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Abstract

Cdc14 protein phosphatases are well known for regulating the eukaryotic cell cycle, particularly during mitosis. Here we
reveal a distinctly new role for Cdc14 based on studies of the microbial eukaryote Phytophthora infestans, the Irish potato
famine agent. While Cdc14 is transcribed constitutively in yeast and animal cells, the P. infestans ortholog is expressed
exclusively in spore stages of the life cycle and not in vegetative hyphae where the bulk of mitosis takes place. PiCdc14
expression is first detected in nuclei at sporulation, and during zoospore formation the protein accumulates at the basal
body, which is the site from which flagella develop. The association of PiCdc14 with basal bodies was supported by co-
localization studies with the DIP13 basal body protein and flagellar b-tubulin, and by demonstrating the enrichment of
PiCdc14 in purified flagella-basal body complexes. Overexpressing PiCdc14 did not cause defects in growth or mitosis in
hyphae, but interfered with cytoplasmic partitioning during zoosporogenesis. This cytokinetic defect might relate to its
ability to bind microtubules, which was shown using an in vitro cosedimentation assay. The use of gene silencing to reveal
the precise function of PiCdc14 in flagella is not possible since we showed previously that silencing prevents the formation
of the precursor stage, sporangia. Nevertheless, the association of Cdc14 with flagella and basal bodies is consistent with
their phylogenetic distribution in eukaryotes, as species that lack the ability to produce flagella generally also lack Cdc14. An
ancestral role of Cdc14 in the flagellar stage of eukaryotes is thereby proposed.
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Introduction

Developmental processes are directed by regulatory proteins

that coordinate cell division, cellular proliferation, and morpho-

genesis. While many regulators are conserved over vast evolu-

tionary distances, many have undergone changes in sequence,

copy number, or function [1,2,3]. Such events have been

determinants of biological diversification during the eukaryotic

radiation.

One regulator with diverged functions is the dual-specificity

protein phosphatase Cdc14. It is best known for its control of

mitotic exit in Saccharomyces cerevisiae, which involves the antago-

nism of cyclin-dependent kinases and is regulated by the

movement of Cdc14 into and out of the nucleolus during the

cell cycle [4]. More recent data indicates that this may not be its

main role in most species, however. For instance, the Cdc14-like

protein of another yeast, Schizosaccharomyces pombe, instead regulates

cytokinesis, entry into mitosis, and septum formation [5]. Even in

S. cerevisiae, evidence is mounting for functions besides mitotic exit,

such as in spindle stabilization and DNA replication [6]. In

metazoans such as Caenorhabditis elegans, humans, mouse, and

Xenopus laevis, many roles in the cell cycle are described including

in cytokinesis, G1/S and G2/M transitions, meiosis, and/or DNA

damage checkpoints, especially in vertebrates which contain two

or more Cdc14 genes [7,8,9,10,11]. Cdc14 of C. elegans also helps

program lineage-specific mitotic blocks during development [12]

and a mouse Cdc14 regulates oocyte maturation [13].

Despite many studies of Cdc14, a unified view of its cellular

function or ancestral role has not emerged. One limitation of

current knowledge is that most research has targeted species in

adjoining phylogenetic clades, in the Fungi/Metazoa group. The

known activities of Cdc14 may therefore not reflect its origins, or

the full diversity of its functions. In this study, we expand our

understanding of Cdc14 through studies of Phytophthora infestans, the

potato late blight agent [14]. P. infestans has a fungus-like growth

habit, but lacks taxonomic affinity with true fungi; it is classified as

an oomycete, and belongs to the Kingdom Stramenopila along

with diatoms and brown algae [15]. P. infestans is an interesting

system for studying Cdc14 since it does not exhibit a classic cell

cycle, instead forming coenocytic hyphae in which nuclei divide

asynchronously [16].

In a prior study, we reported that the expression pattern of the

single Cdc14 gene of P. infestans, PiCdc14, differs strikingly from

that of known homologs [17]. Instead of being regulated post-

translationally like its fungal and metazoan relatives, PiCdc14 is

under strong transcriptional control with its mRNA produced only

when hyphae begin to make asexual sporangia. The absence of

mRNA from vegetative hyphae is due to a lack of transcription

rather than instability [18]. PiCdc14 transcripts persist in

sporangia, which are metabolically active but mitotically quies-
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cent, and in the zoospores that are released from sporangia.

Zoosporogenesis is stimulated by cool conditions and involves the

rapid cleavage of the cytoplasm of each multinucleate sporangium

into six or more mononucleate zoospores, each with two flagella

anchored at basal bodies, in a process that has some resemblance

to cytokinesis in other eukaryotes [19]. PiCdc14 mRNA disappears

after zoospores encyst and form germ tubes, in which mitosis

resumes. Our prior data did not indicate if PiCdc14 protein also

accumulated in spores, but gene silencing blocked sporulation

[17].

