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Abstract

Rationale The nonselective muscarinic antagonist scopol-
amine hydrobromide (SCOP) is employed as the gold
standard for inducing memory impairments in healthy
humans and animals. However, its use remains controversial
due to the wide spectrum of behavioral effects of this drug.
Objective The present study investigated whether biperiden
(BIP), a muscarinic ml receptor antagonist, is to be
preferred over SCOP as a pharmacological model for
cholinergic memory deficits in rats. This was done by
comparing the effects of SCOP and BIP using a battery of
operant tasks: fixed ratio (FR5) and progressive ratio
(PR10) schedules of reinforcement, an attention paradigm
and delayed nonmatching to position task.

Results SCOP induced diffuse behavioral disruption, which
included sensorimotor responding (FRS, 0.3 and 1 mg/kg),
food motivation (PR10, 1 mg/kg), attention (0.3 mg/kg,
independent of stimulus duration), and short-term memory
(delayed nonmatching to position (DNMTP), 0.1 and
0.3 mg/kg, delay-dependent but also impairment at the
zero second delay). BIP induced relatively more selective
deficits, as it slowed sensorimotor responding (FRS, 10 mg/kg)
and disrupted short-term memory (DNMTP, 3 mg/kg,
delay-dependent but no impairment at the zero second
delay). BIP had no effect on food motivation (PR10) or
attention.

Conclusion Muscarinic m1 antagonists should be considered
an interesting alternative for SCOP as a pharmacological
model for cholinergic mnemonic deficits in animals.
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Introduction

The muscarinic antagonist scopolamine hydrobromide
(SCOP) is used as the gold standard for inducing deficits
in human and animal models of memory dysfunction.
Justification for this purpose has been provided by the
cholinergic hypothesis of geriatric memory dysfunction
proposed in the early 1980s by Bartus et al. (1982). The
SCOP model is still used extensively for preclinical testing
of new substances designed to treat cognitive impairment
(e.g., Barak and Weiner 2009; Buccafusco et al. 2008;
Cunha et al. 2008; Loiseau et al. 2008; Vaisman and Pelled
2009). However, its use in cognition research is surrounded
by controversy (Hodges et al. 2009; Klinkenberg and
Blokland 2010). SCOP is nonselective in terms of binding
affinity and, depending on its dose, has the capability to
block cholinergic neurotransmission at all muscarinic
receptor subtypes ml1-m5 (Bolden et al. 1992; Bymaster
et al. 2003). As muscarinic receptors are found throughout
the brain and body (Caulfield 1993), SCOP is able to
induce widespread effects.

Systemic injections of SCOP are capable of disrupting
several autonomic nervous system functions. At doses of
0.01 mg/kg and higher, SCOP can reduce salivation (“dry
mouth” side-effect, Dai et al. 1991; Hodges et al. 2009;
Shiraishi and Takayanagi 1993), which may lower respond-
ing in tasks which employ solid food rewards in order to
motivate the animals. Although this problem can be dealt
with by using liquid reinforcers (Hodges et al. 2009), the
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majority of studies still favor dry food pellets (Klinkenberg
and Blokland 2010). Furthermore, most behavioral tasks
also have a strong noncognitive component which can be
influenced by SCOP treatment (e.g., increases in locomotor
activity, response latency, and omissions at doses lower
than 0.03 mg/kg, Bushnell et al. 1997; Klinkenberg and
Blokland 2010; Mirza and Stolerman 2000; Phillips et al.
2000; Sipos et al. 1999). Performance on behavioral tasks
assessing sensory/stimulus discrimination and/or attentional
processes appears to be most susceptible to SCOP treatment
(Hodges et al. 2009). Only if doses higher than 0.1 mg/kg
are administered systemically, robust performance deficits on
a variety of learning and memory tasks are reported
(Klinkenberg and Blokland 2010). Therefore, it has been
argued that acetylcholine is predominantly involved in
mediating discriminatory and attentional processes (Blokland
1995; Everitt and Robbins 1997; Fibiger 1991; Sarter and
Bruno 1997) rather than learning and memory functions
(Bartus et al. 1982). In sum, the validity of SCOP as a tool
for inducing cognitive dysfunction is questionable.

Of note, systemic administration makes it difficult to
dissociate central and peripheral effects. One way to
address this issue is to include an experimental group that
is given methyl-scopolamine, a quaternary form of SCOP
that has the same receptor binding characteristics but
supposedly does not cross the blood-brain barrier when
given at an equivalent dose (Evans 1975; Harvey et al.
1983; Pradhan and Roth 1968). However, several animal
studies have shown that methyl-scopolamine can influence
measures of cognitive performance (e.g., Andrews et al.
1994; Herremans et al. 1995; Moore et al. 1992; Pakarinen
and Moerschbaecher 1993; van Haaren and van Hest 1989).
In addition, methyl-scopolamine cannot control for the
widespread blockade of central muscarinic receptors after
systemic administration of SCOP (Frey et al. 1985).

Several of the muscarinic receptor subtypes ml-m5
might underlie the cognitive effects of SCOP. Muscarinic
m2 presynaptic autoreceptors have an inhibitory effect on
acetylcholine efflux (Bymaster et al. 2003). Hence, m2
antagonists might act as cognitive enhancers by elevating
central cholinergic tone, but behavioral data are mixed
(Carey et al. 2001; Daniel and Dohanich 2001; Messer and
Miller 1988; Quirion et al. 1995). The role of m3 receptors
in cognition is as of yet quite obscure (Bymaster et al.
2003), although one study showed a potential role of m3
receptors in cognition (Poulin et al. 2010). Information on
the involvement of m4 presynaptic autoreceptors and mS5
postsynaptic in cognitive function is also relatively limited
(Wess 2004); there are some indications that the m5
receptor is implicated in central cerebral blood flow and
memory processes (Araya et al. 2006).

Evidence for a role in mnemonic processes in both
rodents and humans is strongest for the postsynaptic
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muscarinic ml receptor (e.g., Conn et al. 2009; Fornari et
al. 2000; Kimura et al. 1999; Kramer-Soares et al. 2006;
Roldan et al. 1997; Wezenberg et al. 2005). This receptor is
predominantly located in brain regions thought to be
important for learning and memory such as cortex and
hippocampus; presence of the m1 receptor in the periphery
is relatively limited (Caulfield 1993; Volpicelli and Levey
2004). Hence, m1 antagonists are considered an interesting
option with regards to finding novel pharmacological
alternatives to induce cognitive impairment which are not
so much hampered by issues of nonselectivity or peripheral
side-effects (Conn et al. 2009).

