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Purpose: Perioperative hypothermia prevention requires regular, accurate, and consistent 
temperature monitoring. Zero-heat-flux (ZHF) thermometry offers a non-invasive, measure-
ment method that can be applied across all surgical phases. The purpose of this study was to 
measure agreement between the zero-heat-flux device and esophageal monitoring, sensitivity, 
and specificity to detect hypothermia and patient acceptability amongst patients undergoing 
upper and lower limb orthopedic surgery.
Patients and Methods: This prospective, observational study utilized Bland–Altman 
analysis and Lin’s concordance coefficient to measure agreement between devices, sensitiv-
ity and specificity to detect hypothermia and assessed patient acceptability amongst 30 
patients between December 2018 and June 2019.
Results: Bias was observed between devices via Bland Altman, with bias dependent on 
actual temperature. The mean difference ranged from −0.16°C at 34.9°C (where the mean of 
ZHF was lower than the esophageal device) to 0.46°C at 37.25°C (where the mean of ZHF 
was higher than esophageal device), with 95% limits of agreement (max) upper LOA = 0.80 
to 1.41, lower LOA = −1.12 to −0.50. Seventy-five percentage of zero-heat-flux measure-
ments were within 0.5°C of esophageal readings. Patient acceptability was high; 96% (n=27) 
stated that the device was comfortable.
Conclusion: ZHF device achieved lesser measurement accuracy with core (esophageal) 
temperature compared to earlier findings. Nonetheless, due to continuous capability, non- 
invasiveness and patient reported acceptability, the device warrants further evaluation.
Title Registration: The study was registered at www.ANZCTR.org.au (reference: 
ACTRN12619000842167).
Keywords: perioperative, thermoregulation, thermometry, sensitivity, specificity

Introduction
Regular, accurate body temperature monitoring is vital to detect early disturbance in core 
temperature1–3 and prevent perioperative hypothermia3 or hyperthermia.2 Core tempera-
ture is tightly regulated, and even mild perioperative hypothermia is associated with 
adverse consequences.3–9 The lack of accurate, user-friendly temperature monitoring 
devices is a known barrier to optimum thermoregulation practices across the multi-
disciplinary perioperative pathway.10,11 International guidelines specify that temperature 
measurement is conducted at specific, regular intervals, using a consistent device.3 Yet 
temperature monitoring is often neglected entirely,12 or poorly implemented10,12,13 with 
multiple devices employed across perioperative phases. Non-invasive devices to estimate 
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core temperature (using correction factors) are predominantly 
utilized despite unreliability and being easily influenced by 
operator inefficiency. Until recently, the most accurate devices 
have been invasive, expensive, and only suitable for anesthe-
tized patients.14

Non-invasive yet accurate temperature measurement 
devices, suitable for both awake and anesthetized patients 
across all perioperative phases, have potential to facilitate 
improved monitoring practices amongst multidisciplinary peri-
operative health-care providers. The non-invasive zero-heat- 
flux (ZHF) temperature monitoring device (Bair Hugger™, 
3M, St Paul, MN, USA) offers continuous capability for both 
awake and anesthetized patients. Introduced almost fifty years 
ago, initial use remained limited due to practical drawbacks.15 

However, current and updated ZHF devices, with more effi-
cient calibration and lightweight design15 are now widely 
available. The device measures tissue temperature at 1–2 cm 
below the skin surface of the forehead, and is considered an 
indirect measurement of core temperature.16

The device has been validated in populations including 
cardiac surgery,15,17,18 gynecology,19,20 trauma,19 major 
abdominal surgery,21,22 neurosurgery,23 vascular,17 

urologic,22 and combined elective surgeries.24,25 A recent 
meta-analysis compared the device to core temperature in 
22 comparisons from 16 studies: the pooled estimate for 
mean bias was 0.03°C,16 however the clinical utility of the 
device was not evaluated. Limited studies have assessed the 
accuracy of the device during orthopedic surgery, nor have 
studies assessed patient acceptability. Ideally, measurement 
accuracy and agreement are tested against gold standard 
pulmonary artery (PA) temperatures obtained through 
a Swan-Ganz catheter.15,18 Esophageal temperature monitor-
ing is more commonly utilized and provides a reliable but 
invasive mode of core temperature measurement1,26 closely 
correlated to PA temperature in anaesthetized patients.27

This prospective, observational study utilized esophageal 
temperature as an adequate comparison to determine accu-
racy with the Bair Hugger™ ZHF device, for patients under-
going elective orthopedic surgery. Specifically, we aimed to 
establish measurement accuracy as the primary outcome. 
Secondary outcomes include sensitivity and specificity to 
detect hypothermia, and patient acceptability of the device.

