influence of different preference models on the results was 
not explored. Uncertainty and sensitivity analyses have thus 
been performed to study the variability of the scores and 

ranking of the SECURE scenarios according to different 
normalization and aggregation strategies, which is one of 
the main contributions of this paper.

5.3.1  Uncertainty analysis settings

All the admissible combinations of normalization methods 
and aggregation functions with decreasing compensation 
level (independent from the indicators’ distributions as in 
the case of the median) were selected. The minimum opera-
tor was also excluded, as it is only driven by the worst value 
among the indicators and the requirement from the SECURE 
project was that all the indicators should have contributed to 
the assessment. This results in 24 combinations, i.e., 24 indi-
ces (available in Appendix A of the Electronic Supplemen-
tary Information (ESI)). These settings for the UA ensure to 
consider the combined effect of decision makers accepting 
compensation between indicators from a complete (with 
additive aggregation) to a low (with harmonic aggregation) 
level, as well as ordinal, interval, ratio and sigmoid-based 
harmonization of the raw indicators.

5.3.2  Sensitivity analysis settings

The SA aimed at assessing separately the influence of the 
uncertainty in the MCDA process, by looking specifically 
at the effect of the normalization methods and the aggrega-
tion functions.

Fig. 4  Settings and weighting for the indicators
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As far as the normalization methods are concerned, the 
same aggregation as in the SECURE project (i.e., additive 
average) is used, combined with all the different normaliza-
tion methods, resulting in eight combinations (see Fig. 5). 
This means considering different preferences the DMs/
stakeholders could have with respect to how the raw data 
are made comparable to each other, for example by just con-
sidering the ordinal nature of the data (i.e., rank, percentile 
rank, categorical), the deviation from the mean (i.e., stand-
ardized), the distance from the best performer (i.e., target), 
or by having the same scale range (e.g., min–max).5

As far as the aggregation functions are concerned, the 
same normalization as in the SECURE project (i.e., target) 
is selected, combined with the three aggregation methods 
in decreasing compensation level, resulting in three com-
binations. This allows considering different compensation 
acceptance of the DMs/stakeholders, from full (i.e., addi-
tive), moving to medium (e.g., geometric) until a low level 
(e.g., harmonic).

5.4  Compute results

Once the combinations are defined, the results are computed 
by the tool, which provides two main outcomes. The first is 

the normalized dataset, with one sheet per normalization 
method selected. The other one includes the indices and 
rankings. More specifically, this section consists of the raw 
scores of the indices (named “Scores” in the tool), their nor-
malized scores (named “Scores Normalized” in the tool, see 
Fig. 6) and the rankings (see Fig. 7). The user can directly 
compare the alternatives with the latter two tab panels.

5.5  Results: uncertainty analysis

The results of UA obtained with different combinations of 
normalization methods and aggregation functions is plotted 
by the tool in a rank frequency matrix, as shown in Fig. 8. 
This figure shows the proportion (in %) of the combinations 
leading to each rank position. It is the number of the com-
binations that leads to that specific rank divided by the total 
number of the combinations. The user can move the cursor 
on the number in each box to learn which combination(s) 
rank the alternative under interest at that position. For 
example, the number 4 in Fig. 8 with the “Additive–Target” 
yellow box, indicates that the scenario MT CCS is ranked 
11th in 4% of the combinations (i.e., one out of 24), which 
include additive as the aggregation function and target as 
normalization method.

There are three main findings that can be derived from 
this UA. The first one is that the worst scenarios, irrespec-
tive of the normalization and aggregation, are BL and BL 
Nuc. BL is ranked second to last in 92% of the combina-
tions, while BL Nuc is always in the last position. This is 
not unexpected as BL scenario has no climate policy with 
a global primary energy consumption rise of 70%. In addi-
tion, BL Nuc is even worse because with nuclear phase out, 

Fig. 5  Combinations of normalization methods and aggregation function used in the case study