This is the first study to compare the effects of SCOP
versus the relatively more selective muscarinic m1 antag-
onist biperiden (BIP) (Bolden et al. 1992) on various facets
of behavior. Specifically, we wanted to dissociate behav-
ioral effects of these two drugs on a battery of four operant
tasks: fixed ratio (FRS) and progressive ratio (PR10)
schedules of reinforcement (assessing sensorimotor
responding and food motivation, respectively) versus
performance in an attention task and a delayed nonmatch-
ing to position task (assessing short-term memory). On
basis of the direct comparison between both drugs we
wanted to determine whether BIP would be preferable over
SCOP as a cholinergic memory deficit model.

Methods
Subjects

All experimental procedures were approved by the local
ethical committee for animal experiments at Maastricht
University and met governmental guidelines. Twenty male
3-month-old Wistar rats (Harlan, NL) served as subjects in
this study. To ensure consistency, the same animals were used
in all behavioral tasks. They were housed in pairs in standard
type III Makrolon™ cages on sawdust bedding in an air-
conditioned room (21°C, 45-55% humidity) under a reversed
light/dark cycle (lights on from 7pM. to 7AM.). Rats were
housed in the room in which they were tested. All testing
was performed between 12 and 6pM. Rats had free access to
water, but were subjected to a food deprivation regime from
Monday through Friday, in order to reduce their weight to
about 90% of their free feeding weight. Food was given ad
libitum from Friday afternoon to Sunday afternoon. Food
was taken away at Sunday afternoon which caused a
sufficient appetite at the morning session on Monday.

Apparatus

Rats were trained and tested in 10 identical Skinner boxes
(40x30x33 cm). The ceiling of these conditioning cham-
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bers contained a light that illuminated the conditioning
chamber during experiments. The left and right sidewalls
served as control panels. A recess (5%5 c¢cm), built into the
left side panel 2.5 cm above the grid floor, contained a food
tray with a hinged panel into which a pellet dispenser
delivered 45-mg food pellets (Bioserve TestDiet AIN-76A
rodent tablets, Frenchtown, NJ, USA). Two retractable
stainless steel levers (4 cm wide) projected 2 cm into the
conditioning chamber and were located 6 cm from both
sides of the recess, 12 cm above the grid floor. The
conditioning chambers were enclosed in sound-attenuating
housing. Background noise was produced by a radio and an
exhaust fan. A personal computer controlled the experi-
mental equipment and collected the data.

Fixed ratio (five) task

Rats first underwent five magazine training sessions and
were then subjected five times to continuous reinforcement
(CRF). Next the rats were trained on a fixed ratio schedule
of reinforcement, in which they had to press a lever for five
times (FRS5) in order to obtain a 45-mg food reward.
Reinforcement was continuous; i.e., each set of five lever
presses was rewarded. A session was terminated after 60
trials or 30 min, whichever came first. Rats were trained
once a day, Monday to Friday, and were given eight FRS
sessions before drug testing started. The measure used to
evaluate performance on the FRS schedule was inter-
response time (i.e., time between consecutive lever presses
which was averaged for each animal).

Progressive ratio (ten) task

After finishing drug testing in the FRS task, rats immedi-
ately started training on a progressive ratio (PR10) schedule
of reinforcement (Hodos 1961). PR tasks are generally used
to assess the reinforcing efficacy of a particular type of
reward. The rats had to progressively increase the response
requirement (steps of ten lever presses) to obtain a food
reward. For the first food pellet they were required to press
ten times, for the next reinforcement they had to press the
lever twenty times, and so on. A session was terminated if a
rat did not press the lever for 3 min. Rats were trained once
a day, Monday to Friday, and were given eight PR10
sessions before drug testing started. The measure used to
evaluate performance in the PR10 task was breakpoint (i.e.,
number of lever presses made during a session).

Attention task
After the PR10 task, the rats were subjected to one CRF

session before they started training in an attention task.
During this task, a light stimulus was presented either on

the left side or on the right side of the food reward tray. The
duration of the light stimulus varied randomly between 3, 1
and 0.3 s. One second after the light stimulus was
extinguished, the two levers were inserted simultaneously.
When the rat hit the lever on the side of the prior light
stimulus (correct response), the rat was rewarded with a
food pellet followed by an inter-trial interval of 5-10 s.
When the rat hit the lever on the opposite side of the
previous light stimulus (incorrect response), the rat was not
rewarded and a time-out period of 5 s was followed by an
inter-trial interval (ITI). When the rat did not hit a lever
within 3 s (omission), the rat was not rewarded and both
levers were retracted followed by a time-out period of 5 s
and an ITI. A session was terminated after 80 trials or
40 min, whichever came first. A more detailed descrip-
tion of this task is provided by Hoff et al. (2007). Rats
were trained once a day, Monday to Friday. The derived
behavioral measures were percentage correct, percentage
omissions, response time (averaged over all stimulus
durations) and two signal detection theory derived
measures:

1. The sensitivity index (SI): a signal detection measure
for discriminability which was calculated as follows:
Si=(h—f)/(2(h+f)— (h+f)2), where h=(correct
left)/(correct left+incorrect right) and f=(incorrect left)/
(incorrect left+correct right). A value of zero reflects no
discrimination whereas a value of 1 reflects perfect
discrimination.

2. Index Y: asignal detection derived variable for evaluating
a response bias. This parameter is calculated as follows:
(percentage correct left — percentage correct right)/
(percentage correct left 4+ percentage correct right).

A more detailed description of SI, index Y, and other
signal detection measures can be found elsewhere (Steckler
2001).

Delayed nonmatching to position

After the rats had finished drug testing on the attention task,
they immediately started training in a nonmatching to
position task, to which subsequently delays were added.
This paradigm consisted of two stages: a sample and a
choice phase. In the sample phase, one of the two levers
was inserted into the operant chamber. After the rat had
pressed the sample lever, it was retracted and the rat was
required to poke its nose against the hinged panel which
gave access to the pellet magazine (positioned equidistantly
between the two levers). This was done in order to prevent
the rats from using a behavioral strategy (i.e., mediating
behavior, Herremans and Hijzen 1997) to perform the
delayed nonmatching to position (DNMTP) task (e.g., after
pressing a lever they can move to the other side and wait

@ Springer



552

Psychopharmacology (2011) 215:549-566

for the lever to come out). More than one panel press or
keeping the nose in the food tray was without consequence.