Here we further address the role of PiCdc14 in P. infestans and

report a novel activity. PiCdc14 accumulated in nuclei during

early sporulation, based on the use of fusions with green

fluorescent protein (GFP). During zoosporogenesis PiCdc14

became a prominent component of basal bodies, which has not

been described previously in any species. PiCdc14 also interacted

with microtubules in vitro, and overexpression caused abnormal

cleavage of sporangial cytoplasm during zoosporogenesis. Com-

bined with our discovery of a strong evolutionary linkage between

Cdc14 and flagella, this suggests that an ancestral role of Cdc14

may be in basal bodies or other aspects of the development of

flagellated cells.

Results

Localization of PiCdc14 during P. infestans development
N- and C-terminal fusions were constructed between PiCdc14

and GFP and named GFP/PiCdc14 and PiCdc14/GFP, respec-

tively. Similar fusions from other species retained their cellular

activity and distribution [20]. Nevertheless, before expressing GFP/

PiCdc14 and PiCdc14/GFP in P. infestans, whether they would

complement a cdc14ts mutation in S. cerevisiae was tested. We showed

previously that PiCdc14 complements this mutation [17], and

GFP/PiCdc14 and PiCdc14/GFP were found to function similarly.

P. infestans transformants expressing GFP/PiCdc14 or PiCdc14/

GFP behind the native PiCdc14 promoter were then generated.

Both showed similar patterns of expression, which matched

expectations from prior RNA blot and promoter studies of the

native gene [17,18]. Nonsporulating cultures lacked fluorescence,

but expression was observed in young sporulating cultures,

sporangiophores, sporangia, zoospores, and zoospore cysts. Levels

of the PiCdc14 fusion proteins declined as cysts germinated.

Details are presented next, based on observations of paraformal-

dehyde-fixed tissues.

In young sporulating cultures, PiCdc14 was first detected in

short regions of hyphae (Figure 1A). This was not seen in

nonsporulating hyphae, i.e. young or submerged cultures, so likely

represent the initial sites of sporangiophore development. Much of

the signal colocalized with nuclei based on DRAQ5 staining. As

sporulation proceeded, PiCdc14 entered sporangiophores and

then sporangia; this is illustrated in Figure 1B, where most

PiCdc14 has moved into the sporangium, which has not yet

swelled to its final ovoid shape or formed its basal septum.

PiCdc14 shows a clear nuclear signal, and a weaker punctate

cytoplasmic signal.

A similar distribution of PiCdc14 was observed in mature

sporangia, except that bright dots or specks were occasionally seen

adjacent to nuclei, typically facing the sporangial wall (Figure 1C).

The dots became more numerous and pronounced when

sporangia were chilled to initiate zoosporogenesis (Figure 1D).

Nuclei at this stage have acquired a pyriform shape with their

peaks oriented conspicuously towards the PiCdc14 dots. Prior

studies have shown that this site, near the narrow ends of the

nuclei, is the location of the two basal bodies [21].

Zoospores in the swimming stage showed a similar distribution

of PiCdc14 (Figure 1E). PiCdc14 dots were adjacent to the cell

surface, at the presumptive basal bodies near the ventral groove.

These frequently had an elongated appearance or were manifested

as two closely spaced dots, which suggested that Cdc14 associated

with each basal body (Figure 1F). Some PiCdc14 was throughout

the cell, including flagella.

Zoospore encystment involves flagella detachment and cell wall

formation, and this was linked with the elimination of PiCdc14.

One minute after inducing encystment by vortexing, PiCdc14 was

still seen at both presumptive basal bodies and the nucleus

(Figure 1G). After 10 min, PiCdc14 dispersed throughout the

cytoplasm (Figure 1H). During this the nuclei returned to a round

profile, and PiCdc14 fluorescence was eventually lost.

The above patterns were observed in multiple transformants

expressing either the N- and C-terminal GFP fusions. The

distribution was also the same in transformants expressing a

phosphatase-dead version of PiCdc14. In human cells and X. laevis,

catalytic activity is also not required for Cdc14 localization to

centrosomes [9].

While Cdc14 has been localized to nucleoli, centrosomes, or

spindle pole body in yeasts and animal cells, Cdc14 was never

observed at those sites in P. infestans in any developmental stage.

For example, Figure 1D shows that Cdc14 is largely non-nucleolar

during zoosporogenesis. It should be noted, however, that unlike

the situation in yeasts and animals, Cdc14 is not expressed during

the mitotically active stages (i.e. hyphae) of P. infestans. Most

nuclear division ceases at an early stage of sporangiophore

development [22]. Sporangia become multinucleate as a result

of the migration of several nuclei into each sporangium, and not

by division in the developing sporangium [23].

Localization of PiCdc14 in unfixed spores
Compared to the observations listed above for fixed tissues,

slightly different results were obtained from unfixed samples.

While PiCdc14 dots were still near the periphery of unfixed

cleaving sporangia, no nuclear fluorescence was detected

(Figure 1I, J). For example, PiCdc14 can be seen in dots outside,

but not within, nuclei in Figure 1J. This suggests that the affinity of

PiCdc14 for nuclei is transient compared to its more durable

interaction with the presumptive basal bodies. The latter is

consistent with data shown later that suggest some PiCdc14

aggregates with cytoskeletal components.

