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A B S T R A C T   

Objective: This study aims to comprehensively analyze genomic, transcriptomic, proteomic, and 
single-cell sequencing data to unravel the molecular basis of primary Sjögren’s syndrome (pSS) 
and explore potential therapeutic targets. 
Methods: Mendelian randomization and single-cell RNA sequencing were employed to analyze pSS 
data. Differentially expressed genes specific to different blood cell types were identified. Inte-
gration of multiomics data facilitated the exploration of genetic regulatory relationships. 
Results: The analysis revealed distinct cell clusters representing various immune cell subsets. 
Several genes, including cathepsin S (CTSS) and glutathione S-transferase omega 1 (GSTO1), were 
identified as potential biomarkers and therapeutic targets for pSS. Diagnostic utility analysis 
demonstrated the discriminatory power of CTSS and GSTO1 in distinguishing pSS patients from 
healthy controls. 
Conclusion: The findings highlight the importance of integrating multiomics data for under-
standing pSS pathogenesis. CTSS and GSTO1 show promise as diagnostic biomarkers and po-
tential therapeutic targets for pSS. Further investigations are warranted to elucidate the 
underlying mechanisms and develop targeted therapies for this complex autoimmune disease.   

1. Introduction 

Primary Sjögren’s syndrome (pSS) is a globally prevalent autoimmune disease, most commonly affecting the exocrine glands and 
leading to significant dryness in the eyes and mouth [1]. The disease exhibits a higher predisposition towards women, with an 
approximately 9:1 female-to-male ratio, and generally manifests in the 4th to 5th decade of life [2]. Despite its significant prevalence, 
pSS is often underdiagnosed due to its non-specific symptoms and heterogeneous clinical presentation. More severe cases transcend the 
confines of exocrine gland involvement, leading to systemic manifestations that significantly impact patients’ quality of life. The 
etiology of pSS is multifaceted, involving an interplay between genetic, hormonal, and environmental factors [3]. Though recent 
advancements in genomics have identified several genetic loci associated with pSS [4], providing valuable insights into the disease’s 
genetic basis, the full extent of its genetic underpinnings is yet to be completely understood. 
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The advent of single-cell RNA sequencing (scRNA-seq) has revolutionized the study of complex diseases such as pSS [5]. Leveraging 
scRNA-seq allows us to dissect the intricate cellular landscape and gene expression profiles with unprecedented single-cell resolution 
[6]. This methodology enables us to identify distinct gene expression patterns across various blood cell types, unveiling their unique 
roles in the disease process of pSS [7]. In this study, we employ scRNA-seq to analyze gene expression profiles from both pSS patients 
and healthy controls, with a special focus on the identification of differentially expressed genes that are specific to different blood cell 
types. Alongside scRNA-seq, another promising approach in understanding the intricate interplay between genetics and disease is 
Mendelian randomization (MR) [8]. When combined with a multiomics approach, which simultaneously analyses and integrates 
multiple layers of biological data (including genomic, transcriptomic, and proteomic information), MR serves as a powerful tool to 
unravel the complex molecular mechanisms underpinning diseases like pSS. 

A focal point of our investigation revolves around the role of cathepsin S (CTSS), a protein-coding gene associated with immune 
responses [9–11]. Previous studies have implicated CTSS in the pathogenesis of pSS, suggesting it as a potential diagnostic marker and 
therapeutic target [12,13]. By scrutinizing the expression patterns of CTSS in pSS patients and healthy controls, we aim to evaluate its 
diagnostic efficacy and explore its potential as a drug target in pSS. Additionally, our study reveals the upregulation of glutathione 
S-transferase omega 1 (GSTO1) in pSS patients, indicating its involvement in immune dysregulation [14]. GSTO1 is an enzyme 
involved in detoxification processes and oxidative stress response [15,16]. Importantly, our diagnostic utility analysis demonstrates 
that GSTO1 expression levels exhibit excellent discriminatory power in distinguishing pSS patients from healthy controls. This 
highlights the potential of GSTO1 as a promising diagnostic biomarker for pSS. Further investigations into the specific mechanisms by 
which GSTO1 contributes to pSS pathogenesis and its potential as a therapeutic target are warranted. By comprehensively under-
standing the roles of CTSS and GSTO1, along with the cellular and molecular basis of pSS, we can develop more effective, targeted 
therapeutic approaches for this complex disease. 