After the rat had pushed the panel at least once and had
pulled its nose out of the food hopper, both levers were
inserted (the choice phase) and the rat was required to press
the lever opposite to the one in the sample phase. It was
physically not possible for an animal to keep its nose in the
pellet magazine and press the levers, as the food hopper and
response levers were placed too far apart. A nonmatching
lever-press was continuously reinforced with a food reward.
There was a 5-s time-out period (and no food reward) when
the lever pressed in the “choice” phase was the same one as
in the “sample” phase (i.e., when the response was
incorrect). The ITI was always 8 s (also in subsequent
testing in the DNMPT task). A session was terminated after
80 trials or 60 min, whichever came first. No limited hold
period was used for the sample or choice phase, which
means that no omission errors were recorded. A more
elaborate description of the nonmatching to position
(NMTP) training can be found elsewhere (Blokland et al.
2004; Prickaerts et al. 1999).

Rats were trained once a day, Monday to Friday and
received five NMTP training sessions and one forced
choice NMTP session (in which the task was continued
only after a correct response was given) before delay
intervals were being introduced in between the sample and
choice phase. The duration of the delays was gradually
increased over successive training sessions over a period of
about 2.5 weeks. In order to speed up DNMTP training rats
now received two daily sessions. The delay interval was
randomly chosen from the following five alternatives: 0, 2,
4, 8, or 16 s. The animals were able to keep their nose in
the food hopper during the delays or press the food panel
repeatedly without any consequence, but could not press
the levers as these were retracted during the delay. In
previous studies, we have not observed the animals
developing a mediating strategy while performing the
DNMTP task (e.g., Blokland et al. 2004), as they were
required to press the panel of the food well before the
choice phase was presented. The measures used to evaluate
performance in the DNMTP were percentage correct,
response time (averaged over all delays), SI and index Y
(see “Attention task™ for more information on these last two
parameters).

Drug treatment

Dose range and pretreatment time were chosen based on
previous SCOP and BIP data (e.g., Hodges et al. 2009;
Jones and Shannon 2000). Dose conditions were deter-
mined according to their position on a logarithmic scale.
For example, BIP doses were 1, 3, and 10 mg/kg. When
converted to logarithms, these values are approximately
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equally spaced: 0.0, 0.5, and 1.0, respectively. Doses were
titrated on basis of behavioral effects found in our essay.
Scopolamine hydrobromide trihydrate 99% (hereafter ab-
breviated as SCOP, obtained from Acros Organics) was
dissolved in isotonic saline in doses 0, 0.1, 0.3, and 1 mg/
kg (milligrams salt per kilogram of body weight), whereas
biperiden lactate (hereafter abbreviated as BIP, Akineton®
obtained from Laboratorio Farmaceutico S.I.T.) was dis-
solved in Milli-Q purified water in doses 0, 1, 3, and
10 mg/kg (milligrams salt per kilogram of body weight).
We used quite high doses of SCOP and BIP (1 and 10 mg/
kg, respectively) as an upper limit at which—certainly in
case of SCOP—serious behavioral side-effects were
expected. All drug solutions were prepared freshly each
day prior to testing. SCOP and BIP were both injected in a
volume of 2 ml/kg (IP) with a pretreatment time of 30 min.
Each drug dose was tested once per rat per test. On each
testing day, only one SCOP and one BIP dose was given,
with half of the rats receiving SCOP and the other half
receiving BIP. The order of doses was semi-randomized
over testing days.

Repeated testing

Repeated testing of drugs in the same group of animals
offers several advantages over between-group studies (e.g.,
better statistical power). However, this particular type of
design can be associated with tolerance, drug sensitivity
and carry-over effects. To ensure sufficient wash-out of the
drug, testing days were always separated by at least one
drug-free day on which the animals received FRS5, PR10,
attention task or DNMTP training. Frequency of adminis-
tration and dose level were kept as low as possible (i.e., no
higher doses were tested than those yielding a significant
behavioral effect). This procedure minimized the number of
injections each rat received. In order to further minimize
group differences due to receptor changes, the drug that
was given (SCOP or BIP) alternated between groups for the
different behavioral tasks; i.e., ten rats received only SCOP
doses and the other ten only received BIP doses during testing
of one paradigm. When testing of the next behavioral test
started this order was reversed: rats which had previously
received SCOP, now received BIP and vice versa.

Statistical analysis

Data were analyzed by parametric analysis of variance
(mixed model analysis of variance (ANOVA); SPSS 15.0)
with dose as within-subject variable and drug as between-
subject variable. In case an interaction with drug and/or a
main effect of drug was found, a repeated measures
ANOVA was performed for each drug separately, with dose
as within-subject variable (and possibly stimulus duration
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or delay). Hence, drug effects of SCOP and BIP were
compared with their own vehicle condition: i.e., SCOP with
saline and BIP with Milli-Q. For the analysis of the
attention task and the DNMTP, stimulus duration and delay
were added as additional within-subject variables, respec-
tively. In case a significant dosexstimulus duration or
dosexdelay interaction was reported, several repeated
measures ANOVAs were run separately for stimulus
duration or delay, respectively. One exception was the
measure response time; here, data were averaged for each
animal and collapsed across stimulus duration or delay.
Differences from vehicle conditions were always examined
with a least significant difference post hoc test. Due to
some mechanical issues, occasionally data of nine rats were
used for analysis.

Results
Fixed ratio (five) task

Three rats failed to complete 60 trials within 30 min after a
dose of 1 mg/kg SCOP. Figure 1 shows the effects of SCOP
and BIP on inter-response time in a FRS schedule of
reinforcement. In the mixed model ANOVA, the within-
subject effect of dose on inter-response time varied per level
of drug (dosexdrug interaction effect; F(3, 48)=10.77; P<
0.001). Therefore two separate repeated measures ANOVAs
for the different levels of drug were performed. For the
group treated with SCOP, inter-response time in the FRS task
was increased (main effect of dose; F(3, 24)=12.82; P<
0.001; see Fig. 1a). Post hoc analysis showed that the 0.3
(P<0.05) and 1 mg/kg (P<0.01) doses slowed responding.
In the group treated with BIP, there was an increase in FR5
inter-response time (main effect of dose; F(3, 24)=7.80; P<
0.01; see Fig. 1b). Post hoc analysis indicated only an effect
of the high 10 mg/kg dose (P<0.01)

Progressive ratio (ten) task

Figure 2 shows the effects of SCOP and BIP on breakpoint
and inter-response time on a PR10 schedule of reinforce-
ment. In the mixed model ANOVA, the within-subject
effect of dose on breakpoint did not vary per level of drug
(no dosexdrug interaction effect; F(2, 36)=0.77, n.s.).
Furthermore, breakpoint was differentially affected by dose
(main effect of dose; F(2, 36)=5.57; P<0.01). The
between-subject analysis of drug showed that SCOP and
BIP differentially affected breakpoint (main effect of drug;
F(1, 18)=5.93; P<0.05). Therefore, two separate repeated
measures ANOVAs for the different levels of drug were
performed. For the group treated with SCOP, breakpoint in
the PR10 task was reduced (main effect of dose; F(2, 18)=
3.91; P<0.05; see Fig. 2a). Post hoc analysis showed an
effect of the 1 mg/kg dose (P<0.05). For the group treated
with BIP, no change in breakpoint (no main effect of dose;
F(2, 18)=2.10, n.s.; see Fig. 2b) was found.