While fixation can yield artifacts, it is suggested that the fixed

samples described in the previous section (which show a greater

degree of nuclear localization) may better represent the real-case

situation for ungerminated sporangia. This is because unfixed

sporangia, when placed under the microscope at room temper-

ature, start to undergo cytoplasmic changes associated with direct

germination, a process that entails the formation of a hyphal germ

tube instead of zoospores. This involves reorganization of the

cytoplasm and elimination of flagellar proteins in addition to

PiCdc14.

Presence of PiCdc14 in flagella-basal body complexes
(FBBC)

To help confirm the association of PiCdc14 with basal bodies,

FBBCs were isolated from zoospores by a detergent-based method

used with Chlamydomonas [24]. The resulting complexes contain

flagella, two basal bodies, fibers between the basal bodies, and

attached nuclei. When FBBCs were isolated from PiCdc14/GFP-

expressing transformants, microscopic analysis showed that the

fusion protein accumulated at the basal bodies, at flagellar roots

near the tip of pyriform nuclei (Figure 2A).

Cdc14 Association with Flagella
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The concentration of PiCdc14 in the FBBC was demonstrated

further by studying transformants expressing PiCdc14 fused to the

30-aa Strep-Tag. Western blot analysis using Strep-Tag antibody

indicated that PiCdc14 was at least 5-fold enriched in FBBCs

compared to total zoospore proteins (Figure 2B).

Colocalization of PiCdc14 with b-tubulin and DIP13
Additional information about subcellular location was obtained

by labeling PiCdc14/GFP zoospores with anti-b-tubulin, which

detects flagella. As shown in Figure 2C and 2D, flagella (pink

signals) emerge from the points of PiCdc14/GFP accumulation at

the presumptive basal bodies.

Further support for the association of PiCdc14 with the basal

body came from colocalization studies with DIP13. PiDIP13 has

65% amino acid identity with its Chlamydomonas homolog, which is

a known basal body marker [25]. In transformants coexpressing

mCherry/PiDIP13 and PiCdc14/GFP, both labeled structures

near the site of flagella attachment, but the signals were slightly

offset (Figure 3). Often two adjacent specks were seen for PiDIP13,

corresponding to each basal body. While the precise location of

DIP13 in the basal body of other species is unknown, this suggests

that PiCdc14 resides near the edge of each basal body.

PiCdc14 binds microtubules in vitro and forms insoluble
complexes in vivo

Other data indicated the P. infestans protein can bind microtu-

bules, like other Cdc14 proteins [7,11]. This was demonstrated in

co-sedimentation assays in which taxol-stabilized microtubules were

mixed with recombinant PiCdc14 containing maltose binding

protein (MBP) at its N-terminus and a C-terminal Strep-Tag

(Figure 4, top panel). The majority of the 95 kDa MBP/PiCdc14

fusion pelleted when mixed with microtubules. Densitometry

indicated that 65% of MBP/PiCdc14 pelleted in one experiment

(lane P1 vs. S1) and 76% in one performed on a separate day (P2 vs.

S2), compared to 6% in controls lacking microtubules. The fusion

protein appeared unstable during the assay, possibly due to

proteases, resulting in bands smaller than 95 kDa. Western analysis

using antibodies to the Strep-Tag confirmed that the 95 kDa band

co-sedimenting with the microtubules is PiCdc14 and not a

contaminant (Figure 4, bottom left).

Figure 1. Transformants expressing PiCdc14/GFP under control of native promoter. (A) Hyphae in culture induced to sporulate, with GFP
channel (left), red DRAQ5 channel (center), and merged images (right) showing that much PiCdc14/GFP resides in the nuclei. (B) Same as prior row
except illustrating a young sporangiophore, with the sporangiophore and immature sporangium outlined. (C) Two freshly harvested sporangia, with
PiCdc14/GFP concentrated in nuclei and ‘‘dots’’, indicated by arrow. (D) Cleaving sporangia, with PiCdc14/GFP in peripheral dots indicated by arrows.
(E, F) Zoospores with staining in putative basal bodies, with the latter shown at higher magnification with flagella marked in the lower panel. (G, H)
Zoospores fixed 1 and 10 min after inducing encystment, showing GFP, DRAQ5, and merged channels. (I, J) Unfixed sporangia, which can be
compared with the paraformaldehyde-fixed material in the other panels; in panel J the GFP, DRAQ5, and merged channels are shown to stress the
absence of PiCdc14/GFP from nuclei. Bars equal 4 mm in all panels except F–H, where they equal 1 mm.
doi:10.1371/journal.pone.0016725.g001

Cdc14 Association with Flagella
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The above result, coupled with the localization data, prompted

us to investigate whether native PiCdc14 is partially insoluble in P.

infestans, which would be expected for a microtubule or basal body-

associated protein. When proteins from a P. infestans transformant

expressing PiCdc14/StrepTag were centrifuged at 14,0006g, over

80% of PiCdc14 was in the pellet based on Western analysis using

antibody to the tag (Figure 4, bottom right). Similar results were

obtained in Chlamydomonas with DIP13 and other basal body

proteins [26].