5 It must be noted that the use of different normalization methods 
implies that different trade-offs between the indicators are accepted 
(Gasser et  al. 2020), which is the case in this case study. This can 
actually be also seen as a sensitivity analysis on the variability of the 
implicit trade-offs between the indicators. Furthermore, when using 
ordinal normalizations, the information of the extent of differences 
between the performances is lost, i.e. not taken into account (OECD 
2008).
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the greenhouse gas emissions increase even more, leading 
it to be the worst performer in five (i.e., i1, i2, i5, i7, i8 ) out of 
the 13 indicators. The second finding is that EA Sh ranks 
robustly within the first four ranks, with a high (i.e., 71%) 
share of combinations assigning it to the first rank. This 
trend can be adducted to the low weights assigned to the 
fatalities-related indicators (i.e., i5 , i6 ), where it does not per-
form as well as on the other indicators compared with the 
other scenarios. The third result is that in more than 80% of 
the combinations, there are three scenarios that compete for 
the first three positions. These are EA Sh, MT Sh, and FT 1. 
As far as the other scenarios are concerned, the UA shows 
that their rank can vary considerably according to the combi-
nation, and no clear trend can be extrapolated. For example, 
FT CCS ranking ranges between the 2nd position to the 12th 
position, while the one for EA CCS is between the 2nd and 
9th position. This motivates even more the need to study the 
effect of the sources of uncertainty on the results, which are 
analysed in the next section with SA.

5.6  Results: sensitivity analysis

5.6.1  Sensitivity analysis on normalization methods

The results of SA on the normalization methods is repre-
sented in a rank frequency matrix and a rankings comparison 
in Figs. 9 and 10, respectively. Figure 9 shows the share of 
the combinations that leads to that specific rank with respect 
to the total number of the combinations (eight in this SA). 
The same ranking results can also be visualized in another 
fashion as presented in Fig. 10, by means of a line chart. 
Based on these two figures, the presence of a trend is vis-
ible. EA Sh and FT 1 are never ranked worse than the 4th 
position, with EA Sh receiving for five out of eight combina-
tions the first rank. The close followers are MT Sh and FT 
CCS, with a relatively equal share of combinations leading 
from the 2nd to the 5th (for FT CCS) and 6th position (for 
MT Sh). BL Nuc emerges as the worst scenario, indepen-
dently from the type of normalization, whereas MT Nuc and 

Fig. 6  Scores normalized window for the comparison of multiple normalization methods
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Fig. 7  Rankings window for the comparison of multiple normalization methods

Fig. 8  Rank frequency matrix for the comparison of 24 combinations of normalization methods and aggregation functions
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Fig. 9  Rank frequency matrix for the comparison of normalization methods

Fig. 10  Ranking comparisons of normalization methods with line graph
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BL consistently rank 12th or 13th and can be considered 
as robustly poor performers. The remaining scenarios rank 
variably in the high-middle (4th) to low (11th) positions 
and there are changes of up to seven ranks, especially for 
scenarios FT 2, EA CCS, and BL Sh.

When compared to the results for all the combinations 
(see Fig. 8), it can be seen that FT CCS never ranks lower 
than 5th (compared to the 12th rank as its worst case in 
Fig. 8) and FT 2 never ranks worse than 8th (compared to the 
11th rank as its worst case in Fig. 8). This finding indirectly 
indicates that the aggregation function has the most signifi-
cant effect on the variability of the output for FT CCS and 
FT 2. On the contrary, EA loses three of its best ranks, and 
MT, BL Sh, and EA CCS each lose two, compared to their 
best case with all the combinations (see Fig. 8).

5.6.2  Sensitivity analysis on aggregation functions

The tool provides a bar graph comparing the normalized 
indices according to the selected normalizations and aggre-
gations. Figure 11 shows the normalized scores of the index 
for each scenario according to different compensatory algo-
rithms. It is clearly visible how FT 1, MT Sh and EA Sh 
consistently score well in all the three aggregations, while 
BL Nuc is always performing very poorly. In addition, there 
are some scenarios like FT 2, FT Nuc and FT CCS, which 
are considerably penalized by a decreasing level of compen-
sation, since they lose more than half of their score as the 
compensatory degree of the aggregation algorithm lowers. 
This is especially caused by their low relative performance 
on i3 = Energy expenditure world and i4 = Energy expendi-
ture EU 27.