Materials and Methods
Ethics
Full ethical approval for this observational study was 
obtained from the Royal Brisbane and Women’s Hospital 

(RBWH) Human Research Ethics Committee (HREC) on 
17th September 2018 (reference DM/MDF/DEF/42859) 
and administrative approval was obtained from 
Queensland University of Technology (QUT) HREC. The 
study was conducted in accordance with the Declaration of 
Helsinki. The study was registered at www.ANZCTR.org. 
au (reference: ACTRN12619000842167) and is reported 
according to the Standards for Reporting Diagnostic 
Accuracy Studies (STARD).28

Participants, Recruitment, and Setting
A priori, a total of 30 participants were recruited at 
a large, metropolitan hospital in South East Queensland, 
Australia, between December 2018 and June 2019. All 
participants were adults over 18 years of age undergoing 
elective orthopedic upper or lower limb surgery under 
general anesthesia, with endotracheal tube (ET) place-
ment and esophageal temperature monitoring. Patients 
were excluded if they presented with forehead/neck rash 
or infection, or had known esophageal varices, or an 
American Society of Anesthesiologists (ASA) Physical 
Status class >III. A priori, participants experiencing unex-
pected blood loss were not eligible for inclusion, with 
planned exclusion after enrolment (however, no patients 
were excluded on this basis). After providing informed 
consent on admission, participants meeting the inclusion 
criteria were enrolled in the study upon arrival for 
surgery.

Study Protocol
All 30 participants received similar general anesthetic 
procedure and technique. Standard monitoring, including 
electrocardiogram (ECG), pulse oximetry, and non- 
invasive blood pressure (NIBP) were attached, as per 
usual care. All patients received a warmed cotton blanket, 
fluid warming to 38.5°C via Biegler™ fluid warmer 
(Bauerbach, Austria) and full or partial body forced air 
warming, dependent upon surgical site, commencing at 
47°C and then automatically decreasing to 45°C, as per 
the study protocol (and as per normal operating function of 
the Covidien Warm Touch™ forced air warmer). Ambient 
temperature was recorded in preoperative areas and the 
operating theatre (OT).

Temperature Monitoring
Upon arrival to the preoperative area, prior to anesthesia 
induction, the independent Research Nurse attached 
a single use, adhesive, disposable Bair Hugger™ ZHF 
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sensor to the forehead, above the orbital ridge. The adhe-
sive pad comprises a thermal insulator, covered by an 
electric heater. Heat flow through the insulator is elimi-
nated by the servo-control of the heater, so that the heater 
and skin temperature become equal.

After OT transfer, and during anesthesia induction, 
a DeRoyal™ (Powell, TN, USA) esophageal temperature 
monitoring probe was inserted into the distal esophagus 
near the left atrium by the study anesthesiologist. With 
depth and placement in the esophagus confirmed at the 
time of intubation via videolaryngoscopy,29 the probe was 
secured with an endotracheal tube. Esophageal monitoring 
was discontinued at the end of anesthesia and prior to 
admission to PACU.

Data Collection
Intraoperative continuous temperature data for both 
devices was automatically recorded into the hospital com-
puterized Automated Anesthetic Record Keeping (AARK) 
system and was independently extracted by the surgical 
data custodian into MS Excel™. Surgical data, including 
duration of surgery, ambient temperature, and demo-
graphic data (age, gender), were recorded by the 
Research Nurse. ZHF monitoring was continued until 
initial temperature measurement upon transfer to the Post 
Anesthetic Care Unit (PACU). Patient acceptability was 
ascertained upon discharge from PACU or on the next 
postoperative day: patients were asked to rate their 
response on a five-point Likert scale (0 strongly disagree 
to 5 strongly agree) regarding first, whether the device was 
comfortable to wear and secondly, whether they would be 
prepared to wear the device again. Device failure and other 
adverse events were recorded.