Effects of PiCdc14 overexpression
PiCdc14 can release the defect in mitotic exit caused by cdc14ts

in S. cerevisiae, yet is not expressed in the mitotic cells (i.e. hyphae) of

P. infestans [17]. It was thus of interest to test the effect of expressing

PiCdc14 in hyphae. Transformants were made that expressed

PiCdc14/StrepTag or PiCdc14/GFP behind the strong constitu-

tive Ham34 promoter. Analyses of the transformants indicated that

the cellular levels of the tagged versions of Cdc14 ranged from

being about equal to that of native Cdc14 in sporulating hyphae to

five times higher.

Both the PiCdc14/StrepTag and PiCdc14/GFP transformants

exhibited normal nuclear behavior, growth, and sporulation, and

their spores were able to resume nuclear division after germina-

tion. As shown in Figure 5 for hyphae, the size and distribution of

nuclei in controls and transformants were similar. Since

overexpression of Cdc14 causes cellular abnormalities in other

systems [7,9,27,28,29,30], this suggests that PiCdc14 does not

affect mitosis in P. infestans, at least in hyphae. In addition, nuclei

size, number, and the timing of division appeared similar in the

sporangiophores and sporangia of the overexpressing strains.

Compared to hyphae in which mitosis is asynchronous, nuclear

division is synchronous in sporulating tissues [23].

The use of gene silencing to test whether PiCdc14 has a direct

role in zoospore or flagella function is not possible since silencing

prevents the formation of sporangia [17]. However, a role of

PiCdc14 in zoospore formation was revealed by overexpression

studies, which caused major defects in zoosporogenesis. As shown

in Figure 1, zoospores normally have a single nucleus. However,

most zoospores from the overexpressing strains were multinucle-

ate. It was common to observe incomplete cleavage occurring

within sporangia (Figure 5C; compare with Figure 1), zoospores

with 2–3 nuclei (Figure 5D), and multiflagellated ‘‘superzoos-

pores’’ reflecting a total lack of cleavage (Figure 5E). These

abnormalities increased with the level of PiCdc14 expression. For

example, in a transformant expressing PiCdc14/GFP at low levels

based on the intensity of GFP fluorescence, 1264% of zoospores

were multinucleate, and 29613% in a strain with high levels. By

comparison, an average of 1.060.7% of zoospores were

multinucleate in wild type controls, and 1.460.8% in transfor-

mants expressing GFP alone. The number of abnormal zoospores

in strains overexpressing Cdc14/StrepTag also increased with

expression level, ranging from 10 to 73%. Whether this occurs as a

consequence of its interaction with microtubules or interference

with phosphorylation/dephosphorylation events is yet to be

Figure 2. PiCdc14 association with flagellar basal body
complexes. (A) FBBC from strain expressing PiCdc14/GFP, showing
the protein in basal bodies (b), flagella (f), and nuclei (n). (B) Detection
of PiCdc14/StrepTag in purified FBBCs and whole zoospores, using
equal amounts of protein per lane and anti-StrepTag. (C, D)
Colocalization in zoospores of PiCdc14/GFP (green) with flagella (pink,
stained with anti-b-tubulin). Basal bodies and selected flagella are
indicated. Bars represent 2 mm.
doi:10.1371/journal.pone.0016725.g002

Figure 3. Colocalization of PiCdc14 and DIP13. Shown are the
locations of the two proteins in transformants expressing Cdc14 and
DIP3 fused to GFP or mCherry, respectively, in a cleaving sporangium
(top row) and zoospores (bottom rows). Indicated are the basal bodies
(arrowheads) and flagella (F). Bars represent 4 mm.
doi:10.1371/journal.pone.0016725.g003

Cdc14 Association with Flagella
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determined. Nevertheless, this indicates that while PiCdc14 may

not function as a mitotic regulator in hyphae, it might play a role

in cytokinesis during cleavage.

Evolutionary linkage between Cdc14 and flagella
Our finding that PiCdc14 associates with basal bodies and

flagella led to speculation that organisms lacking these structures

would also lack Cdc14. A search of the sequenced genomes of 22

species selected to represent the nine commonly accepted

eukaryotic kingdoms supported the hypothesis (Table 1). Most

notably, no Cdc14-like sequences were detected in H. arabidopsidis,

an oomycete related to P. infestans that is unable to make

zoospores. Cdc14 is likewise absent from higher plants, which

lack flagellated life-stages, but present in lower plants with

flagellated stages such as the moss P. patens and the green algae

C. reinhardtii, a chlorophyte. Significantly, both Cdc14 and flagella

are lost from another chlorophyte, O. tauri.