Sc
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BL MT EA FT 1 FT 2 BL Nuc MT Nuc FT Nuc BL Sh MT Sh EA Sh MT CCS EA CCS FT CCS
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Fig. 11  Scores normalized window for the comparison of aggregation functions

Fig. 12  Rank frequency matrix for the comparison of aggregation functions. Note the yellow box indicating which combination of normalization 
(i.e., target method) and aggregation (i.e., harmonic function) assigns FT CCS to the 12th rank
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Similarly to the previous set of combinations, also those 
driven by different aggregation functions can be used to 
study the variability of the rankings, as Figs. 12 and 13 con-
firm. They provide a complementary display of the find-
ings, using the ranks of the scenarios instead of their scores. 
Interestingly, the first three scenarios are the same as those 
found for the comparison of combinations of normalization 
methods, namely EA Sh, MT Sh and FT 1. In this case as 
well, EA Sh is one of the best performers, with the additive, 
geometric and harmonic functions assigning it to the 3rd, 
1st and 2nd rank, respectively. MT Sh still performs rela-
tively well, as the additive, geometric and harmonic place it 
in the 4th, 2nd and 1st rank, respectively. It is evident that 
BL Nuc is still the worst performer, with all the combina-
tions placing it in the last position. BL and MT Nuc are also 
ranked in the lower part of the graph as it was the case when 
using different normalization methods. These results also 
emphasize a large rank variability especially for FT CCS 
(from 2nd to 10th and 12th), as well as still notable rank 
changes up to five positions for FT 2, EA, MT and MT CCS. 
As reported above, the low performance on even only one 
indicator causes a remarkable penalization for the scenarios, 
which is especially evident for FT CCS.

6  Discussion

This paper shows the added value of the implementation of 
a web-based software, called MCDA Index Tool, to perform 
in a single place the upload of performance data on a set of 
discrete alternatives, selection of weighting of indicators, 
choice of normalization methods and aggregation func-
tions, and calculation and visualization of indices and rank-
ings. The analyst can learn and perform in a single system 
all the steps that he/she needs to follow once a problem is 
framed and a set of alternatives should be evaluated com-
prehensively with an index, based on a set of indicators. 
The main advantage of this tool is that it empowers the user 
to perform uncertainty and sensitivity analysis on two key 
choices during the development of a CI, the normalization 
and the aggregation stages. With these features, the user 
can study the variability on the results, especially in deci-
sion contexts that involve more than one DM/stakeholder, 
having different requirements on how to normalize and/or 
aggregate the results into an index. These UAs and SAs on 
preference models can be particularly useful in MCDA prob-
lems where there is no clear DM and a multitude of perspec-
tives should be accounted for, like for example in Life Cycle 

Fig. 13  Ranking comparisons of aggregation functions with line graph
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Assessment (Dias et al. 2019). In this case, decisions must 
be taken while accounting for preferences of stakeholders 
with divergent compensatory attitudes. For example, full 
compensation from the industry clearly contrasts with very 
limited compensation from the regulatory or environmental 
interest groups. Another example where the different levels 
of compensation can have a crucial role, especially in the 
interpretation and aggregation stage, is the one of Sustain-
able Development Goals (SDGs) (Muff et al. 2017). In this 
case, there are explicit trade-offs that must be discussed and 
different policymakers can have different perspectives on 
how much one goal can compensate another, which directly 
affects the suitable aggregation function. These UAs and 
SAs could clarify how variable the ranking of the alter-
natives can be when explicitly including these divergent 
perspectives.

This is not a tool to find the “best” approach in general to 
develop an index and rank alternatives. It is rather a platform 
that can be used to explore the impact that different strate-
gies to normalize the raw dataset as well as to aggregate such 
normalized information can have on the final outcome, in 
this case a comprehensive score of performance of the alter-
natives, and consequently on their ranking. It can also be 
used to develop combinations of normalization and aggrega-
tion strategies that satisfy the requirements of the decision 
makers/stakeholders. For example, if they prefer to have a 
normalized dataset with the same range and they desire very 
low compensation between indicators and want to penalize 
the alternatives that do perform poorly even on only one 
criterion, then the combination with min–max normalization 
and the harmonic aggregation can be used.