2. Materials and methods 

2.1. Data sources 

Our analyses utilized scRNA-seq data from the GSE157278 series, comprising samples from 5 primary pSS patients and 5 healthy 
controls (Fig. 1) [5]. This dataset offered a rich collection of 27,566 cells from the pSS patients and 30,741 cells from control in-
dividuals, enabling us to delineate diverse immune cell subsets and identify genes implicated in pSS. Incorporating summary-level data 
from Genome-wide Association Study (GWAS) of Sjögren’s syndrome, we utilized the M13_SJOGREN dataset of the R9 version, 
sourced from the FinnGen consortium, which included 2495 cases and 365,533 controls [17]. Transcriptomic data were sourced from 
two Gene Expression Omnibus (GEO) datasets: the GSE84844 series (comprising 30 controls and 30 pSS samples) served as our training 
set [18], and the GSE48378 series (consisting of 16 controls and 11 pSS samples) served as the validation set [19]. As the data used in 
this study was publicly available (Supplementary Table 1), anonymized, and de-identified, it was exempt from ethical review approval 
by the Ethical Review Authority. 

2.2. scRNA-seq data preprocessing and integration 

The Seurat package (v4.0.2) was employed for data quality control and preprocessing of the scRNA-Seq data. Genes associated with 
red blood cells (Hba1, Hba2, Hbb, Hbd, Hbe1, Hbg1, Hbg2, Hbm, Hbq1, and Hbz) were removed. NormalizeData(.), FindVaria-
bleFeatures(.), and ScaleData(.) functions were utilized to normalize the scRNA-Seq data. Subsequently, the filtered scRNA-Seq 
datasets of the pSS and control samples were integrated using the Seurat anchor-based integration method [20]. Integration was 
based on the expression of the 3000 most variable counts in each sample. While we recognize the potential influence of cell cycle 
effects on gene expression profiles, our study was specifically focused on identifying gene expression changes in pSS that are inde-
pendent of cell cycle variations. Consequently, we did not incorporate cell cycle status adjustment in our final analysis, aligning our 
efforts with the primary objective of elucidating disease-specific transcriptional signatures. 

2.3. Dimensionality reduction, clustering, visualization, and cell type recognition 

For dimensionality reduction, clustering, and visualization of the scRNA-Seq data, Seurat (v4) in R was employed. Principal 
component analysis (PCA) was utilized to reduce the dimensionality of the integrated data. The integrated dataset was further 
visualized using the uniform manifold approximation and projection (UMAP) algorithm. For the clustering of cells, we used the 
FindNeighbors and FindClusters functions with a specifically chosen resolution of 0.4, determined to provide the most informative and 
biologically relevant clusters. Cell types were annotated based on the canonical patterns of marker genes. The 58,307 cells were 
classified into 7 cell types, including myeloid cells, plasmacytoid dendritic cells (pDC), myeloid dendritic cells (mDC), natural killer 
cells (NK cells), T cells, B cells, and plasma cells. Cell annotation was performed using the CellMarker 2.0 reference database [21], 
which provides cell marker genes for accurate identification of cell types. 