Two exceptions exist to the association between Cdc14 and

flagella. These are the red algae C. merolae and S. cerevisiae, which

contain Cdc14 but lack flagella. Other Cdc14-containing fungi

such as chytrids have flagella, however.

Comparisons of Cdc14 sequences taken from the species in

Table 1 provide minor insight into the evolution of Cdc14

function. As shown in Figure 6A, Cdc14 proteins contain a usually

short N-terminal region that shows little similarity between species,

a well-conserved central region of about 320-aa that includes the

dual specificity phosphatase motif, and a highly variable C-

terminal region [7]. PiCdc14 fits this paradigm with a short 15-aa

N-terminal extension, a 316-aa conserved central region, and an

85-aa C-terminus. The P. infestans protein is roughly equidistant

between human and budding yeast Cdc14, averaging 39, 53, and

27% identity upstream, within, and downstream of the phospha-

tase domain (Figure 6B). By comparison, S. cerevisiae Cdc14 and

human Cdc14A show 33, 50, and 18% identity in these regions,

respectively.

PiCdc14 lacks an canonical nuclear localization signal (NLS),

unlike some metazoan and S. cerevisiae proteins which contain these

at their N- and C-termini, respectively. A survey of proteins from

the kingdoms listed in Table 1 indicated that most also lack a

canonical NLS, which suggests functional divergence during

evolution. All stramenopile Cdc14s group strongly with each

other but weakly with other groups in phylogenetic analyses (not

shown), providing little insight into which type of Cdc14 they

evolved from. However, a QGD-containing motif of unknown

Figure 4. Complex formation by PiCdc14. Top panel: silver-stained
gel from a microtubule binding assay, in which PiCdc14 fused to MBP
and StrepTag (MBP/Cdc) or MBP alone from E. coli were incubated with
or without microtubules (MT). After centrifugation, pellets (P) and
supernatants (S) were resolved by SDS-PAGE and stained to detect the
95 kDa PiCdc14 fusion band. The strong 55 kDa band is tubulin, and
the strong lower band in the left-most lane is MBP. Lanes S1/P1 and S2/
P2 represent samples from independent experiments. A blank lane was
deleted at the site marked by a vertical line. Lower panels: Western
blots probed with anti-StrepTag. The lower left image shows samples
from the upper gel, and confirms that PiCdc14 binds microtubules in
vitro. The bottom right blot shows the partitioning of PiCdc14/StrepTag
protein from P. infestans between supernatant (S) and pellet (P), and
suggests that most PiCdc14 is insoluble in vivo.
doi:10.1371/journal.pone.0016725.g004

Figure 5. Expression of PiCdc14/GFP using a strong constitutive promoter. Top panels show typical DAPI-stained hyphae from wild type
(A) and Ham34-PiCdc14/GFP transformants (B), which appear similar. Lower panels show abnormal cleavage patterns, including missing cleavage
planes in sporangia, with DRAQ5 highlighting multinuclearity (C); DRAQ5-stained multinucleate zoospores (D); and a GFP image of an uncleaved
‘‘superzoospore’’ (E). These can be compared to normal patterns in Figure 1, where Cdc14 was expressed behind a weaker and spore-specific
promoter. Bars denote 4 mm.
doi:10.1371/journal.pone.0016725.g005

Cdc14 Association with Flagella
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function first noted in C. elegans, human, and X. laevis [20] is

present within PiCdc14 as well as orthologs from other oomycetes

including Pythium (Figure 7). It is not possible to test this motif for

function in P. infestans since gene replacements can not be

performed due to a lack of homologous recombination and

diploidy, but it is notable that the QGD motif exists only in the

oomycete and metazoan orthologs.

Discussion

The original discovery of Cdc14 as a regulator of mitosis in the

S. cerevisiae cell cycle led scientists to search for similar roles in other

fungi and in animals. This resulted in a recognition that Cdc14

activities are more diverse than first thought, but maintained a

focus on its role in cell cycle progression [7]. Our work with P.

infestans, which has a different evolutionary history than the prior-

studied models, has revealed new roles of Cdc14, and raised

questions about its ancestral function and how eukaryotes evolved.

Persuasive evidence for the new roles include our findings that

Cdc14 localizes to basal bodies in P. infestans, and that flagella and

Cdc14 have been generally coinherited during eukaryotic

evolution.

The evolutionary argument for the linkage of Cdc14 with

flagella is particularly compelling when considering groups where

some members coordinately lost both features (i.e. Hyaloperonospora

versus Phytophthora in the Oomycota, and Ostreococcus versus

Chlamydomonas in the Chlorophyta). If Cdc14 was essential for

mitosis, it should have been retained in these phyla after the loss of

flagella. That Cdc14 is not required universally for mitosis is

evident by its absence from higher plants, which also lack

centrioles. The argument that Cdc14 is required for mitosis in

organisms that use centrioles is weakened by the fact that

hCdc14A or hCdc14B are not absolutely essential for cell cycle

progression in human cell lines [31].