The tool was used to test the robustness of the model 
developed as part of the EU project SECURE, where only 
one normalization and aggregation was used, which led to a 
single score, hence only one ranking of the alternatives (i.e., 
scenarios) (Eckle et al. 2011). More specifically, only a sin-
gle strategy to normalize the data was chosen and a full com-
pensatory algorithm selected. This raises the question on the 
stability of the results in case of changes with respect to how 
the raw data are made comparable (i.e., at the normalization 
stage) and then aggregated to provide an overall score. This 
type of research question can be addressed by the present 
tool, by conducting a robustness assessment of the scoring 
and ranking of the scenarios, using uncertainty and sensitiv-
ity analysis on the normalization methods and aggregation 
functions. This analysis confirmed that the best scenarios 
include EA Sh, FT 1 and MT Sh, as in the SECURE project. 
Based on the UA results, these scenarios consistently rank 
in the first four positions in more than 80% of the combina-
tions of normalizations and aggregations. One discrepancy 
with the findings in the original SECURE analysis is that FT 
2 does not appear among the best scenarios and it is con-
fined to the middle ranks, possibly because of its relatively 

worse performance on a few key indicators, like global and 
EU energy expenditures ( i6 and i7 ). As far as impact of the 
aggregation function is concerned, most of the results vari-
ability can be seen in scenarios FT CCS (from 2nd to 12th 
rank), FT 2 (from 5 to 10th rank), FT Nuc (from 7 to 11th 
rank), and MT (from 5 to 10th rank) as Figs. 12 and 13 
show. The latter results show how the different degrees of 
compensation of the aggregation functions can drastically 
influence the results for some scenarios. This is particularly 
remarkable for FT CCS, because it was ranked second in 
the SECURE project, while in this research it is found that 
it could be ranked as low as 12th if a less compensatory 
decision maker/stakeholder is accounted for. The worst per-
formers were confirmed with all modeling settings, with BL 
Nuc as the worst one, preceded by BL and MT Nuc, which 
coincide with the results from SECURE.

The added value of the tool is that it allows to dynami-
cally visualize the changes in the scores/ranking of the alter-
natives and understand how:

1. the comparison of the performances between alterna-
tives can be exploited in different forms (only ordinal or 
cardinal differences);

2. the compensatory attitude of the DM can affect the 
results.

This shows (i) robustly ranked scenarios for which even 
a considerable variability of comparison of performances/
compensatory attitude does not affect the rankings consider-
ably (i.e., by a few positions like for EA Sh, BL, BL Nuc) 
and (ii) how unstable scenarios can be identified, like FT 
CCS, FT 2, FT Nuc, BL Sh, EA and MT.

Compared to the single score evaluation, the tool allows 
to discuss the implications that the preferences of different 
decision makers can have on the final scoring/ranking. The 
tool allows to also identify the most unstable alternatives, 
those that require further scrutiny and discussion as their 
overall performance can change considerably according to 
the desired modeling preferences of the DMs/stakeholders. 
From a complementary perspective, the tool allows starting 
with the widest uncertainty in the problem formulation and 
then, possibly according to the DMs/stakeholders’ input, the 
preference models that are not realistic can be deleted.

The tool supports dynamic analysis of the results with the 
rank frequency matrix, especially by means of the yellow 
box indicating which combinations lead to a certain rank 
(see Fig. 12). In fact, this is a valuable feature that can be 
used to support discussions with the DMs, adding a layer of 
transparency to the final results. In addition, the rankings 
comparisons with the line graph let the analyst compare the 
outcomes of the combinations of interest, which can help 
reaching a final decision on the preferred alternative(s), 
according to the preferences of the DMs/stakeholders. In 
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the case study, this could involve individual scenario vari-
ants, for example for the baseline scenarios or the scenarios 
with the same shock events.

Finally, the output variability must also be contextualized 
with respect to the given weighting profile. In other words, 
the tool allows identifying and visualizing relevant patterns, 
which then need to be interpreted by the analyst (or DM if 
he is capable of). It is important to fruitfully use the outputs 
to help devising recommendations for implementation. A 
key contribution of the tool in this regard is that it can visu-
ally facilitate this process, so that it is more understandable. 
For example, in case the DMs/stakeholders have a low com-
pensatory attitude and are particularly interested in possibly 
implementing scenarios within a CCS shock event, then they 
should assess whether there could be measures to improve 
their performance with respect to the fatalities of the worst 
accident ( i6 ) and diversity of resources indicators (i.e., i11 , 
i12 , i13).

