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Eukaryotic horizontal gene transfer<p>Analyses of the red algal <it>Cyanidioschyzon</it> genome identified 37 genes that were acquired from non-organellar sources prior to the split of red algae and green plants.</p>

Abstract

Background: Horizontal gene transfer occurs frequently in prokaryotes and unicellular
eukaryotes. Anciently acquired genes, if retained among descendants, might significantly affect the
long-term evolution of the recipient lineage. However, no systematic studies on the scope of
anciently acquired genes and their impact on macroevolution are currently available in eukaryotes.

Results: Analyses of the genome of the red alga Cyanidioschyzon identified 37 genes that were
acquired from non-organellar sources prior to the split of red algae and green plants. Ten of these
genes are rarely found in cyanobacteria or have additional plastid-derived homologs in plants.
These genes most likely provided new functions, often essential for plant growth and development,
to the ancestral plant. Many remaining genes may represent replacements of endogenous homologs
with a similar function. Furthermore, over 78% of the anciently acquired genes are related to the
biogenesis and functionality of plastids, the defining character of plants.

Conclusion: Our data suggest that, although ancient horizontal gene transfer events did occur in
eukaryotic evolution, the number of acquired genes does not predict the role of horizontal gene
transfer in the adaptation of the recipient organism. Our data also show that multiple independently
acquired genes are able to generate and optimize key evolutionary novelties in major eukaryotic
groups. In light of these findings, we propose and discuss a general mechanism of horizontal gene
transfer in the macroevolution of eukaryotes.

Background
The role of horizontal gene transfer (HGT) in prokaryotic evo-
lution has long been documented in numerous studies, from
bacterial pathogenesis to the spread of antibiotic resistance
and nitrogen fixation [1-3]. The proportion of genes affected
by HGT has been estimated from an average of 7% to over
65% in prokaryotic genomes [4-8]. The pervasive occurrence
of gene transfer has revolutionized our view of microbial evo-
lution - microbial evolution must be considered reticulate and

cooperative by sharing genes and resources among organisms
in the community [9,10].

Reticulate evolution and gene transfer have long been known
in eukaryotes. Hybridization, which occurs frequently in seed
plants [11], can be viewed as a form of HGT. However, since
eukaryotic genomes are relatively stable, hybridization
between closely related taxa rarely involves acquisition of
novel genes and its impact is mainly limited to lower taxo-
nomic levels. Symbioses that generate new phenotypes can
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also be considered a form of reticulate evolution. Primary
endosymbioses with an α-proteobacterium and a cyanobacte-
rium gave rise to mitochondria and plastids, respectively [12],
whereas secondary endosymbioses contributed greatly to the
evolution of several major eukaryotic groups [13-15]. Such
endosymbiotic events are often accompanied by gene transfer
from the endosymbiont to the nucleus, a process termed
intracellular gene transfer (IGT) [16,17] or endosymbiotic
gene transfer [18]. However, the distinction between IGT and
HGT is fluid - once an endosymbiont becomes obsolete, the
IGTs have to be considered a form of HGT [19].

Apparently, the residence of mitochondria and plastids in
eukaryotic cells provides ample opportunities for IGT and
this has been supported by several genome analyses [20-23].
On the other hand, the role of HGT in eukaryotic evolution
was poorly appreciated until recently. Thus far, an increasing
amount of data shows that HGT events do exist in eukaryotes
- HGT from prokaryotes to eukaryotes not only is frequent in
unicellular eukaryotes of various habitats and lifestyles [24-
32], but occurred multiple times in multicellular eukaryotes
as well [33-35]. In many cases, acquisition of foreign genes
has significantly impacted the evolution of the biochemical
system of the recipient organism [24,36].

A critical question regarding the role of HGT is whether and
how HGT contributed to the evolution of major eukaryotic
groups. Given the scope of HGT in unicellular eukaryotes and
that multicellularity is derived from unicellularity, the unicel-
lular ancestors of modern multicellular eukaryotes might
have been subject to frequent HGT [37]. Most importantly,
the anciently acquired genes, if retained among descendants,
are likely to shape the long-term evolution of recipients
[37,38]. In this study, we provide an analysis for genes that
were introduced to the ancestor of plants (we use the term to
denote the taxonomic group Plantae that includes glauco-
phytes, red algae, and green plants [39,40]). Such an analysis
is possible because of the availability of sequence data of Cya-
nidioschyzon, the only red algal species whose nuclear
genome has been completely sequenced. Our data indicate
that ancient HGT events indeed occurred during early plant
evolution and that the vast majority of the acquired genes are
related to the biogenesis and functionality of plastids. In light
of these findings, we also discuss the implications of con-
certed gene recruitment as a mechanism for the origin and
optimization of key evolutionary novelties in eukaryotes.