Relationships between flagella and mitotic regulators should not

be surprising. Basal bodies are microtubule organizing centers for

flagella, while centrioles are microtubule organizing centers for the

mitotic spindle. Basal bodies and centrioles are structurally related

and interconvert during development in most species [32]. The

accumulation of PiCdc14 at the basal body of P. infestans thus

parallels findings of its homologs at human and frog centrosomes,

and the yeast spindle pole body [7]. Whether flagella-anchoring

basal bodies or centrioles involved in mitosis appeared first during

evolution has been debated, but one theory is that flagella evolved

first as a motility and sensory organelle, and the basal body was

later co-opted into a mitotic role [33,34,35].

This leads to our proposal that an ancestral role of Cdc14 was

to regulate the function or biogenesis of the flagellar apparatus,

an activity that has been maintained in P. infestans. PiCdc14 may

also serve to inhibit mitosis in the motile stage, or transform

centrioles into basal bodies, which may also anchor regulatory

proteins besides Cdc14 [36]. In the common ancestor of animals

and fungi, Cdc14 may have adapted to a function in mitosis in

addition to its role in the flagellated stage. In certain lineages that

lost flagella during evolution, such as S. cerevisiae and S. pombe,

Cdc14 may have been retained to serve regulatory roles during

Table 1. Distribution of Cdc14 and flagella-associated structures among eukaryotes.

Classification Species
Basal
bodies

Flagella or
cilia Cdc14 Centrioles

Alveolata Ciliophora Tetrahymena thermophilia + + + +

" Apicomplexa Toxoplasma gondii + + + +

Amoebozoa Eumycetozoa Dictyostelium discoideum 2 2 2 2

" Archamoebae Entamoeba histolytica 2 2 2 2

Animalia Nematoda Caenorhabditis elegans + + + +

" Chordata Homo sapiens + + + +

" Chordata Xenopus laevis + + + +

Euglenozoa Kinetoplastida Trypanosoma brucei + + + 2

Excavata Percolozoa Naegleria gruberi + + + 2

Fungi Chytridiomycota Batrachochytrium dendrobatidis + + + +

" Ascomycota Saccharomyces cerevisiae 2 2 + 2

Plantae Bryophyta Physcomitrella patens + + + +

" Chlorophyta Ostreococcus tauri 2 2 2 2

" Chlorophyta Chlamydomonas reinhardtii + + + +

" Lycopodiophyta Selaginella moellendorffi + + + +

" Streptophyta Arabidopsis thaliana 2 2 2 2

Rhodophyta Bangiophyceae Cyanidioschyzon merolae 2 2 + 2

Stramenopila Oomycota Phytophthora infestans + + + +

"p Oomycota Hyaloperonospora arabidopsidis 2 2 2 +

"p Oomycota Pythium ultimum + + + +

"p Oomycota Saprolegnia parasitica + + + +

" Bacillariophyta Thalassiosira pseudonana + + + +

Cdc14 sequences were identified from public databases and validated by the reciprocal best Blast strategy. Centrioles includes structures with either standard triple or
singlet tubules [32,43]. Although H. arabidopsidis has not been examined for centrioles, their presence is inferred based on other downy mildews [44].
doi:10.1371/journal.pone.0016725.t001
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mitosis or cytokinesis. Groups with other mitotic mechanisms,

such as higher plants which lack centrioles, could afford to lose

the protein.

A role of PiCdc14 in cytokinesis during zoosporogenesis, i.e.

cleavage, may also exist in light of its ability to bind microtubules.

Certain basal body proteins, as well as some Cdc14s, are known to

interact with microtubules [7,11,25,37]. This might serve several

purposes in P. infestans including anchoring the microtubule rootlet

to basal bodies, or stabilizing the flagellar rootlet during

cytokinesis. Our data do not discriminate between binding to

microtubules at the basal body or elsewhere, but an association

with microtubules driving cleavage [38] is consistent with the

defects seen in transformants overexpressing PiCdc14. Overex-

pression of PiCdc14 may misregulate proteins through excessive

dephosphorylation or sequestration of its substrates. Misexpression

similarly interferes with cytokinesis in many species [28,29,30].

Our overexpression experiments, combined with our earlier

analysis of PiCdc14 transcription and the timing of accumulation of

PiCdc14 protein revealed in this study, suggest that PiCdc14 does

not regulate mitosis during normal growth. This differs strongly

from the situation described in other eukaryotes [4,9,27,29,30].