In the mixed model ANOVA, the within-subject effect
of dose on inter-response time did not vary per level of
drug (no dose x drug interaction effect; F(2, 36)=0.38, n.s.;
see Figs. 2c¢ and 2d). The within-subject analysis of dose
was not significant (no main effect of dose; F(2, 36)=3.04,
n.s.), which means that the different dose conditions also
did not change inter-response time. The between-subject
analysis of drug showed that SCOP and BIP did not
differentially affect inter-response time (no main effect of
drug; F(1, 18)=0.32, n.s.).

Attention task

Figure 3a, b shows the effects of SCOP and BIP on
percentage correct in the attention task. In the mixed
model ANOVA, the within-subject effect of dose on percent-
age correct did not vary per level of drug and stimulus
duration (no dosex drugx stimulus duration interaction effect;
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F(4, 68)=0.75, n.s.). However, the within-subject effect of
dose on percentage correct did vary per level of drug (dose x
drug interaction effect; F(2, 34)=7.96; P<0.01). The within-
subject effect of stimulus duration on percentage correct was
also different per level of drug (stimulus durationxdrug
interaction effect; F(2, 34)=3.82; P<0.05). Therefore sepa-
rate repeated measures ANOVAs for the two levels of drug
were performed. In the group treated with SCOP, the within-
subject effect of stimulus duration on percentage correct was
not different per level of dose (no stimulus durationxdose
interaction effect; F(4, 36)=0.83, n.s.; see Fig. 3a). There
was a reduction in percentage correct responses with shorter
stimulus durations (main effect of stimulus duration;
F(2, 18)=40.06; P<0.001). SCOP decreased percentage
correct responses in the attention task (main effect of dose;
F(2, 18)=20.55; P<0.001). Post hoc analysis showed that at
a dose of 0.3 mg/kg SCOP lowered percentage correct score
as compared with the vehicle condition (P<0.01). In the
group treated with BIP, the within-subject effect of stimulus
duration on percentage correct was not different per level of
dose (no stimulus durationxdose interaction effect;
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F(4, 32)=0.36, n.s.; see Fig. 3b). Moreover, shorter stimulus
durations reduced percentage correct (main effect of stimulus
duration; F(2, 16)=149.29; P<0.001). BIP treatment did not
affect the measure percentage correct (no main effect of
dose; F(2, 16)=2.69, n.s.).

Figure 3c, d shows the effects of SCOP and BIP on
percentage omissions in the attention task. In the mixed
model ANOVA, the within-subject effect of dose on
percentage omissions did not vary per level of drug and
stimulus duration (no dose*drugxstimulus duration inter-
action effect; F(4, 68)=0.98, n.s.). The within-subject effect
of stimulus duration on percentage omissions was also
not different per level of drug (no stimulus durationx
drug interaction effect; F(2, 34)=1.16, n.s.). In contrast,
the within-subject effect of dose on percentage omissions
did vary per level of drug (dosexdrug interaction effect;
F(2, 34)=6.98; P<0.01). Therefore, separate repeated
measures ANOVAs for the two levels of drug were
performed. In the group treated with SCOP, the within-
subject effect of stimulus duration on percentage omissions
was not different per level of dose (no stimulus duration x dose
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interaction effect; F(4, 36)=0.95, n.s.; see Fig. 3c). There
was no change in percentage omissions with shorter stimulus
durations (no main effect of stimulus duration; F(2, 18)=
1.70, n.s.). SCOP enhanced percentage omissions in the
attention task (main effect of dose; F(2, 18)=15.66; P<
0.001). Post hoc analysis showed that at a dose of 0.3 mg/kg

SCOP augmented percentage omissions as compared with
the vehicle condition (P<0.01). In the group treated with
BIP, the within-subject effect of stimulus duration on
percentage omissions was not different per level of dose
(no stimulus durationxdose interaction effect; F(4, 32)=
0.61, n.s.; see Fig. 3d). Moreover, shorter stimulus durations
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had no effect on percentage omissions (no main effect of
stimulus duration; F(2, 16)=0.01, n.s.). BIP treatment did
not affect the measure percentage omissions (no main effect
of dose; F(2, 16)=3.31, n.s.).

Figure 3e, f shows the effects of SCOP and BIP on
response time in the attention task. The within-subject
effect of dose on response time was found to vary per level
of drug (dosexdrug interaction effect; F(2, 34)=5.59; P<
0.01). Therefore, separate repeated measures ANOVAs for
the two levels of drug were performed. In the group treated
with SCOP, response time was slowed (main effect of dose;
F(2, 18)=27.74; P<0.001; see Fig. 3e). Post hoc analysis
showed an effect of the 0.3 mg/kg dose (P<0.001). In the
BIP group, response time was also significantly changed
(main effect of dose; F(2, 16)=4.28; P<0.05; see Fig. 3f).
However, post hoc analysis revealed no differences be-
tween vehicle and dose conditions.

Figure 4a, b shows the effects of SCOP and BIP on
SI in the attention task. In the mixed model ANOVA,
the within-subject effect of dose on SI did not vary per
level of drug and stimulus duration (no dosexdrugx
stimulus duration interaction effect; F(4, 68)=1.34, n.s.).
However, the within-subject effect of dose on SI did vary
per level of drug (dosexdrug interaction effect; F(2, 34)=
6.30; P<0.01). The within-subject effect of stimulus
duration on SI was also different per level of drug
(stimulus durationxdrug interaction effect; F(2, 34)=
4.63; P<0.05). Therefore, separate repeated measures
ANOVAs for the two levels of drug were performed. In
the group treated with SCOP, the within-subject effect of
stimulus duration on SI varied per level of dose (stimulus
duration xdose interaction effect; F(4, 36)=2.82; P<0.05;
see Fig. 4a). Hence, separate repeated measures ANOVAs
were performed per level of stimulus duration. Post hoc
analyses showed that SCOP reduced SI at al stimulus
duration conditions. In the group treated with BIP, the
within-subject effect of stimulus duration on SI was not
different per level of dose (no stimulus durationxdose
interaction effect; F(4, 32)=0.12, n.s.; see Fig. 4b).
Shorter stimulus durations reduced SI (main effect of
stimulus duration; F(2, 16)=151.65; P<0.001). BIP
treatment did not affect the measure SI (no main effect
of dose; F(2, 16)=1.15, n.s.).