Results
To better understand the scope of HGT, one would like to
eliminate complications arising from cases of IGT, in particu-
lar those from mitochondria. The ancient origin of mitochon-
dria may translate into difficulties to uncover the α-
proteobacterial nature of mitochondrion-derived genes and,
therefore, identification of cases of HGT. Because of the ubiq-
uitous distribution of mitochondria in eukaryotes, it is also

often difficult to distinguish mitochondrion-derived genes
from those transmitted from the ancestral eukaryotic nucleo-
cytoplasm or anciently acquired from other prokaryotes. In
this study, we removed genes that potentially are of organel-
lar origin based on sequence comparison, phylogenetic anal-
yses and statistical tests on alternative tree topologies. With
only a few exceptions (for example, 2-methylthioadenine syn-
thetase and isoleucyl-tRNA synthetase), anciently acquired
genes identified in this study are predominantly found in
prokaryotes and photosynthetic eukaryotes, suggesting a
likely prokaryotic origin of these genes.

Using PhyloGenie [41], 2,605 trees were generated in the
analyses of the Cyanidioschyzon genome [42], which were
subject to further screening and detailed phylogenetic analy-
ses (see Materials and methods). We previously reported 14
genes anciently acquired from the obligate intracellular bac-
terial chlamydiae (mostly the environmental Protochlamy-
dia) [19] and two other genes, one each from crenarchaeotes
and δ-proteobacteria [37]. In this study, an additional 21
anciently acquired genes are reported. Therefore, a total of 37
genes (Table 1; Additional data file 1) have been identified as
likely acquired from non-organellar sources prior to the split
of red algae and green plants (genome sequences of glauco-
phytes are not currently available) or earlier. For all these
newly reported genes, approximately unbiased (AU) tests
[43] for alternative tree topologies representing an organellar
origin were performed, and an organellar origin of the subject
gene was rejected (p-value < 0.05) if no scenario of secondary
HGT was invoked. For only a few genes, the scenario of an
IGT event in plants followed by secondary HGT to other
organismal groups cannot be confidently rejected (Additional
data file 1); in these cases, we prefer the simpler scenario of
straightforward HGT rather than secondary HGT, based on
an assumption that the chance is increasingly rare for the
same acquired gene being repeatedly transferred to other
organisms. Notably among the newly reported genes, six are
related to proteobacteria and two to chloroflexi. The multi-
plicity of HGT from the same donor groups (for example, pro-
teobacteria) may, in part, have resulted from the over-
representation of their genomes in current sequence data-
bases or past physical associations between the donors and
the ancestral plant.

The dynamics of ancient HGT may be illustrated with the
gene encoding 2-methylthioadenine synthetase (miaB), a
tRNA modification enzyme involved in translation (Figure 1).
The evolution of this gene involves gene duplication, transfer,
and differential losses. Three versions of this gene exist in
bacteria, likely resulting from ancient duplications. Likewise,
at least two gene copies (miaB1, miaB2) are distributed
among several major eukaryotic lineages. The eukaryotic
miaB1 sequences form a monophyletic group with archaeal
homologs as expected [44,45]. On the other hand, eukaryotic
miaB2 sequences and their homologs from bacteroidetes and
chlorobi share the highest percent identity (42-45%; using
Genome Biology 2008, 9:R109
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Flavobacteria: ZP_01734273 and Arabidopsis: NP_195357 as
queries). These sequences cluster together with high support
within the otherwise bacterial group. To investigate if miaB2
is derived from mitochondria, we performed an AU test on a
constraint tree enforcing a monophyly of proteobacterial and
miaB2 sequences. Results of the AU test suggest that miaB2
is not very likely of mitochondrial origin (p-value < 0.001).

Although the molecular phylogeny of this gene (Figure 1) is
theoretically compatible with the scenario of a eukaryotic ori-
gin through genome fusion, no current data suggest a bacteri-
odete or chlorobi partner in the putative ancient fusion event.
Therefore, it is more likely that eukaryotic miaB2 resulted
from an ancient HGT from a bacteroidetes or chlorobi-related
organism prior to the divergence of most major eukaryotic

Table 1

Genes acquired from non-organellar sources prior to the split of red algae and green plants

Gene name Putative donor Localization Putative functions

GCN5-related N-acetyltransferase* β,γ-Proteobacteria Cytosol Arginine biosynthesis