PiCdc14 could nevertheless still be capable of interacting with its

traditional mitotic substrates in P. infestans. Genes encoding

homologs of traditional yeast and animal substrates such as cyclin,

Figure 6. Structures of Cdc14 proteins. (A) Proteins from the species in Table 1. The sequences are taken from their respective genome
databases, except for the Naegleria, Selaginella, Trypanosoma, and Thalassiosira proteins which are based on manually curated gene models. The
predicted proteins range from 341 to 822-aa as marked to the right of each model. Following a N-terminal region that shows little similarity between
the proteins (yellow), each protein contains a fairly conserved stretch of about 300 aa (red). The latter includes the phosphatase domain which is
marked as pfam00782, with the catalytic residue indicated. The C-terminal portions of the proteins (blue) show little conservation except for a
roughly 85 aa region that is fairly conserved between C. elegans, human, and X. laevis (light blue). This includes the nuclear exit sequence (NES) and
one or two QGD repeats. Nuclear localization signals (NLS) are also marked as detected by PSORTII; these include an experimentally validated NLS
near the C-terminus of the S. cerevisiae protein [45], NLSs in the N-terminal regions of the human and X. laevis proteins which appear to have
functions based on mutagenesis studies [20,46], and a NLS predicted in the C-terminal region of the C. merolae protein. (B) Similarity between Cdc14
of P. infestans, S. cerevisiae, and human Cdc14A. The program SSEARCH was used to calculate the percent amino acid identity in the region upstream,
upstream, and C-terminal to the pfam00782 phosphatase domain. E-values for each match are also provided, which indicate that the similarity at the
C-terminus is insignificant.
doi:10.1371/journal.pone.0016725.g006

Figure 7. Conserved QGD motif in the C-terminal region of
Cdc14. Illustrated are alignments of the region containing the motif,
indicating that QGDKL is conserved within each oomycete and
metazoan Cdc14. Numbers at the right indicate the position within
each protein, and conserved residues are marked at the bottom of the
alignment.
doi:10.1371/journal.pone.0016725.g007
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Polo kinase (Cdc5), and Wee kinase are detected in the P. infestans

genome; that these might be affected by PiCdc14 is suggested by

our finding that the latter can complement a defective version of

cdc14 in S. cerevisiae [17]. However, such traditional targets of

Cdc14 might not be expressed or accessible to the phosphatase

during hyphal growth in P. infestans. This may change during

sporulation, which may also explain why sporulation is blocked by

silencing PiCdc14 [17]. During sporulation PiCdc14 may control

nuclear behavior or monitor novel developmental checkpoints, in

addition to its later role in basal bodies.

Finally, we predict that the presence of Cdc14 in the basal body

is not unique to oomycetes. The lack of prior reports of its

association with cilia or flagella probably reflects the absence of

those structures from the model systems (yeasts and animal

somatic cell lines) that were employed in most studies.

Materials and Methods

Developmental stages of P. infestans
All experiments were performed using isolate 1306, using

cultures grown in the dark at 18uC. Nonsporulating hyphae were

obtained from 3-day rye-sucrose broth cultures inoculated with

104 sporangia/ml. Liquid cultures grown for 5 days (sporulation

begins after 3–4 days) were the source of sporulating hyphae. For

zoospore production, sporangia were collected from 8-day rye-

sucrose agar cultures by flooding the plates with water, rubbing

with a glass rod, and separating sporangia from hyphal fragments

by passage through 50-mm nylon mesh. Indirect germination (i.e.

zoosporogenesis) was induced by placing a sporangial suspension

(105/ml) on ice for about 20 min, followed by incubation at 10uC.

Cleaving sporangia, i.e. sporangia that were in the process of

differentiating zoospores but had not yet released zoospores, were

obtained after about 30 min of incubation at 10uC. Free-

swimming zoospores were obtained after 60 min of additional of

incubation at 10uC, and purified from sporangia by passage

through 15-mm mesh. To stimulate encystment, zoospore

suspensions were adjusted to 0.5 mM CaCl2 and vortexed for

30 sec. Germinating cysts were obtained by incubating the cysts in

water at 10uC for 12 h.

P. infestans transformation
Stable transformants were obtained by treating protoplasts with

plasmids using G418 selection [39]. The plasmids were construct-

ed starting from pSAM or pTOR, which were kindly provided by

F. Mauch. Inserts for these were generated by polymerase chain

reaction as described below, adding restriction sites as needed.

The PiCdc14/GFP construct containing the sporulation-specific

native promoter, i.e. expressing GFP fused to the C-terminus of

PiCdc14, included the PiCdc14 ORF (open reading frame) and

945 bp of upstream DNA. Prior studies had demonstrated that this

promoter region conferred the native pattern of expression [18].

The promoter-ORF fragment was amplified from genomic DNA

and inserted into the EcoRI and NotI sites of pSAM, in front of GFP

which was followed by Ham34 transcriptional terminator [40].

The GFP/PiCdc14 construct was constructed using pTOR as a

backbone, by first inserting the Cdc14 promoter into its KpnI-ClaI

sites, then inserting GFP taken from pSAM into EcoRV-NotI sites,

and finally placing the Cdc14 ORF into the NotI site. The resulting

construct thus expresses the GFP/Cdc14 fusion using the native

promoter and the Ham34 terminator. For constitutive expression,

the PiCdc14-GFP-Ham34 terminator fragment from the

PiCdc14/GFP plasmid was inserted in the EcoRI and XbaI sites

of pTOR, behind the constitutive Ham34 promoter of Bremia

lactucae [40].