Figure 4c, d shows the effects of SCOP and BIP on
index Y in the attention task. In the mixed model ANOVA,
the within-subject effect of dose on response bias did not
vary per level of drug and stimulus duration (no dosex
drugxstimulus duration interaction effect; F(4, 68)=0.68,
n.s.). The within-subject effect of stimulus duration on
index Y was also not different per level of drug (no stimulus
duration xdrug interaction effect; F(2, 34)=0.11, n.s.). The
within-subject effect of dose on response bias did not vary
per level of drug (no dosexdrug interaction effect;
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F(2, 34)=1.53, n.s.). Index Y was differentially affected
by dose (main effect of dose; F(2, 34)=4.00; P<0.05). Post
hoc analysis showed that the highest dose conditions of
SCOP and BIP augmented index Y as compared with the
vehicle condition (P<0.05). However, the between-subject
analysis of drug showed that SCOP and BIP did not
differentially affect index Y (no main effect of drug;
F(1, 17)=3.13, n.s.). Because we sought to determine
which drug was responsible for the main effect of dose in
the mixed model analysis, we did separate repeated
measures ANOVAs per level of drug. In the group treated
with SCOP, the within-subject effect of stimulus duration
on index Y was not different per level of dose (no stimulus
durationxdose interaction effect; F(4, 36)=0.32, n.s.; see
Fig. 4c). There was a change in index Y with shorter stimulus
durations (main effect of stimulus duration; F(2, 18)=12.40;
P<0.001). SCOP did not affect the index Y measure (no
main effect of dose; F(2, 18)=3.35, n.s.). In the group
treated with BIP, the within-subject effect of stimulus
duration on SI was not different per level of dose (no
stimulus durationx dose interaction effect; F(4, 32)=1.79,
n.s.; see Fig. 4d). Shorter stimulus durations reduced SI
(main effect of stimulus duration; F(2, 16)=15.22; P<
0.001). BIP treatment did not affect the measure SI (no
main effect of dose; F(2, 16)=1.48, n.s.).

Delayed nonmatching to position

Figure S5a, b shows the effects of SCOP and BIP on
percentage correct in the DNMTP task. In the mixed model
ANOVA on percentage correct, the dose effect varied per
level of delay and drug (dosexdelayxdrug interaction
effect; F(8, 144)=3.69; P<0.01). Therefore, separate
repeated measures ANOVAs for the two levels of drug
were performed. In the group treated with SCOP, the
within-subject effect of delay on percentage correct was
different per level of dose (delay*dose interaction effect;
F(8, 72)=3.84; P<0.01; see Fig. 5a). Hence, additional
repeated measures ANOVAs were performed per level of
delay. SCOP affected percentage correct at the 0-, 2-, 4-,
and 8-s delay conditions (main effect of dose; F’s(2, 18)>
9.23; P<0.01). Post hoc analyses showed that a dose of
0.3 mg/kg was different from the vehicle condition. In
addition, a dose of 0.1 mg/kg also affected accuracy
performance at the 8-s delay condition. SCOP had no
effect on percentage correct at 16-s delay condition (no
main effect of dose; F(2, 18)=0.31, n.s.).

In the group treated with BIP, the within-subject effect of
delay on percentage correct was different per level of dose
(delay xdose interaction effect; F(8, 72)=2.30; P<0.05; see
Fig. 5b). Hence, separate repeated measures ANOVAs were
performed per level of delay. BIP did not affect percentage
correct at the 0- and 16-s delay condition (no main effect of
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dose; F’s(2, 18)<2.95, n.s.). However, BIP impaired per-
centage correct in trials with a 2-, 4-, and 8-s delay (main
effect of dose; F’s(2, 18)>5.84; P<0.05). Separate post hoc
analyses demonstrated that the 3 mg/kg dose decreased
percentage correct as compared with the vehicle condition.
Figure 5c, d shows the effects of SCOP and BIP on
response time in the DNMTP task. The within-subject effect
of dose on response time did not vary per level of drug (no
dosexdrug interaction effect; F(2, 36)=2.06, n.s.). There
was no effect of dose (no main effect of dose; F(2, 36)=
1.06, n.s.). SCOP and BIP did not differentially affect
response time (no main effect of drug; F(1, 18)=1.44, n.s.).
Figure 6a, b shows the effects of SCOP and BIP on SI in
the DNMTP task. In the mixed model ANOVA on SI, the
dose effect varied per level of delay and drug (dosex
delay xdrug interaction effect; F(8, 144)=3.68; P<0.01).
Therefore, separate repeated measures ANOVAs for the two
levels of drug were performed. In the group treated with
SCOP, the within-subject effect of delay on SI was different
per level of dose (delay x dose interaction effect; F(8, 72)=
3.84; P<0.01; see Fig. 6a). Hence, additional repeated
measures ANOVAs were performed per level of delay. In the

Stimulus duration (s)

0-, 2-, 4-, and 8-s delay trials a main effect of dose was found
(F’s(2, 18)>9.23; P<0.01). Separate post hoc analyses
showed that at a dose of 0.3 mg/kg SCOP reduced SI as
compared with the vehicle condition. In addition a dose of
0.1 mg/kg also affected performance at the 8-s delay
condition. SCOP had no effect on SI in trials which used a
16-s delay (no main effect of dose; F(2, 18)=0.31, n.s.).

In the group treated with BIP, the within-subject effect of
delay on SI was different per level of dose (delay*dose
interaction effect; F(8, 72)=2.30; P<0.05; see Fig. 6b).
Hence, separate repeated measures ANOVAs were per-
formed per level of delay. In trials with a 0- or 16-s delay
BIP did not affect SI (no main effect of dose; F’s(2, 18)<
2.95, n.s.). BIP did influence SI in trials a 2-, 4-, and 8-s
delay (main effect of dose; F’s(2, 18)>5.84; P<0.05). Post
hoc analysis revealed that the 3 mg/kg dose decreased SI as
compared with the vehicle condition (P<0.01).