Glycyl-tRNA synthetase Bacteria Plastid/mitochondria Translation

Dihydrodipicolinate synthase (dapA) γ-Proteobacteria Plastid Lysine biosynthesis

ThiC family protein Bacteria Plastid Thiamine biosynthesis

2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase Chlamydiae Plastid Isoprenoid biosynthesis

Polynucleotide phosphorylase Chlamydiae Plastid RNA degradation

ATP/ADP translocase† Chlamydiae Plastid ATP/ADP transport

MGDG synthase† Bacteria Plastid Lipid biosynthesis

Glycerol-3-phosphate acyltransferase† Chlamydiae Plastid Phospholipid biosynthesis

Alpha amylase Chlamydiae Plastid Carbohydrate metabolism

Sodium:hydrogen antiporter† Chlamydiae Plastid Ion transport

3-Dehydroquinate synthase β,γ-Proteobacteria Plastid Amino acid biosynthesis

2-Methylthioadenine synthetase Bacteroidetes Plastid tRNA modification

Uroporphyrinogen-III synthase Bacteria Plastid Porphyrin biosynthesis

ACT domain-containing protein† γ-Proteobacteria Plastid Amino acid binding

4-Hydroxy-3-methylbut-2-en-1-yl diphosphate synthase Chlamydiae Plastid Isoprenoid biosynthesis

Queuine tRNA-ribosyltransferase Chlamydiae Plastid tRNA modification

SAM-dependent methyltransferase† Bacteria Cytosol RNA binding

Beta-ketoacyl-ACP synthase (fabF) Chlamydiae Plastid Fatty acid biosynthesis

Semialdehyde dehydrogenase α-Proteobacteria Cytosol Amino acid metabolism

Diaminopimelate decarboxylase (lysA) Bacteria Plastid Lysine biosynthesis

Dihydrodipicolinate reductase (dapB) Bacteria Plastid Lysine biosynthesis

Aspartate aminotransferase Chlamydiae Plastid Lysine biosynthesis

Leucyl-tRNA synthetase Bacteria Plastid/mitochondria Translation

Tyrosyl-tRNA synthetase Chlamydiae Plastid/mitochondria Translation

Ribosomal protein L11 methyltransferase β,γ-Proteobacteria Cytosol Amino acid methylation

2-Methylthioadenine synthetase* Bacteria Cytosol tRNA modification

GTP binding protein, typA Chloroflexi Plastid Translation elongation

Cu-ATPase Chlamydiae Plastid Ion transport

4-Diphosphocytidyl-2-C-methyl-D-erythritol kinase Chlamydiae Plastid Isoprenoid biosynthesis

Enoyl-ACP reductase (fabI) Chlamydiae Plastid Fatty acid biosynthesis

Histidinol-phosphate transaminase Chloroflexi Plastid Histidine biosynthesis

Florfenicol resistance protein* δ-Proteobacteria Cytosol Fe-S-cluster binding

23S rRNA (Uracil-5-)-methyltransferase Chlamydiae Plastid RNA modification

Topoisomerase 6 subunit B† Crenarchaea Cytosol Protein binding

tRNA methyltransferase Bacteria Plastid/cytosol RNA processing

Isoleucyl-tRNA synthetase Bacteria Cytosol Translation

*Genes for which plastid-derived homologs already exist in plants. †Genes that likely possessed novel functions and whose homologs are rarely 
found in cyanobacteria. For all other genes, the possibility of them resulting from displacement of an endogenous homolog cannot be excluded. The 
putative donors of these genes are determined without invoking secondary HGT events. Alternative explanations for each gene are discussed in the 
text and Additional data file 1.
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lineages. In addition to miaB1 and miaB2, two other miaB
copies are also found in plants, one of which is related to
cyanobacterial homologs, likely resulting from IGT from plas-
tids, whereas the other copy is related to planctomycete
homologs with modest support. Therefore, a total of four cop-

ies of the 2-methylthioadenine synthetase gene are found in
plants, three of which were likely acquired via independent
IGT and ancient HGT events.

hylogeneyses of 2-methylthioadenine synthetaseFigure 1
Phylogenetic analyses of 2-methylthioadenine synthetase. The numbers above the branch show bootstrap values for maximum likelihood and distance 
analyses, and posterior probabilities from Bayesian analyses, respectively. Asterisks indicate values lower than 50%. Colors show taxonomic affiliations.
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An anciently acquired gene might possess novel functions or
merely displace existing homologs (either of eukaryotic or
organellar origin) in the recipient. Among the 37 anciently
acquired genes identified in our analyses, seven are largely
absent from cyanobacteria and other eukaryotes and three
already have cyanobacteria-related (or plastid-derived)
homologs in plants (Table 1); these genes likely are not
derived from homolog displacement. The gene encoding glyc-
erol-3-phosphate acyltransferase (ATS1 and ATS2) has iden-
tifiable homologs only in chlamydiae and plastid-containing
eukaryotes [19]. Similarly, the gene encoding monogalactos-
yldiacylglycerol (MGDG) synthases is predominantly found
in chloroflexi and firmicutes, with sporadic occurrence in
other bacterial groups (including the cyanobacterium Gloeo-
bacter). Phylogenetic analyses suggest that plant MGDG syn-
thases are derived from a single HGT event from bacteria,
followed by subsequent spread to other photosynthetic
eukaryotes (for example, cryptophytes) as well as gene dupli-
cation and functional differentiation in flowering plants (Fig-
ure 2a).