Statistical Analysis
Agreement between monitoring routes, the mean differ-
ence between devices, the variability of the individual 
differences and measurement bias were analyzed using 
Bland Altman plots,30 accounting for repeated measure-
ments, specifically the correlated nature of the data mea-
sured on the same individual, with a linear mixed model.31 

An acceptable limit of agreement between measurements 
was set at ± 0.5°C, which is the conventional acceptable 
limit of agreement for temperature monitoring devices.15 

The first 10 min of intraoperative ZHF and esophageal 
temperatures were not analysed to allow for ramp-up 
time (for the ZHF device) and equilibrium to be attained. 
Temperature measurement pairs were extracted at 

5-min intervals from the continuous temperature measure-
ments, as per previous studies,21 and data were analyzed 
up until 100 min of surgery time.

Lin’s concordance correlation coefficient (CCC) was 
calculated for longitudinal data using R Concordance 
Correlation Coefficient for Repeated Measures (CCCRM) 
package.™32,33 Sensitivity and specificity values with 
95% confidence intervals for hypothermia (defined as 
temperature <36.0 °C)3 were calculated using a general 
estimating equation using R™33 and custom written code 
implementing statistical methods described by Genders 
et al.34 Demographic data (analyzed via R™), device fail-
ure, and patient acceptability are reported using means and 
standard deviations, medians and ranges, or rates and 
percentages, as appropriate. McBride’s strength of agree-
ment criteria for continuous variables was used (whereby 
>0.99: almost perfect; >0.95–0.99: substantial; <0.90: 
poor).35 Investigators (JM, LJ, and DV) not involved 
with data collection were responsible for data analysis.

Results
Thirty patients were enrolled in the study and monitored 
with ZHF and esophageal devices (see Figure 1). 
Complete temperature data were available for 23 cases, 
due to device failure (see below): 448 measurement pairs 
were included in the analysis.

Demographic and Surgical Data
Demographic and surgical data are presented in Table 1. 
The mean baseline temperature (°C) on arrival to the 
induction room was 36.5°C (SD 0.54).

Agreement Between Zero-Heat-Flux and 
Esophageal Devices
Lin’s concordance coefficient (CCC) was used to measure 
how well pairs of ZHF-esophageal observations agreed 
relative to esophageal monitoring. The observed CCC 
was 0.75 (95% CI: 0.63 to 0.84) indicating poor agreement 
(<0.90) according to McBride’s strength-of-agreement cri-
teria for continuous variables.35 In the mixed model 
Bland–Altman plot, time and the mean of the two devices 
were fitted as fixed effects. However, time was not found 
to have a significant effect (b = −0.0012, p = 0.072), so it 
was removed from the final model. Model residuals were 
examined for heteroscedasticity, normality, and linearity 
using plots and descriptive statistics and met assumptions.
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In the simplest case, where the mean difference between 
ZHF and esophageal devices was examined, the difference was 
found to be 0.14°C, with limits of agreement of −0.71 to 1.04. 
However, further modeling showed that these estimates are not 
an accurate representation of bias, as the mean difference 
changes through the measured range of temperature and can 
be described using a regression line (b0=−9.35 + b1=0.263X, 
where X= mean temperature of the two devices). The slope 
(b1) of the regression line represents proportional bias (b1 = 
0.263, 95% CI: 0.118 to 0.409, p <0.001) with the mean 
agreement dependent on the actual temperature. The mean 
difference in the Bland Altman plot ranged from to −0.16°C 
at 34.9°C (where the mean of ZHF was lower than the esopha-
geal device) to 0.46°C at 37.25°C (where the mean of ZHF was 
higher than esophageal device), with 95% limits of agreement 
(max) upper LOA = 0.80 to 1.41, lower LOA = −1.12 to −0.50 
(Figure 2). It should be noted that three-quarters (75%) of 
measurements were within the clinical limit of 0.5°C.

Sensitivity and Specificity to Detect 
Hypothermia
The ZHF device detected hypothermia with a sensitivity of 
0.80 (95% CI: 0.65 to 0.89) and a specificity of 0.72 (95% 
CI: 0.55 to 0.84). The intra-cluster correlation (ICC) for 
sensitivity was 0.30 and for specificity was 0.42.