2.4. MR analysis and sensitivity checks 

MR employs molecular quantitative trait data (eQTL or pQTL) as genetic instruments to deduce causal effects of gene/protein 
expression on disease outcomes. By selecting variants associated with expression as instrumental variables (IVs), MR analysis 
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investigates the causal relationships between molecular traits and disease. This approach reveals the impact of gene/protein expression 
on disease development. Genetic variants linked to eQTL or pQTL served as our exposure instruments, while GWAS data on pSS formed 
the outcome data. For exposure instruments with multiple IVs, we conducted sensitivity checks to ensure our findings were robust. We 
initially tested for heterogeneity across variant-level MR estimates using the “mr_heterogeneity(.)" function, excluding exposures with 
significant heterogeneity (p-value <0.05). We also performed a pleiotropy test using MR Egger analysis to detect horizontal pleiotropy 
amongst IVs (more than 2 IVs), discarding any exposure with significant difference (p-value <0.05). Lastly, we implemented a Leave- 
one-out sensitivity test for exposures with more than 2 IVs. Each IV was sequentially removed to recalculate MR results, validating the 
robustness of our findings. 

2.5. Data acquisition and selection of instrumental variables for MR analysis 

We acquired the summary-level data for cis-expression quantitative trait loci (eQTL) in blood gene expression from the esteemed 
eQTLGen Consortium [22]. The dataset encompasses a substantial cohort of 31,684 blood samples. We conducted MR analysis using 
genetic instrumental variables from Ferkingstad et al.’s plasma protein quantitative trait loci (pQTL) dataset, involving GWASs on 
4179 plasma proteins in 35,559 Icelanders [23]. They reported 18,084 significant pQTL associations, linking genetic variations to 
plasma protein levels. For robustness, we selected cis-single nucleotide polymorphisms (cis-SNPs), located within 1 Mb of the relevant 
gene and showing a genome-wide significant association (eQTL/pQTL p-value<5 × 10− 8) with protein levels. Independent instru-
mental variables were identified via LD clumping in plink, using the 1000 Genomes project’s European genotype data, considering 
SNPs with pairwise LD values (r2) below 0.001 within a 10 Mb window. 

Fig. 1. Overview of research workflow. GEO: Gene Expression Omnibus, pDC: plasmacytoid dendritic cells, mDC: myeloid dendritic cells, NK cells: 
natural killer cells, PBMCs: Human peripheral blood mononuclear cells, GWAS: Genome-wide Association Study, MR: Mendelian randomization, 
eQTL: expression quantitative trait loci, pQTL: protein quantitative trait loci, CTSS: cathepsin S, GSTO1: glutathione S-transferase omega 1. 
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2.6. Evaluation of model performance using ROC curve analysis in the pSS dataset 

We partitioned the pSS dataset into a training set (n = 60) and a test set (n = 27). Utilizing the R package pROC (v1.18.2), we 
developed a model based on the training set to assess its performance. The model was then evaluated on the test set, and its efficacy was 
measured by accuracy, the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. Through this 
approach, we aimed to identify the most suitable method for our dataset by analyzing the ROC curve and associated metrics. 

3. Results 

3.1. Analysis on scRNA-seq of pSS 

In this study, we obtained scRNA-seq data from 5 pSS patients and 5 healthy controls via microarray GSE157278 from the GEO 
database. We conducted a detailed analysis of three primary metrics: the gene count per cell (nFeature), the total gene count per cell 
(nCount), and the percentage of mitochondrial genes (percent.mt) within each cell. Our refined selection criteria, as depicted in 
Supplementary Fig. S1A, included cells with more than 300 nFeature, ensuring a robust gene expression profile, and with less than 20 
% percent.mt to exclude potentially damaged cells. Additionally, our selection favored nCount predominantly below 30,000, 
balancing transcriptome complexity and data quality. Correlation analysis, as shown in Supplementary Figs. S1B and S1C, indicated a 
negative correlation between nCount and percent.mt and a positive correlation between nCount and nFeature, validating our selection 
parameters. Following these criteria, we identified and selected 3000 genes with significant expression variations for in-depth analysis 
(Supplementary Fig. S1D). The cell profiles, visualized using Uniform Manifold Approximation and Projection (UMAP), are distinctly 
marked by color blocks to denote sample origins (Supplementary Fig. S1E). In our analysis, we constructed a line graph to compare the 
cell subset proportions between pSS patients and control subjects (Supplementary Fig. S1F). 