For the remaining genes, the possibility of them resulting
from displacement of existing homologs, especially those that
were previously acquired from plastids, cannot be excluded.
Notably, at least four of these genes are essential to lysine bio-
synthesis in plants. The gene encoding aspartate aminotrans-
ferase was acquired from a Protochlamydia-related organism
whereas donors of two other acquired genes, dihydrodipicol-
inate reductase (dapB) and diaminopimelate decarboxylase
(lysA), cannot be unambiguously determined (Figure 2b,c;
Additional data file 1). For another essential gene in lysine
biosynthesis, dihydrodipicolinate synthase (dapA),
sequences from green plants and glaucophytes cluster with γ-
proteobacterial homologs, but the cyanobacterial (plastidic)
copy is still retained in red algae (Figure 2d). The different
evolutionary origins of dapA among primary photosynthetic
eukaryotes may be explained by a HGT event in the ancestral
plant, followed by differential gene losses (that is, displace-
ments of a plastid-derived gene copy in green plants and glau-
cophytes, or displacement of an HGT-derived gene copy in
Cyanidioschyzon). It is also theoretically possible that green
plants and glaucophytes acquired the gene through inde-
pendent HGT events, though the chance for closely related
taxa acquiring the same gene from the same donor is conceiv-
ably lower. A similar scenario has also been observed for sev-
eral other chlamydiae-related genes involved in isoprenoid
and type II fatty acid biosyntheses [19,46].

Discussion
Scope of ancient HGT
We use the term HGT loosely in this study for any transfer
events from non-organellar sources. Although the timing of
HGT cannot be accurately calibrated in most cases, it can be
inferred based on gene distribution in the recipient lineage. If
the acquired gene is found in most taxa of a major lineage, it

is likely that the gene was acquired prior to the divergence of
the lineage. Given the paucity of sequence data from repre-
sentatives of many major eukaryotic groups and the lack of
consensus on eukaryotic phylogeny [47], identification of
ancient HGT often becomes more difficult as phylogenetic
depth increases.

A major issue related to the role of HGT in macroevolution is
the scale of ancient HGT. Our analyses identified 37 anciently
acquired genes in plants that account for 1.42% (37/2,605) of
all generated gene trees (Table 1; Additional data file 1). It
should be cautioned that HGT identification is affected by
many factors, in particular taxonomic sampling, method of
analysis, complications arising from IGT, and lineage-specific
gains or losses (see [37,48,49] for more discussions). For
studies based on phylogenetic approaches, long-branch
attraction arising from biased sequence data is also a particu-
lar concern [50,51]. Additionally, if the α-proteobacterial or
the cyanobacterial nature of IGT-derived genes has been
erased, due to either frequent HGT among prokaryotes or the
loss of phylogenetic signal over time, these genes will not be
properly identified and may be mistaken as HGT-derived. It
should also be noted that this study is based on the genome
analyses of the red alga Cyanidioschyzon, which inhabits an
extreme environment in acidic hot springs and maintains a
streamlined genome [41]. Some anciently acquired genes
might have been lost from the Cyanidioschyzon genome, but
are retained in other red algal species. This could potentially
underestimate the HGT frequency in plants. With the rapid
accumulation of sequence data, in particular those from other
red algae and under-represented eukaryotic groups, a
broader taxonomic sampling will be possible and the number
of anciently acquired genes identified in the plant lineage will
likely change. Therefore, the data presented in this study
should only be interpreted as our current understanding of
the scale of ancient HGT, rather than an exhaustive list of all
anciently acquired genes in plants.