Patient Acceptability
Of 28 participants, 96% (n=27) stated that the ZHF 
device was comfortable to wear, with 39% (n=11) 
responding that they agreed, and 57% (n=16) stating 
that they strongly agreed. One patient was unsure. All 
28 participants surveyed (100%) stated that they would 
be prepared to wear the device again, with 43% (n=12) 
stating that they agreed and 57% (n=16) stating that they 
strongly agreed. Data for the remaining two participants 
were missing as they were discharged after hours from 
PACU when the Research Nurse was not available.

Figure 1 Flow diagram of study processes.
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Adverse Outcomes and Device Failure
Dermatitis was experienced by one participant and was 
noted when the ZHF device was removed in PACU. In 
seven cases device or database failure occurred, thus inhi-
biting complete data analysis of temperature outcomes for 
these participants: in three of these cases, temperature data 
could not be retrieved for either device. Data for the 
esophageal temperature data could not be retrieved for 
two cases, and in the two remaining cases, data were not 
retrievable for the ZHF device. In one case, failure of the 
ZHF device was attributable to dislodgement during x-ray.

Discussion
This study found mean agreement between ZHF and eso-
phageal temperature monitoring devices, although poor 
overall, was dependent on the actual temperature. Patient- 
reported acceptability, absent from previously published 
evaluations of this device, was high.

Our study utilized a combination of methods to fully 
assess measurement error between devices. Bland Altman 
plots, though a well-established method to visually repre-
sent differences between devices, may be open to inter-
pretation and proportional bias may not always be 

obvious, especially with repeated measures. Regression 
models allow formal testing of proportional bias and pro-
vide an unbiased estimate. Bland and Altman provide an 
example incorporating the 95% LOA with regression mod-
els, which we have modified to adjust for repeated 
measures.36 To our knowledge, few studies in this area 
have used this method to study bias, possibly due to the 
lack of easy application in statistical software. Morettini 
et al used concordance analysis to produce a regression 
line with general estimating equations (GEE) to account 
for repeated measures, finding significant bias which they 
concluded was not clinically important and they did not 
adjust the Bland Altman plot.22

In our study, a linear mixed model examining the 
differences between devices revealed that the simple 
mean difference of 0.14°C is misleading, as it averages 
out positive and negative results. At lower temperatures 
the ZHF device tended to have lower readings than the 
esophageal device, whereas at higher temperatures ZHF 
tended to have higher readings. Therefore, differences are 
better described using a regression equation. For example, 
at 34.5°C the difference between devices is −0.27, indicat-
ing a lower reading for the ZHF device, whilst at 35.5°C 
the difference is close to zero and at 36.5°C, the difference 
is 0.26, indicating higher ZHF readings (see Figure 2). In 
the mildly hypothermic range (35.0°C to 35.9°C) the ZHF 
device may more accurately reflect core temperature, but 
in moderate hypothermia (34.0–34.9°C) or normal ranges 
(above 36°C3) the ZHF may be less accurate. Conway 
et al's16 recent meta-analysis corrected for repeated mea-
sures in studies where this was not conducted: pooled 
estimate for the mean bias was 0.03°C. However, this 
represents mean bias across various reference devices in 
both intensive care and perioperative settings.16

In our study, only three-quarters of the ZHF measure-
ments were between 0.5°C of esophageal readings, com-
pared to 97.7% of readings within 0.5°C obtained by Jack 
et al’s comparison with esophageal readings25 and 94% of 
readings during slow core temperature change in Boisson 
et al study of major abdominal surgery.21 Boisson et al 
also observed that, during rapid temperature change, only 
39% of temperature pairs were equal or less than 0.5°C in 
relation to percentage of absolute difference.21 In our 
study, LCCC indicated poor agreement between ZHF and 
esophageal devices, with wide LOA from the Bland 
Altman, clearly more than the boundary of clinically 
acceptable agreement of 0.5°C (Figure 2). An even tighter 
boundary for clinically acceptable agreement between 

Table 1 Demographic and Surgical Data

Demographic and Surgical Variables Mean (SD) /n (%) 
(n=30)