3.2. Overview of identified single cells and gene expression patterns 

The PCA plot, following SCTransform normalization, effectively displays the intrinsic biological differences between control and 
diseased samples (Fig. 2A). This representation underscores the biological relevance of our findings, ensuring the observed variance is 
due to biological diversity rather than batch effects. The analysis of single-cell profiles revealed distinct cell clusters in the UMAP 
visualization (Fig. 2B). To identify specific gene expression patterns within each cell subset, we performed an analysis of marker genes 
(Supplementary Table 2). In our study, we identified distinct cell clusters corresponding to specific cell types, including myeloid cells, 
pDC, mDC, NK cells, T cells, B cells, and plasma cells. The delineation of these clusters was facilitated by the utilization of specific 
markers such as MS4A1 and CD79A for B cells, CD1C and FCER1A for mDCs, FCN1 and CD14 for myeloid cells, KLRB1 and NKG7 for 
NK cells, CLEC4C and IL3RA for pDCs, IGHG1 for plasma cells, and IL7R and CD3E for T cells (Fig. 2C). We identified signature genes 
for each cell subset, highlighting the top five upregulated and downregulated genes, which were visualized via volcano plots (Fig. 2D). 
This investigation enhanced our understanding of cellular heterogeneity and the associated molecular signatures in pSS. 

3.3. Unraveling genetic regulatory relationships in pSS: insights from single-cell screening and MR analysis 

In our study, we performed single-cell screening and identified seven distinct cell types, resulting in a total of 3256 differentially 
expressed genes. After eliminating duplicates, we obtained a final set of 1625 unique genes. To investigate the regulatory relationships 
between these genes and pSS, we leveraged the IEU open GWAS database to retrieve the corresponding eQTL data. Applying MR 
analysis, we assessed the causal effects of genetic variations on gene expression levels in the context of pSS. Through this analysis, we 
identified a total of 39 significant positive eQTLs and 27 significant negative eQTLs associated with the expression of these genes 
(Fig. 3, Supplementary Table 3). These findings shed light on the potential mechanisms underlying the genetic correlation between pSS 
and gene expression, offering valuable insights into the molecular basis of the disease. 

3.4. Validation and MR analysis of selected pQTLs in relation to pSS 

To validate the 66 significant blood-related eQTLs identified previously, we employed plasma protein data for validation. However, 
out of the 66 eQTLs, 38 lacked corresponding plasma protein associations. Hence, we selected 28 eQTLs with available plasma protein 
data for further validation. Using a threshold of p-value <5 × 10− 8, we screened for SNPs that showed significant associations with the 
selected plasma proteins. Among the 28 eQTLs, 19 plasma proteins did not have any associated SNPs meeting the significance 
threshold. Consequently, we proceeded with validation using the remaining 9 plasma proteins that exhibited relevant SNP 

Fig. 2. Overview of identified single cells. (A) PCA distribution of control and diseased group samples after batch effect removal. HC: Healthy 
Control, pSS: Primary Sjögren’s syndrome. (B) UMAP of cell profiles, with different color blocks representing related cell clusters. pDC: plasmacytoid 
dendritic cells, mDC: myeloid dendritic cells, NK cells: natural killer cells. (C) Dot plots depicting the expression levels of selected marker genes 
across each cell type. (D) Volcano plots highlighting the top 5 marker genes of different blood cell subsets, including genes that are downregulated 
and upregulated. 

Y. Tan et al.                                                                                                                                                                                                            



Heliyon 10 (2024) e33433

6

(caption on next page) 

Y. Tan et al.                                                                                                                                                                                                            



Heliyon 10 (2024) e33433

7

associations. Supplementary Table 4 provides a comprehensive overview of each pQTL’s associated SNPs, including their respective F- 
values. Notably, all F-values surpassed 10, indicating the exclusion of weak instrumental variables. 