Despite the difficulties in HGT identification, the multiple
introductions of the same gene from various prokaryotic
sources (for example, 2-methylthioadenine synthetase; Fig-
ure 1) suggest that HGT is a continuous and dynamic process.
Given that phylogenetic signal tends to become obscure over
time and that eukaryote-to-eukaryote transfer, which has
been recorded in multiple studies [52,53], is largely not cov-
ered in this study, it is possible that the identified genes in our
analyses represent only the tip of an iceberg for the overall
scope of ancient HGT in eukaryotes. In particular, during
early eukaryotic evolution when the ancestral nucleocytoplas-
mic lineage emerged from prokaryotes (either by a split from
archaea or by fusion of archaeal and bacterial partners) and
began to diverge into extant groups, these early eukaryotes
might bear more biochemical and physiological similarities to
their prokaryotic relatives. Because HGT tends to occur
among organisms of similar biological and ecological charac-
ters [54], the barriers to interdomain gene transfer during
Genome Biology 2008, 9:R109
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early eukaryotic evolution might not be as significant as
observed today. Therefore, although our data suggest that
HGT indeed existed in early plant evolution, many other

anciently acquired genes in plants might have escaped our
detection because of the limitations of current phylogenetic
approaches. These genes might have shaped the genome

Phyloge analyses of anciently acquired genesFigure 2
Phylogenetic analyses of anciently acquired genes. Numbers above the branch show bootstrap values from maximum likelihood and distance analyses, and 
posterior probabilities from Bayesian analyses, respectively. Asterisks indicate values lower than 50%. Colors show taxonomic affiliations. (a) MGDG 
synthase; (b) dihydrodipicolinate reductase (dapB); (c) diaminopimelate decarboxylase (lysA); (d) dihydrodipicolinate synthase (dapA). DapA, dapB and lysA 
are related to lysine biosynthesis in plants. Please note in (d) that green plant and glaucophyte sequences are of γ-proteobacterial origin whereas the red 
alga Cyanidioschyzon retains the cyanobacterial (plastidic) copy. The Dehalococcoides sequence in the cyanobacterial cluster in (d) was likely acquired from 
cyanobacteria. Another gene (aspartate aminotransferase) related to lysine biosynthesis in plants was likely acquired from chlamydiae [19]. Also see the 
text and Additional data file 1 for more discussion.
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composition of the recipient lineages and may also be, in part,
responsible for the lack of resolution of relationships among
major eukaryotic groups [40,47].

Functional recruitment and plant adaptation
A significant insight from prokaryotic genome analyses is the
role of HGT in microbial adaptation. By acquiring ready-to-
use genes from other sources, HGT avoids a slow process of
gene generation and might confer to the recipient organisms
immediate abilities to explore new resources and niches [55-
57]. This may be crucial for organisms inhabiting shifting
environments, where acquisition of beneficial genes from
local communities is necessary for recipient organisms to
avoid extinction or to optimize their adaptation. Therefore,
lineage continuity and ecological stability can be achieved by
increasing the genetic repertoire through recruitment of for-
eign genes.

An acquired gene may be novel to the recipient or homolo-
gous to an endogenous copy. In the latter case, the newly
acquired homolog may be retained (for example, 2-methylth-
ioadenine synthetase; Figure 1) and the acquisition of an
additional gene copy will provide opportunities for functional
differentiation and enriches the genetic repertoire of the
recipient. Although all acquired genes affect genome compo-
sition and evolution, only those that potentially provide new
functions will most likely induce biochemical or phenotypic
changes, and consequently adaptation in recipient organ-
isms. Some anciently acquired novel genes identified in our
analyses appear to be critical for plant development or adap-
tation. For example, the gene encoding topoisomerase VI beta
subunit (TOP6B) in plants was likely acquired from a crenar-
chaeote [37]. TOP6B in green plants is required for endorep-
lication, a process of DNA amplification without cell division
and a mechanism to increase cell size in plants. Top6b
mutants display extreme dwarf phenotypes (about 20% the
height of wild types), chloroplast degradation, and early
senescence [58-60].

Several other novel genes are functionally related to the bio-
genesis and development of plastids. These include genes
acquired from different bacterial groups. For example,
MGDG synthases are responsible for the generation of
MGDG, a major lipid component of plant photosynthetic tis-
sues. MGDG synthases appear to be encoded by a single-copy
gene in red and green algae, but three copies exist in Arabi-
dopsis and they are further classified into two types (type A,
including MGD1, and type B, including MGD2 and MGD3). In
Arabidopsis, MGD1 is localized in the inner membrane of
chloroplasts and it is responsible for the majority of MGDG
biosynthesis. No mgd1 null mutants are found in Arabidop-
sis, suggesting that MGD1 is essential for chloroplast develop-
ment and plant growth [61]. In contrast, MGD2 and MGD3
are highly expressed in non-photosynthetic tissues and likely
provide an alternative route for MGDG biosynthesis under
phosphate starvation conditions [61-63]. Therefore, ancient

HGT, gene duplication and subsequent functional differenti-
ation provide a mechanism for specialized MGDG production
in different tissues and growing conditions. As another exam-
ple, knocking down the expression of the chlamydiae-related
ATS1 and ATS2 in Arabidopsis will lead to small, pale-yellow
plants, suggesting that the chloroplast development has been
seriously impeded [64].