Phosphatase-dead constructs were made by mutating Cys277 to

Ser in the catalytic site. This was generated from the PiCdc14/

GFP plasmid by site-directed mutagenesis using the QuikChange

Site-Directed Mutagenesis kit from Stratagene.

The PiCdc14/StrepTag plasmid was made by fusing the Strep-

tag, also known as One-STrEP-Tag [41], to the C-terminus of the

PiCdc14 ORF. This was done by ligating double-stranded

oligonucleotides designed to encode SAWSHPQFEKGGGSGG-

GSGGGSWSHPQFEK using optimal codon usage for P. infestans

to the ORF. The fusion was then joined to its native promoter and

subcloned in pTOR.

The mCherry/PiDIP13 plasmid was made by subcloning the

fluorescent tag from pmCherry (Clonetech) into the ClaI-SpeI sites

of pTOR. The Ham34 promoter in pTOR was then replaced with

a 977 bp promoter from PiDIP13 (gene model PITG_13461 in

the P. infestans database at the Broad Institute of Harvard and

MIT) using KpnI-ClaI sites just upstream of mCherry, and then the

PiDIP13 ORF was inserted downstream of mCherry using SpeI

and SacII.

Lysates and flagella-basal body complexes
Whole cell extracts were made from liquid nitrogen-ground

sporulating hyphae resuspended in 50 mM Tris pH 6.8, 5 mM

EDTA, 10% v/v glycerol, and protease inhibitor cocktail, and

clarified by spinning at 4uC for 10 min at 14,0006g. FBBCs were

isolated by an adaptation of a published method using MT buffer

[24]. This entailed mixing zoospores suspended in MT with an

equal volume of MT plus 2% Triton X-100 and protease

inhibitors. After stirring 10 min on ice, this was layered above

50% Percoll in MT, centrifuged at 14,5006g for 30 min, and then

FBBCs recovered from the interface were diluted in MT, washed

twice, and resuspended in MT. Immunoblots of FBBCs or extracts

were prepared by transferring proteins from SDS-PAGE to

nitrocellulose, incubation with StrepTag antibodies (IBA), and

visualization using the ECL system (GE Healthcare).

Microscopy
Samples were prepared according to Hardham [42]. Fixation

was performed for 30 min in 4% paraformaldehyde, 50 mM

PIPES pH 6.8. Tissues were then pelleted for 5 min at 10006g,

washed twice for 5 min each at room temperature in 100 mM

PIPES buffer, once in PBS (20 mM sodium phosphate, 150 mM

NaCl, pH 7.4), and resuspended in water at 105 cells/ml. Samples

were mounted using Vectashield (Vector Laboratories) as an

antifade agent. DNA staining was performed using 20 mM

DRAQ5 (Biostatus Ltd.).

For immunomicroscopy, fixed samples (15-ml aliquots) were

applied to 8-well glass slides (Nunc) in an equal volume of 0.2%

Triton X-100 in 100 mM PIPES pH 6.8. After 30 min, the wells

were rinsed in water, air-dried for 45 min at 37uC, rehydrated in

PBS (20 mM sodium phosphate, 150 mM NaCl, pH 7.4), and

incubated for 60 min at 37uC with rabbit polyclonal anti-b-tubulin

(Abcam, diluted 1:200 in PBS, 1% BSA). Cells were then washed

three times for 5 min in PBS, incubated with Alexa Fluor 633-

labelled goat anti-rabbit IgG for 60 min at 37uC (Invitrogen,

diluted 1:750 in PBS, 1% BSA), and then rinsed three times in

PBS and once in water.

Imaging was performed using a laser-scanning confocal Zeiss

LSM510 using 636 water or 1006 oil immersion objectives and

the manufacturer’s settings for the desired wavelengths. Initial

image analyses were performed using Zeiss LSM Image Browser

software, and later Adobe Photoshop was used to adjust image

brightness and generate overlays.
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Recombinant protein production
Coding sequences were inserted into pMAL-c2x (New England

Biolabs) and expressed in E. coli BL21. Cultures in 26YT were

induced with 0.3 mM IPTG for 2 h at 37uC, sonicated, and the

fusion protein was purified on amylose resin.

Microtubule binding assay
Input proteins included MBP alone, or a fusion of MBP,

PiCdc14, and Strep-Tag. These were expressed in E. coli, purified

using amylose columns, and exchanged into 80 mM PIPES

pH 7.0, 1 mM EGTA, 1 mM MgCl2 using a desalting column just

prior to the assay. Microtubule binding was measured using the

Microtubule Protein Spin-Down Biochem Assay Kit (Cytoskele-

ton, Inc.) as directed by the manufacturer, using a 100,0006g

centrifugation step. The resulting supernatants and pellets were

resolved by SDS-PAGE and silver-stained.

Yeast transformation
PiCdc14/GFP and GFP/PiCdc14 were tested for their abilities

to complement cdc14ts of S. cerevisiae as described [17]. This

involved expressing the ORFs behind the GAL1 promoter and

testing transformants for growth at 25uC and non- 37uC in the

presence and absence of galactose.
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