Using the filtered set of 9 pQTLs as exposure variables and pSS as the outcome variable, we conducted MR analysis. The inverse 
variance weighted (IVW) method was employed to calculate the odds ratios (ORs) with 95 % confidence intervals (CIs) for each pQTL. 
According to the IVW method, the dominant effect OR for CTSS was 1.41 (95 % CI: 1.23–1.63, p < 0.001). For GSTO1, the dominant 
effect OR was 0.94 (95 % CI: 0.88–1.00, p = 0.04). Additionally, the dominant effect OR for HSPB1 was 1.14 (95 % CI: 1.02–1.27, p =
0.02). As for TSSC4, which had only one SNP identified, MR analysis was performed using the Wald ratio. The dominant effect OR for 
TSSC4 was 0.22 (95 % CI: 0.07–0.74, p = 0.01). The remaining 5 pQTLs yielded negative results (Fig. 4, Supplementary Table 5). 
Sensitivity analysis demonstrated no evidence of heterogeneity or horizontal pleiotropy between the four pQTLs with positive results 
and pSS. Cochran’s Q statistic and the intercept from MR Egger regression indicated no statistically significant evidence of horizontal 
pleiotropy between CTSS and pSS (p > 0.05) (Supplementary Tables 6 and 7). 

Fig. 3. The lollipop plot displays the genetic association between primary pSS and 66 expression quantitative trait loci (eQTLs) with a significance 
level of p < 0.05. The beta coefficient (b) in the plot represents the magnitude and direction of the association, providing insights into the strength of 
the genetic correlation. (p < 0.05). pSS: Primary Sjögren’s syndrome, MR: Mendelian randomization. 

Fig. 4. MR Analysis of plasma protein quantitative trait loci (pQTLs) in Relation to pSS. The MR analysis investigates the potential causal re-
lationships between selected pQTLs and pSS. SNP: single nucleotide polymorphism, OR: odds ratio, CI: confidence interval, pSS: Primary Sjögren’s 
syndrome, MR: Mendelian randomization. 
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Fig. 5. Validation of CTSS and GSTO1 Expression in pSS. (A) CTSS Expression in the pSS of scRNA-seq. (B)Transcriptomic Validation of CTSS 
Expression in pSS. (C) Diagnostic Utility of CTSS in pSS. (D) GSTO1 Expression in the pSS of scRNA-seq. (E) Transcriptomic Validation of GSTO1 
Expression in pSS. (F) Diagnostic Utility of GSTO1 in pSS. (G–I) HSPB1 Expression in pSS (No Significant Differences). (J–L) TSSC4 Expression in pSS 
(No Significant Differences). HC: Healthy Control, pSS: Primary Sjögren’s syndrome. UMAP: uniform manifold approximation and projection. 
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The MR analysis findings provide insights into the potential causal relationships between the selected pQTLs and pSS. The positive 
associations observed for CTSS, GSTO1, HSPB1, and the inverse association for TSSC4 suggest their potential involvement in the 
pathogenesis of pSS. However, further investigations are required to validate and elucidate the underlying mechanisms of these 
associations. 

3.5. Validation of CTSS and GSTO1 overexpression in pSS and diagnostic utility 

To further validate the results obtained from MR analysis, we examined the expression levels of CTSS and GSTO1 using scRNA-seq 
and transcriptomic data (GSE84844 and GSE48378). Consistent with the previous findings, scRNA-seq analysis showed a significant 
upregulation of CTSS expression in the pSS group compared to the healthy control group, particularly in bone marrow cells (Fig. 5A). 
This result was further confirmed in the transcriptomic validation analysis, where CTSS expression was significantly enhanced in the 
pSS group compared to controls (Fig. 5B). Furthermore, we investigated the diagnostic utility of CTSS in distinguishing between 
healthy controls and pSS patients. The analysis of the ROC curve revealed that CTSS had a moderate ability to differentiate between the 
two groups, with an AUC value of 0.746 (Fig. 5C). These findings support the potential diagnostic value of CTSS in identifying pSS 
patients. 