Figure 6c, d shows the effects of SCOP and BIP on
index Y in the DNMTP task. In the mixed model ANOVA,
the within-subject effect of dose on response bias did not
vary per level of drug and delay (no dosexdrugxdelay
interaction effect; F(8, 136)=1.13, n.s.). The within-subject
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Fig. 5 The effects of SCOP
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effect of delay on index Y was also not different per level of
drug (no delayxdrug interaction effect; F(4, 68)=0.43,
n.s.). Moreover, the within-subject effect of dose on
response bias did not vary per level of drug (no dosexdrug
interaction effect; F(2, 34)=3.06, n.s.). The within-subject
effect of dose on index Y was also not different per level of
delay (no dose x delay interaction effect; F(8, 136)=1.78, n.s.).
Index Y was differentially affected by dose (main effect of
dose; F(2, 34)=22.24; P<0.001). The between-subject anal-
ysis of drug showed that SCOP and BIP did differentially
affect index Y (main effect of drug; F(1, 17)=4.49; P<0.05).
Therefore, separate repeated measures ANOVAs for the two
levels of drug were performed. In the group treated with
SCOP, the within-subject effect of delay on response bias was
not different per level of dose (no delayxdose interaction
effect; F(8, 64)=1.67, n.s.; see Fig. 6¢). Index Y increased
with longer delays (main effect of delay; F(4, 32)=12.28; P<
0.001). SCOP enhanced response bias in the DNMTP task
(main effect of dose; F(2, 16)=11.62; P<0.01). Post hoc
analysis showed that at a dose of 0.3 mg/kg SCOP augmented
index Y as compared with the vehicle condition (P<0.01). In
the group treated with BIP, the within-subject effect of delay
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on index Y was not different per level of dose (no delay x
dose interaction effect; F(8, 72)=1.29, n.s.; see Fig. 6d).
Moreover, with longer delays response bias was increased
(main effect of delay; F(4, 36)=18.92; P<0.001). BIP was
shown to increase response bias in the DNMTP task (main
effect of dose; F(2, 18)=12.55; P<0.001). Post hoc analysis
showed that at a dose of 3 mg/kg BIP augmented index Y as
compared with the vehicle condition (P<0.01).

Discussion

The main objective of the current study was to compare the
effects of the nonselective muscarinic antagonist SCOP and
the m1 antagonist BIP after systemic injections on different
aspects of operant behavior: sensorimotor responding
(FRS), food motivation (PR10), attention and short-term
memory (DNMTP). The direct comparison of both drugs
allowed evaluation with respect to the usability of BIP, as
opposed to SCOP, as a suitable model of cholinergic
memory dysfunction. Since BIP is relatively selective for
ml receptors which can be found predominantly in brain
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Fig. 6 The effects of SCOP
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areas involved in learning and memory (Caulfield 1993;
Volpicelli and Levey 2004), we expected also a more
selective effect of BIP on cognition and behavioral
performance. In Table 1 an overview is given of the effects
of both drugs on the various behavioral measures. A wide
range of behavioral impairments were found after SCOP;
cognitive and peripheral effects were not dissociable on
basis of dose conditions. Moreover, performance deficits in
the short-term memory task were of a nonmnemonic nature.
In contrast, BIP more selectively impaired DNMTP
performance at a dose of 3 mg/kg, at which no peripheral
effects were found; sensorimotor responding was slowed
after the 10 mg/kg dose.

Of note, some caution should be taken with respect to
the selectivity of muscarinic (ant)agonists. Due to the
highly conserved nature of the orthosteric binding site
amongst muscarinic receptors, drugs that target these can be
characterized as possessing relative rather than absolute
receptor subtype selectivity. These issues should be borne
in mind when trying to attribute effects of these drugs to
specific muscarinic receptor subtypes. BIP for instance has
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about tenfold higher affinity for m1 as compared with m2—
m5 receptors (see Bolden et al. 1992; Katayama et al.
1990). The pharmacokinetic characteristics of BIP are quite
favorable; cerebellar levels after a dose of 3.2 mg/kg (IV)
have been reported to be about ten times higher as plasma
levels (see Nakashima et al. 1993; Syvélahti et al. 1988;
Yokogawa et al. 1990; Yokogawa et al. 1992). Regardless,
BIP is currently the drug of choice for making a direct
comparison with SCOP, particularly as it is approved for
use in humans and therefore suitable for translational
research. Some other drugs that target the muscarinic ml
receptor cannot be used in systemic injections because they
do not cross the blood—brain barrier (e.g., pirenzepine).

Sensorimotor responding

Both SCOP and BIP were found to slow sensorimotor
responding on a FRS schedule of reinforcement, although at
a different dose (0.3 and 1 mg/kg for SCOP and 10 mg/kg
for BIP, see Fig. 1). Although both SCOP and BIP
increased inter-response time in the FRS task it should be
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Table 1 An overview of the

effects of SCOP and BIP on Drug
sensorimotor responding, food -
motivation, attention, and Behavioral task SCOP

Inter-response time =

Percentage omissions 1 (0.3, DI)

short-term memory FRS
PR10
Doses are given in milligrams AT
per kilogram, IP
Abbreviations: FR5 fixed ratio
5, PRI10 progressive ratio 10, AT
attention task, DNMTP delayed
nonmatching to position, SCOP Index Y =
scopolamine hydrobromide, BIP DNMTP

biperiden, DD delay-dependent
effect, DI delay-independent ef-
fect, equal sign no change, up-
ward arrow increase, downward
arrow decrease

Inter-response time 1 (0.3, 1)
Breakpoint | (1)

Percentage correct | (0.3, DI)

Response time 1 (0.3)
Sensitivity index | (0.3, DD)

Percentage correct | (0.1, 0.3, DD)
Response time =

Sensitivity index | (0.1, 0.3, DD)
Index Y 1 (0.3, DI)

BIP

Inter-response time 1 (10)
Breakpoint =
Inter-response time =
Percentage correct =
Percentage omissions =
Response time =
Sensitivity index =

Index Y =

Percentage correct | (3, DD)
Response time =
Sensitivity index | (3, DD)
Index Y 1 (3, DI)

noted that the effects of BIP were smaller as compared with
SCOP. BIP, at a dose of 10 mg/kg, slowed FRS responses
by 26% as compared with the vehicle condition. SCOP, at a
dose of 0.3 and 1 mg/kg, increased inter-response time by
about 32% and 298%, respectively. In FR tasks, SCOP has
generally been found to decrease lever presses independent
of reward type (dry vs. wet, Hodges et al. 2009). However,
the minimal effective dose reported in these studies does
show quite some variability (0.005-1.0 mg/kg IP, Hodges
et al. 2009; Pradhan and Roth 1968). In a brightness
discrimination task, BIP (0.25-2 mg/kg, SC) was found to
reduce the rate of reinforcement (Liu 1996). Furthermore,
intracerebroventricular infusion of the ml antagonist
pirenzepine (10, 30 pg in 2.5 pL) increased the sample
latency in a DNMTP task (Aura et al. 1997), although a
reduction in response latency has also been reported
(Andrews et al. 1994).