Homolog displacement
Not all acquired genes may bring new biochemical functions
to the recipient organism. The acquired gene may displace the
existing homolog and, if they are functionally equivalent, the
impact of gene transfer on the adaptation of the recipient may
be limited. Such homolog displacement may be considered
selectively neutral [65,66], though their contributions to
genome evolution should not be ignored.

Although the role of HGT in eukaryotic evolution is gaining
increasing appreciation, there are very few studies available
on the number of acquired genes resulting from homolog dis-
placement without introducing new functions. According to
the gene transfer ratchet mechanism proposed by Doolittle
[67], homolog displacement might be pervasive in unicellular
eukaryotes and bacterial genes, either intracellularly or hori-
zontally derived, may gradually replace all endogenous copies
over time. Although our analyses only address anciently
acquired genes prior to the split of red algae and green plants,
homolog displacement indeed appears to be frequent com-
pared to the acquisition of genes with novel functions. For
example, at least three genes encoding organellar aminoacyl-
tRNA synthetases (that is, leuRS, tyrRS, and ileRS) were
likely acquired from other prokaryotic sources (Table 1; Addi-
tional data file 1). These aminoacyl-tRNA synthetases are
often shared by both mitochondria and plastids [68], suggest-
ing that both plastidic and mitochondrial aminoacyl-tRNA
synthetases might have been frequently displaced in plant
evolution.

It should be noted that the displacement of aminoacyl-tRNA
synthetases is relatively easy to identify because these genes
have low substitution rates and they are universally present in
all organisms [38,69-72]. Many other cases of homolog
displacement may not be as easily detected because of com-
plications arising from possible independent gene losses/
gains or lack of phylogenetic information retained in the
acquired gene [37,65]. In our analyses, homologs for most
identified genes can be found in multiple extant cyanobacte-
ria. Given the cyanobacterial origin of plastids, a cyanobacte-
rial copy of these genes might have existed when the plastids
were first established; therefore, an IGT event and subse-
quent displacement of the original plastidic genes by later
non-cyanobacterial homologs cannot be excluded, though
such a scenario is highly unlikely to have occurred to all these
genes. Overall, our data show that many acquired genes may
have resulted from homolog displacement without introduc-
ing new functions, suggesting that the number of acquired
Genome Biology 2008, 9:R109
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genes does not predict the role of HGT in the adaptation of
recipient organisms. It is unclear whether such a gene dis-
placement pattern also exists in non-photosynthetic
eukaryotes.

Concerted gene recruitment and the origin of 
evolutionary novelties
Plastids are the key evolutionary novelty that defines photo-
synthetic eukaryotes. Aside from photosynthesis, some other
important biochemical activities, including biosyntheses of
fatty acids and isoprenoids, are also carried out in plastids.
Intriguingly, over 78% (29/37) of the anciently acquired
genes identified in our analyses are either predicted or exper-
imentally determined to be related to the biogenesis and
functionality of plastids (Table 1); these include genes pos-
sessing novel functions and those resulting from homolog
displacement. Because of the extremophilic lifestyle of Cya-
nidioschyzon and its streamlined genome, some acquired
genes related to non-photosynthetic activities might have
been eliminated from the genome. It remains to be investi-
gated whether such a high density of acquired genes that are
functionally related to plastids also exists in other photosyn-
thetic eukaryotes, including mixotrophs and those inhabiting
broader niches. Nevertheless, given the total number of these
plastid-related genes identified in our analyses, it appears
that concerted gene recruitment from multiple sources or
selective retention of the acquired genes occurred to optimize
the functionality of plastids during early plant evolution. The
observation that some independently acquired bacterial
genes are functionally related to plastids has also been
reported in the chlorarachniophyte Bigelowiella natans,
which contains plastids derived from a secondary endosymbi-
ont [21].