Similarly, scRNA-seq analysis revealed a significant upregulation of GSTO1 expression in the pSS group, with a notable enrichment 
in a specific subset of T cells, as depicted in the magnified section of Fig. 5D. The transcriptomic validation using the GSE84844 dataset 
confirmed the increased expression of GSTO1 in the pSS group (Fig. 5E). Moreover, we assessed the diagnostic utility of GSTO1 in 
distinguishing between NC and pSS patients. The ROC curve analysis revealed excellent diagnostic performance for GSTO1, with an 
AUC value of 0.914 (Fig. 5F). These findings suggest that GSTO1 may serve as a promising diagnostic biomarker for pSS. 

On the other hand, the results for HSPB1 (Fig. 5G–I) and TSSC4 (Fig. 5J-L) showed no significant differences in expression between 
the pSS and control groups. These findings suggest that HSPB1 and TSSC4 may not be strongly associated with pSS pathology. 

4. Discussion 

4.1. Integration of single-cell transcriptomics, genomics, and proteomics in Sjögren’s syndrome 

This study represents the first comprehensive multi-omics investigation combining single-cell transcriptomics, genomics, and 
proteomics in Sjögren’s syndrome, specifically focusing on primary Sjögren’s syndrome (pSS). By integrating scRNA-seq data, GWAS 
data, and plasma protein data, we aimed to gain a deeper understanding of the molecular mechanisms underlying pSS. This integrative 
approach allowed us to explore cellular heterogeneity, identify key genes associated with pSS, investigate genetic regulatory re-
lationships, and validate potential biomarkers for diagnosis. 

4.2. CTSS and its implications in pSS pathogenesis 

One of the key findings of our study is the potential involvement of CTSS in the pathogenesis of pSS. CTSS is a lysosomal cysteine 
protease that plays a role in antigen processing and presentation, as well as tissue remodeling and inflammation [24]. Our MR analysis 
identified a significant positive association between CTSS expression and pSS, suggesting that CTSS may contribute to the development 
and progression of the disease. This finding is consistent with previous studies that have implicated CTSS in autoimmune and in-
flammatory conditions [9,10,13]. We have identified CTSS expression in bone marrow cells as a potential contributor to pSS patho-
genesis. Given the bone marrow’s role in immune cell production, the overexpression of CTSS could reflect heightened antigen 
processing activities that promote autoimmune responses [25]. Our findings indicate that the dysregulation of CTSS in bone marrow 
cells may be a critical step in the cascade of events leading to the manifestation of pSS, offering a novel perspective on the disease 
mechanism. Our diagnostic utility analysis revealed that CTSS expression levels have moderate discriminatory power in distinguishing 
pSS patients from healthy controls. These findings highlight CTSS as a potential therapeutic target and diagnostic biomarker for pSS. 
Moreover, the role of CTSS in autoimmune pathogenesis extends beyond pSS. Recent studies have highlighted a significant relationship 
between CTSS overexpression and the exacerbation of lupus pathogenesis, notably influencing key immune pathways such as TLR7 
expression and IFN-α production [26]. 

In a study on a CTSS inhibitor for primary Sjögren’s syndrome, RO5459072 showed limited therapeutic efficacy [12]. Our research 
reveals that CTSS is mainly expressed in myeloid cells, suggesting that the suboptimal treatment response may be due to selective 
inhibition in myeloid cells, while other cell types remain unaffected. Inadequate dosage or duration might have hindered optimal CTSS 
inhibition in relevant cells. Considering the complex nature of pSS and involvement of multiple immune pathways, combination 
therapies targeting diverse pathways may enhance treatment outcomes. Further investigation is needed to understand CTSS’s role in 
different cell types and develop more effective strategies for pSS. 