7  Conclusions

The MCDA Index Tool (https ://www.mcdai ndex.net/) 
differs from the other MCDA software in that it includes 
several normalization methods and aggregation functions 
and provides the possibility of combining them to develop 
indices and consequently rank alternatives in a comprehen-
sive framework. The structure of the tool allows a dynamic 
development of the index, including the upload of the raw 
data, the selection of the weights, and the choice of the nor-
malization and aggregation strategies. The proposed tool can 
be used by decision analyst as an exploratory strategy during 
the MCDA process, aiding high-level DMs and stakeholders 
to explore the implications that different strategies to develop 
the CI can have on the results. A key advantage of the tool is 
that it empowers the user to study output variability of the 
index by performing uncertainty and sensitivity analysis on 
the preference models. This includes varying the harmoniza-
tion method used to normalize the data (including ordinal, 
interval, ratio, and sigmoid) and the aggregation operator 
(from a full to null compensatory attitude) used to aggre-
gate the normalized indicators in a single score. Another 
notable contribution of this tool consists in the visualization 
of the results, from the scores and the rankings in a tabular 
form to the comparison of the normalization or aggrega-
tion approaches on bar charts. Furthermore, the rankings are 
widely explored with rank frequency matrices and rankings 
line charts, so that the user can clearly assess the robust-
ness of the results, understand which combinations cause 
the wideset variability in the results and further investigate 
combinations of interest that the decision-makers/stakehold-
ers might be mostly interested in. All these functionalities 
are provided in a unique web-based software, which can 

help analysts developing indices while learning about the 
implications behind the choices of certain normalization 
and aggregation strategies, and dynamically assessing the 
changes that these choices have on the results.

The DMs and stakeholders that are involved in MCDA 
processes are normally experts that know the problem well 
and also understand it (at least to some degree), but they 
are (usually) not familiar with MCDA from a mathematical 
standpoint. The MCDA Index Tool provides them with a 
tool to supplement their often-heuristic approaches with a 
formal set of decision analysis instruments. In this way, it 
can support the so-called “formal models” of heuristics (e.g., 
Mousavi and Gigerenzer (2017)) compared to “informal 
models” of heuristics (e.g., Kahneman and Tversky (1982)).

A case study with data from the EU project SECURE 
was used to show all the five steps of the tool, conducting a 
detailed uncertainty and sensitivity analysis for 14 energy 
scenarios by accounting for different data normalization 
strategies and compensatory attitudes of the decision mak-
ers/stakeholders. It was confirmed that most of the best and 
worst scenarios proposed in the SECURE project are stable 
in their respective performance ranges. However, there are 
a few exceptions, indicating that some scenarios can receive 
a very different rank (with up to 10 rank differences), while 
varying the compensatory attitude of the decision makers/
stakeholders. This finding confirms the usefulness of the 
tool to test the stability of rankings driven by a single score.

There are promising research avenues that can be pur-
sued to expand the decision support capabilities of the pro-
posed tool. Firstly, the possibility of including a hierarchical 
structure of the indicators, instead of only a flat one, would 
allow to formulate problems with a large number of indica-
tors in a more well-organized format (Corrente et al. 2013). 
Inspiration can be taken from some of the reviewed software 
including Decerns, Smart Decisions and Web-HIPRE. The 
inclusion of the capacity to use uncertain performances and 
or weights would allow to model multiple preference models 
with a further uncertainty management component (Pelissari 
et al. 2018). Logical decisions can provide several options 
to consider for such a purpose. It could also be interesting 
to embed a global sensitivity analysis package like the one 
proposed by Lindén et al. (2018) to evaluate the implicit 
influence of each indicator driven by the correlation struc-
ture. Furthermore, a summary measure indicating the change 
of rankings for the same alternatives according to different 
combinations could be also used in the tool to enhance the 
high-level assessment of model stability. Several of these 
possible solutions are presented for example in Kadziński 
and Michalski (2016). Lastly, aggregation methods that still 
provide an index could be integrated to account, for exam-
ple, for the interactions between the indicators, such as with 
the Choquet integral (Grabisch and Labreuche 2016).

https://www.mcdaindex.net/


107Environment Systems and Decisions (2021) 41:82–109 

1 3

CIs are developed to evaluate multi-dimensional con-
cepts, for which there is not usually a measure to be used to 
assess how “right” or “wrong” their outcome is. The assess-
ment of a CI is mostly related to the transparency and repro-
ducibility of the process used to develop it (Bouyssou et al. 
2002, 2015; Greco et al. 2019; Nardo et al. 2008). With this 
tool, the authors think that some support is provided to the 
user in that direction, with a key focus on the normalization 
and aggregation steps.
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