This phenomenon of concerted gene recruitment for the ori-
gin and optimization of key evolutionary novelties of the
recipient also exists in other eukaryotic groups. In the proto-
zoan group diplomonads, about half (7/15) of the acquired
genes are related to the anaerobic lifestyle of the organisms.
These genes were interpreted to have been acquired from var-
ious organisms, including other eukaryotes, and might be
responsible for the lifestyle transition from aerobes to anaer-
obes in diplomonads [24]. Another example is related to cili-
ates that live in the rumen of herbivorous animals. In this
case, over 140 genes were transferred from diverse bacterial
groups to rumen ciliates, the vast majority of which are
related to degradation of carbohydrates derived from plant
cell walls [30]. A third example is the evolution of nucleotide
biosynthesis in the apicomplexan parasite Cryptosporidium,
where two independently acquired genes, one each from γ-
and ε-proteobacteria, and likely two other plant-like genes
facilitated the establishment of salvage nucleotide biosyn-
thetic pathways [36,73], allowing the parasite to obtain nucle-
otides from their hosts. Therefore, concerted recruitment or
selective retention of foreign genes apparently is not a unique
phenomenon in the origin and optimization of evolutionary

novelties of unicellular eukaryotes. In the case of plants,
ancient endosymbioses and HGT events in concert drove the
establishment of plastids. In the cases of diplomonads, rumen
ciliates and Cryptosporidium parasites, multiple independ-
ent HGTs from other organisms contributed to the major life-
style transitions in the recipient organisms. In all these cases,
the origin of evolutionary novelties may be viewed as a result
of gene sharing with other organisms.

Although the current data suggest that HGT events are fre-
quent in unicellular eukaryotes [21,24,26,30], how and to
what degree they have affected the evolution of the recipients
remain largely unclear. An interesting observation from the
studies of HGT in eukaryotes is that the vast majority of well-
documented cases involve prokaryotes as donors [26,30,31].
Given the ubiquitous distribution of prokaryotes and their
greater species and metabolic diversity, the gene pool of
prokaryotes conceivably was significantly larger than that of
eukaryotes, in particular during early eukaryotic evolution.
Therefore, it is interesting to speculate whether early eukary-
otes continuously obtained genes from a larger prokaryotic
gene pool [67], either individually or occasionally in large
chunks, through HGT events in response to the environment,
as we have now observed in many prokaryotes and unicellular
eukaryotes. Such changes in genetic background and bio-
chemical system would likely induce shifts in ecology, physi-
ology, morphology or other traits of the recipient lineage.
Concerted gene recruitment in plants, diplomonads, rumen
ciliates, Cryptosporidium parasites and possibly many other
organisms suggests that independently acquired genes are
able to generate and optimize key evolutionary novelties in
recipient organisms. Whether such ancient gene recruitment
events and the novelties they generated were ultimately
responsible for the emergence and adaptive radiation of some
major eukaryotic groups warrants further investigations.

Conclusion
Phylogenetic analyses, sequence comparisons, and statistical
tests indicate that at least 1.42% of the genome of the red alga
Cyanidioschyzon is derived from ancient HGT events prior to
the split of red algae and green plants. Although many
acquired genes may represent displacement of existing
homologs, other genes introduced novel functions essential
to the ancestor of red algae and green plants. The vast major-
ity of the anciently acquired genes identified in our analyses
are functionally related to plastids, suggesting an important
role of concerted gene recruitment in the generation and opti-
mization of major evolutionary novelties in some eukaryotic
groups.

Materials and methods
Data sources
Protein sequences for the red alga Cyanidioschyzon merolae
were obtained from the Cyanidioschyzon Genome Project
Genome Biology 2008, 9:R109
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[42,74]. Expressed sequence tag (EST) sequences were
obtained from TBestDB [75] and the NCBI EST database. All
other sequences were from the NCBI protein sequence
database.