4.3. GSTO1 as a promising diagnostic biomarker for pSS 

Another noteworthy finding from our study is the upregulation of glutathione S-transferase omega 1 (GSTO1) expression in pSS 
patients. This observation raises intriguing questions about the role of GSTO1 in the pathogenesis of pSS. However, our MR analysis 
revealed inconsistent results between pQTL and eQTL analyses, suggesting a discrepancy between the protective effect observed in 
pQTL and the potential disease-promoting effect indicated by eQTL. The discordance may be attributed to the differences in sample 
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types used for eQTL (primarily whole blood) and pQTL (mainly plasma proteins) analyses. Tissue-specific gene regulation and post- 
translational modifications can influence protein levels differently than mRNA expression, leading to distinct findings. The specific 
reasons for this discrepancy require further investigation. Nevertheless, the significant upregulation of GSTO1 expression in T cells of 
pSS patients highlights its involvement in the immune dysregulation observed in pSS. Notably, our diagnostic utility analysis 
demonstrated the excellent discriminatory power of GSTO1 expression levels in distinguishing pSS patients from healthy controls, 
suggesting its potential as a diagnostic biomarker for pSS. Future investigations are warranted to elucidate the underlying mechanisms 
by which GSTO1 contributes to pSS pathogenesis and to evaluate its therapeutic potential. In addition, the significance of GSTO1 
extends to other autoimmune conditions. It has been identified as one of the common marker genes associated with SLE, demonstrating 
its involvement in the complex interplay of immune responses across various sample types [27]. 

4.4. Other identified genes and pathways 

In addition to CTSS and GSTO1, our multi-omics analysis identified other genes with pSS. The analysis of single-cell profiles 
revealed distinct cell clusters representing various immune cell subsets, including myeloid cells, pDC, mDC, NK cells, T cells, B cells, 
and plasma cells. The identification of signature genes for each cell subset enhances our understanding of the cellular heterogeneity 
and molecular signatures underlying pSS. Furthermore, our MR analysis identified multiple significant eQTLs associated with the 
expression of genes implicated in pSS, providing insights into the genetic regulatory relationships involved in the disease. These 
findings contribute to the growing body of knowledge on the genetic basis of pSS and offer potential targets for future investigations. 

4.5. Limitations and future directions 

While our study provides significant insights into the molecular landscape of pSS, it is important to acknowledge certain limita-
tions. One such limitation is the resolution of our scRNA-seq, which did not allow for the reliable discrimination of immune cell 
subtypes with immunosuppressive qualities, such as Tregs. This is partly due to the lack of highly specific markers that can confidently 
identify such subtypes within our dataset, as well as technical limitations in sequencing depth and cell capture rate. Furthermore, while 
our study offers a broad overview of gene expression patterns across cell types, the constraints of the available genetic instrumental 
variables limited our ability to explore the full spectrum of plasma proteins implicated in pSS. The existing literature suggests intricate 
dysregulation of B cells in pSS [28,29], which our dataset may not have captured in its entirety. Additionally, our study would benefit 
from functional validation of the identified genes and pathways to elucidate their roles in pSS pathogenesis more concretely. Future 
research should aim to incorporate broader datasets, including those currently under access restrictions, and undertake experimental 
studies to validate the functional implications of our findings. 

In conclusion, our study represents a significant advancement in understanding the molecular mechanisms underlying primary 
Sjögren’s syndrome (pSS) through the integration of single-cell transcriptomics, genomics, and proteomics. Our findings shed light on 
the cellular heterogeneity, genetic regulatory relationships, and potential biomarkers associated with pSS. However, further validation 
and functional studies are necessary, and the integration of other omics data is warranted to unravel the complexities of pSS patho-
genesis fully. Ultimately, these insights may lead to the development of targeted therapies and improved management strategies for 
individuals living with pSS. 
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