These results suggest that the effect of systemic
administration of SCOP and BIP on sensorimotor respond-
ing is at least partially mediated by the ml receptor.
However, from the present data it cannot be deduced
whether this change in sensorimotor responding is caused
by central or peripheral m1 blockade, or both. For instance,
in the periphery ml receptors have been found in
abundance in rat sympathetic ganglia such as the superior
cervical ganglion (Caulfield and Birdsall 1998). However,
the effects of SCOP and BIP on sensorimotor responding
could also result from an interaction between ml and
striatal dopaminergic signaling (De Klippel et al. 1993;
Gerber et al. 2001).

Food motivation
SCOP (1 mg/kg) was found to decrease food motivation

and slow sensorimotor responding on a PR10 schedule,
whereas BIP (3 and 10 mg/kg) did not have an effect on
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these measures (see Fig. 2). This is in accordance with
studies in monkeys performing a PR schedule where SCOP
reduced the number of obtained reinforcements (Spinelli et al.
2006; Taffe et al. 1999). Food and water intake in rats was
found to be diminished after SCOP administration (Hodges
et al. 2009; Pradhan and Roth 1968). To the best of our
knowledge, neither BIP, nor any other m1 antagonists have
been tested in paradigms assessing food motivation and/or
free feeding behavior. Although it is possible that a higher
dose of BIP would have yielded a reduction in motivation,
this dose is comparable to dose conditions used in other
behavioral studies (Jones and Shannon 2000; Kimura et al.
1999; Liu 1996; Myers et al. 2002; Myhrer et al. 2008;
Roldan et al. 1997; Sipos et al. 1999; 2001).

Again, it cannot be decisively determined whether the
decrement in motivation for food after administration of
SCOP is a central or a peripheral effect. SCOP has been
known to induce “dry mouth” (Hodges et al. 2009), which
might affect the palatability and thus the hedonic impact of
dry food rewards. Of note, when using a liquid reward no
peripheral effect of SCOP has been found in FRS5 and
DNMTP paradigms (Hodges et al. 2009). Nevertheless, a
decrease in “liking” dry food rewards after systemic
administration of SCOP could interfere with behavioral
performance. Particularly the m3 (Dai et al. 1991; Shida et
al. 1993) but also the ml and m5 receptors have been
implicated in rat salivary responses (Flynn et al. 1997,
Shannon et al. 1994; Tobin et al. 2002). Thus, according to
the literature BIP is capable of interfering with salivation to
some extent. However, the current data suggest that any
reductions in salivation after BIP doses of 10 mg/kg and
lower are not sufficient to interfere with food motivation.
These findings are in contrast with those of SCOP, which is
likely to more fully block muscarinic receptor subtypes in
rat salivary glands and to profoundly affect food motiva-
tion. A central effect of SCOP might also interfere with
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incentive-driven behaviors (such as PR performance).
Centrally infused SCOP in rat nucleus accumbens has been
found to reduce sucrose consumption (1 or 10 pg/side) and
breakpoint (5.0 pg/side) in a PR paradigm (Pratt and Kelley
2004). Furthermore, muscarinic receptors appear to be
implicated in reward-driven motivational behaviors via
excitatory interactions with dopamine in the nucleus
accumbens and ventral tegmental area (Forster et al. 2001;
Yeomans and Baptista 1997).

Attention

SCOP affected performance in the attention task at all
stimulus conditions (see Figs. 3, 4). At a dose of 0.3 mg/kg,
SCOP decreased percentage correct, increased percentage
omissions and response time independent of the duration of
the stimulus. Discriminability (SI) was also reduced after
the 0.3 mg/kg dose; however, the effect of SCOP was
dependent on stimulus duration. Response bias (index Y)
was unaffected after SCOP or BIP (3 and 10 mg/kg). BIP
also did not affect any of the other measures in the attention
task. In attentional paradigms such as the five-choice serial
reaction time task, SCOP has been reported to disrupt
visuospatial sustained attention at doses of 0.02 mg/kg and
higher (Callahan et al. 1993; Cheal 1981; Hodges et al.
2009; Hoff et al. 2007; Humby et al. 1999; Leblond et al.
2002; Spinelli et al. 2006); however, behavioral effects of
SCOP on attentional accuracy are not reported consistently
(Andrews et al. 1992; Doty et al. 2003; Leaton and
Kreindler 1972). Moreover, SCOP has been shown to
influence general noncognitive performance measures, such
as response latency and number of missed trials (Andrews
et al. 1992; Bushnell et al. 1997; Drinkenburg et al. 1995).
As SCOP also disrupted performance in the FR5 and PR10
tasks, its effect on attention could (partially) be caused by
deficits in sensorimotor responding and/or food motivation.
Moreover, it is unlikely that m1 receptor blockade underlies
the attentional impairment, as BIP had no effect on this
task. To the best of our knowledge, effects of ml
antagonists have not been assessed in attentional paradigms
before. Further studies are required in order to provide more
support for the lack of a role of ml and potentially other
muscarinic receptors in attention.

Short-term memory

Similar to its effects on the attention task, SCOP impaired
various performance measures in the DNMTP task (see
Figs. 5, 6). SCOP decreased percentage correct and
discriminability (SI) in a delay-dependent manner, and
increased response bias (index Y) delay-independently at a
dose of 0.3 mg/kg. SCOP already affected DNMTP
performance at the shortest delay(s), whereas it failed to

disrupt performance in trials with the longest delay. The
latter is likely due to a floor effect; i.e., accuracy of the
animals in the 16-s delay trials was already at around chance
level (50% correct) even in the vehicle condition, and
therefore further impairment due to cholinergic blockade
could not be induced. The different delay intervals between
sample and choice phase are presumed to produce a temporal
performance gradient with longer retention intervals yielding
poorer DNMTP performance as short-term memory func-
tions are taxed in an increasing manner. Thus, the disruption
of DNMTP performance at the zero delay indicates an effect
of SCOP on other (non)cognitive processes rather than just
short-term memory. As the current study demonstrates, the
effects of SCOP (0.3 mg/kg) on sensorimotor responding,
food motivation and/or attention could (at least partially)
underlie deficits in DNMTP performance.

The majority of studies using delayed (non)matching
procedures have reported a delay-independent impairment
after relatively low doses (e.g., 0.05, 0.075, and 0.1 mg/kg
IP, Herremans et al. 1995; 0.1 mg/kg IP, Hodges et al.
2009), which again suggests that SCOP does not specifi-
cally affect short-term memory functions — although some
articles have challenged this finding (Estape and Steckler
2002; Ruotsalainen et al. 1998; Santi and Weise 1995;
Stanhope et al. 1995). Furthermore, in most studies using
systemic injections SCOP also affected measures of
responding; it increased number of omissions, decreased
number of completed trials and increased response latency
(Estape and Steckler 2002; Kirkby et al. 1995). Central
administration of SCOP in the medial prefrontal cortex
(Dunnett et al. 1990; Herremans et al. 1997; Herremans et
al. 1996), prelimbic cortex (Granon and Poucet 1995), and
hippocampus (Robinson and Mao 1997) has been shown to
yield a delay-independent reduction of DNMTP response
accuracy (but see Broersen et al. 1994; Broersen et al.
1995; Dunnett et al. 1990; Granon et al. 1995) and
increases in number of omissions (Robinson and Mao
1997).