Identification of ancient HGT
Anciently acquired genes in this study include those horizon-
tally acquired prior to the split of red algae and green plants.
A list of ancient HGT candidates was first generated based on
phylogenomic screening of the Cyanidioschyzon genome
using PhyloGenie [41] and the NCBI non-redundant protein
sequence database. The vast majority of the genes on this list
are predominantly identified in bacteria and archaea, and
therefore are likely of prokaryotic origin. To reduce the com-
plications arising from potential cases of IGT, we adopted an
approach combining sequence comparison, phylogenetic
analyses, and statistical tests. Each gene on the list was first
used to search the NCBI protein sequence database. Because
of the cyanobacterial origin of plastids and the α-proteobac-
terial origin of mitochondria, genes with cyanobacterial and
plastid-containing eukaryotic homologs as top hits were con-
sidered as likely plastid-derived; those with α-proteobacterial
and other eukaryotic homologs as top hits were considered as
likely mitochondrion-derived. These potentially organelle-
derived genes were removed from the candidate list and the
remaining genes were subject to detailed phylogenetic analy-
ses. Gene tree topologies generated through detailed phyloge-
netic analyses were subject to careful inspections; any genes
that formed a monophyly with cyanobacterial and plastid-
containing eukaryotic homologs or with proteobacterial and
other eukaryotic sequences were also eliminated from further
consideration. Additionally, alternative topologies represent-
ing various evolutionary scenarios for each gene were statisti-
cally evaluated based on AU tests [43]. Genes for which a
straightforward IGT scenario (versus IGT followed by sec-
ondary transfers) could not be rejected (p-value > 0.05) were
also removed from the HGT candidate list. For a few genes,
the gene tree topology may be explained by either a straight-
forward HGT or an IGT followed by secondary HGT events to
other organisms; we prefer the scenario of straightforward
HGT in these cases to that of secondary HGT, based on an
assumption that chances for the same gene being repeatedly
transferred among different organismal groups are relatively
rare. In several other cases (for example, Figures 1 and 2d),
the distribution of the subject gene may also be explained by
either multiple independent HGT events or a single HGT fol-
lowed by differential gene losses. In such cases, we prefer the
gene loss scenario based on an assumption that independent
acquisitions of the same gene, by closely related taxa, from
the same donor are rare. Because identification of HGT heav-
ily relies on an accurate organismal phylogeny and because
the relationships among many major eukaryotic lineages
remain unsolved [40,47], HGT events among eukaryotes
were not included in our analyses in most cases, except for
those between photosynthetic eukaryotes where secondary or

tertiary endosymbioses and subsequent gene transfer to host
cells have been frequently documented [21,26,76].

Detailed phylogenetic analyses
Sequences were sampled from representative groups (includ-
ing major phyla of bacteria and major groups of eukaryotes)
within each domain of life (bacteria, archaea, and eukaryo-
tes). Because of the potential for sequence contaminations,
eukaryotic EST sequences whose authenticity is suspicious
(for example, high nucleotide sequence percent identity with
bacterial homologs and/or absence of homologs from
genomes of closely related taxa) were not included in the
analyses. Multiple protein sequence alignments were per-
formed using MUSCLE [77] and clustalx [78], and only
unambiguously aligned sequence portions were used. Such
unambiguously aligned positions were identified by cross-
comparison of alignments generated using MUSCLE and
clustalx, followed by manual refinement. The alignments are
available in Additional data file 1. Phylogenetic analyses were
performed with a maximum likelihood method using PHYML
[79], a Bayesian inference method using MrBayes [80], and a
distance method using the program neighbor of PHYLIP ver-
sion 3.65 [81] with maximum likelihood distances calculated
using TREE-PUZZLE [82]. All maximum likelihood calcula-
tions were based on a substitution matrix determined using
ProtTest [83] and a mixed model of four gamma-distributed
rate classes plus invariable sites. Maximum likelihood dis-
tances for bootstrap analyses were calculated using TREE-
PUZZLE [82] and PUZZLEBOOT v1.03 (by Michael E Holder
and Andrew J Roger, available on the web [84]). Branch
lengths and topologies of the trees depicted in all figures (Fig-
ures 1 and 2; Additional data file 1) were calculated with
PHYML. For the convenience of presentation, gene trees were
rooted using archaeal (or archaeal plus eukaryotic)
sequences, or paralogous gene copies if ancient gene families
were involved, as outgroups; otherwise, trees were rooted in a
way that no top hits of the sequence similarity search were
used as an outgroup. Nevertheless, all gene trees should be
strictly interpreted as unrooted.

AU tests on alternative tree topologies
Following detailed phylogenetic analyses, alternative tree
topologies for each remaining HGT candidate were assessed
for their statistical confidence using Treefinder [85]. In most
cases, multiple constraint trees for each HGT candidate were
generated using Treefinder by enforcing: monophyly of all
eukaryotic sequences; monophyly of cyanobacterial, plant
and other plastid-containing eukaryotic sequences; and
monophyly of cyanobacterial, plant, and closely related bac-
terial sequences. These alternative topologies assumed that
the subject gene in plants is not HGT-derived; they served as
null hypotheses that all eukaryotic sequences have the same
eukaryotic or mitochondrial origin or that plants acquired the
subject gene from plastids, sometimes followed by secondary
HGT to other bacterial groups. AU tests, which have been rec-
ommended for general tree tests [43], were performed on
Genome Biology 2008, 9:R109
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alternative tree topologies (non-HGT hypotheses) and the
tree generated from detailed phylogenetic analyses (HGT
hypothesis). In this study, topologies with a p-value < 0.05
were rejected.

Prediction of protein localization
Targeting signal of identified protein sequences was pre-
dicted using ChloroP [86] and TargetP [87]. Additional infor-
mation about protein localization in green plants was
obtained from The Arabidopsis Information Resource
(TAIR).
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