It is likely that DNMTP deficits produced by SCOP can
be partially attributed to m1 blockade, which is in line with
the results reported by Bymaster et al. (1993). BIP (3 mg/
kg) was found to decrease percentage correct and discrim-
inability (SI) in a delay-dependent manner, and increase
response bias (index Y) delay-independently. BIP did not
influence response time at the doses used in the DNMTP (1
and 3 mg/kg, IP) which is in line with our findings in the
FRS task. As is shown in Figs. 5 and 6, BIP did not affect
DNMTP performance at the zero delay. However, as the
delay interval increased, BIP increasingly impaired accura-
cy performance as compared with the vehicle condition.
Thus, the disruption of DNMTP performance at longer
delays but not the shortest delay indicates a genuine effect
of BIP on short-term memory functions rather than other
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(non)cognitive processes. These effects are unlikely to be
caused by deficits in sensorimotor responding, food
motivation or attention, as BIP (at a dose of 3 mg/kg) did
not affect performance on the FRS or PR10 schedule of
reinforcement or in the attention task. Of note, the lack of
an effect of BIP at the 16-s delay is again likely due to a
floor effect. Taken together, these findings suggest a role
for the ml receptor in mediating short-term memory
functions. This would implicate selective m1 antagonists
such as BIP as a promising alternative instead of the gold
standard drug SCOP as a tool for inducing cholinergic
mnemonic impairments in animals.

Effects of systemic administration of BIP on DNMTP
performance have not been assessed previously; however,
ml antagonists have been found to affect performance in a
variety of other behavioral tasks which measure (short-
term) memory. For instance, after systemic injections
deficits have been reported in passive avoidance tasks
(Fornari et al. 2000; Kimura et al. 1999; Kramer-Soares et
al. 2006; Roldan et al. 1997), contextual fear conditioning
(Kramer-Soares et al. 2006; but see Sheffler et al. 2009),
spatial alternation (Bymaster et al. 1993), and object
recognition (Myhrer et al. 2004; 2008). Furthermore, ml
agonists have been shown to improve DNMTP perfor-
mance in animals which were cognitively impaired after
cholinergic lesioning (McDonald et al. 1998), SCOP
administration or aging (Bartholomeo et al. 2000), which
suggests that enhanced m1 signaling can be sufficient in
order to reverse memory deficits. Infusion of the muscarinic
ml antagonist pirenzepine (35 pg in 0.5 pL/side) in the
dorsal hippocampus impaired accuracy performance on a
DNMTP task (Messer et al. 1990; Messer et al. 1987); this
implicates the importance of ml receptor signaling in the
hippocampus for accurate DNMTP responding.

Of note, there are some indications that the m1 receptor
might also be involved in reversal learning (McCool et al.
2008; Tzavos et al. 2004) and anxiety (Wall et al. 2001). In
addition, muscarinic (ml) blockade in nonhippocampal
brain regions might also be responsible for short-term
memory effects; for instance, intact performance on non-
matching tasks seems to also require the prefrontal,
entorhinal, and perirhinal cortices (Otto and Eichenbaum
1992) Thus, our study does not exclude the involvement of
muscarinic receptor subtypes other than ml and brain
regions other than the septo-hippocampal system in
memory functions, nor the engagement of the m1 receptor
in other cognitive processes besides memory (see for
instance Araya et al. 2006; Carey et al. 2001; Daniel and
Dohanich 2001; McCool et al. 2008; Messer and Miller
1988; Poulin et al. 2010; Power et al. 2003; Quirion et al.
1995; Tzavos et al. 2004; Wall et al. 2001; Wess 2004).

In fact, the manner in which m1 receptors affect memory
processes is still under investigation; one possibility is the

@ Springer

modulation of glutamatergic neurotransmission and/or
synaptic plasticity (see Caulfield 1993; Hasselmo 1999;
2006). Muscarinic ml receptors couple to Gq-proteins
which activate several signaling cascades via phospholipase
(PL)C (Caulfield 1993; Jones 1993; Liu et al. 2006), which
can ultimately influence Ca®" and K currents (Liu et al.
2006), raise cyclic AMP levels (Jones 1993), and can
stimulate other receptor systems such as glutamatergic N-
methyl-D-aspartate (NMDA) receptor currents produced by
hippocampal CA1 pyramidal neurons (Calabresi et al.
1998; Ma et al. 2009; Marino et al. 1998). Moreover, m1l
receptors and NR1la NMDA receptor subunits were found
to be colocalized at glutamatergic synapses, suggestive of a
direct interaction between the two receptor systems. A link
between ml receptor signaling and long-term potentiation
(LTP), a mechanism which is thought to underlie learning
and memory processes, has also been put forward (Boddeke
et al. 1992; Burgard and Sarvey 1990; Calabresi et al. 1999;
Doralp and Leung 2008; Kamsler et al. 2010; Ovsepian et
al. 2004; Shinoe et al. 2005). For instance, it has been
shown that muscarinic agonists and antagonists which act
preferentially on the m1 receptor are able to facilitate or
prevent the induction of LTP in rat dentate gyrus (Burgard
and Sarvey 1990), CAl (Boddeke et al. 1992; Doralp and
Leung 2008; Ovsepian et al. 2004), and striatum (Calabresi
et al. 1999), respectively.

Future studies on the role of muscarinic receptors should
focus on determining whether there exists some degree of
dissociation between muscarinic receptor subtypes in terms
of their involvement in memory (or other cognitive
functions) as is reflected by their differential distribution
in the brain (e.g., Rouse and Levey 1996). It is likely that
particular muscarinic subtypes are only important for a
restricted (set of) cognitive subdomain(s); e.g., hippocam-
pal ml receptors are important for working but not
reference memory (Ohno et al. 1994). Furthermore, it is
imperative that the manner in which m1 receptors influence
memory processes is more extensively investigated. Infor-
mation on the exact signaling cascade(s) downstream of the
muscarinic ml receptor that are responsible for its effects
on memory could lead to interesting implications for the
development of novel treatments for disorders in which
memory is impaired, such as Alzheimer’s disease or
schizophrenia. Lastly, additonal behavioral validation is
required to firmly establish the usability of m1 antagonists
instead of the gold standard SCOP for producing choliner-
gic amnesia in healthy animals and human participants.
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