Age (years) 49 (SD 19.2)

Female 13 (43%)
Male 17 (57%)

Weight (kg) 84.7 (SD 16.2)

Height (cm) 173.1 (SD 11.9)

Body Mass Index (BMI) kg.m−2 28.4 (SD 5.3)

ASA 1 3 (10%)

ASA 2 19 (63%)

ASA 3 8 (27%)

Duration of surgery (mins) 149 (80–473)a

Upper limb surgery 16 (53%)

Lower limb surgery 13 (43%)

Upper & lower limb surgery 1 (3%)

Baseline temperature (°C) 36.5 (SD 0.54)

Ambient operating theatre (OT) 

temperature (°C)

20.7 (SD 1.65)

Note: aMedian (range).
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devices and true core temperature (between ± 0.1°C to 
0.2°C) has been suggested,19 given advancements in tem-
perature device technology. The boundary of 0.5°C repre-
sents wide variation in a tightly controlled vital sign and 
remains clinically relevant in the context of temperature 
management decision-making.

The device failure and data recording issues we experi-
enced are not unique. West et al’s secondary analysis of 
agreement of ZHF compared with nasopharynx or oropharynx 
measurements excluded data from six out of 200 participants 
due to device failure.24 Data recording or retrieval problems 
were also reported by Boisson et al,21 Pesonen et al,23 Iden 
et al,19 Jack et al,25 and Eshraghi et al.15 Concerns regarding 
quality of manually recorded data are well-founded. However, 
our findings and previous studies suggest potential superiority 
of automatically recorded temperatures, as discussed by 
Freundlich,37 may be undermined by retrieval issues and 
device failures that are not easily resolved during complex 
procedures. Nonetheless, automatically recorded, continuous 
temperature recording may offer additional benefits for report-
ing temperature metrics and quality indicators:38 failure to 

manually document intraoperative temperatures is widely 
acknowledged.10,13,39 Provision of non-invasive, continuous 
monitoring devices, such as the ZHF device, may increase 
willingness to monitor and record, as well as awareness of, 
intraoperative core temperature.40

Few prior studies have analyzed sensitivity and speci-
ficity of non-invasive temperature monitoring devices for 
hypothermia detection.41 Kimberger et al reported sensi-
tivity and specificity for hypothermia detection by a non- 
invasive double sensor device as 0.77 (0.54 to 0.99) and 
0.93 (0.7 to 0.99).42 We found that the ZHF achieved 
slightly improved sensitivity (0.80, 95% CI 0.65 to 0.89) 
but lower specificity in hypothermia detection (0.72, 95% 
CI: 0.55 to 0.84). Therefore, reliance upon ZHF devices 
for hypothermia detection may feasibly result in some 
normothermic patients receiving warming measures, 
based on the lower specificity. Nonetheless, our findings 
also indicate greater agreement with esophageal readings 
at 35.5°C. Sensitivity and specificity analyses should be 
included in future, larger studies, for both detection of 
hypothermia and fever.

Figure 2 Bland Altman plot: Temperature differences and mean of esophageal and ZHF devices. Dashed red line indicates mean bias, estimated through a regression line 
(linear mixed model). Dashed blue lines indicate 95% limit of agreement (LOA). Boundaries of clinically acceptable agreement set at 0.5°C and indicated by shaded grey box.
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Adverse events, as per earlier studies, were minimal: 
one case of ZHF-related dermatitis was observed. Earlier 
studies suggest the device is well tolerated:21,22 short- 
term, residual marks from the adhesive have been 
described.22 Our study found that self-reported, retrospec-
tive, patient acceptability of the device, described as com-
fort and preparedness to wear the device again, was high. 
Sekhon et al suggest that anticipated acceptability can be 
assessed prior to interventions, to determine modifications 
to increase acceptability, yet propose that retrospective 
acceptability measurement allows participants opportunity 
to reflect on the whole experience of an intervention.43 

Insight into patient-assessed acceptability of a relatively 
new device is invaluable. The continuous capability, 
involving transfer between areas with a disposable sensor 
pad attached to the forehead, was well-tolerated by 
patients. Nonetheless, the device requires mains power 
and staff reported the need to unplug the device during 
transfer was a limitation, as was inability to retrieve raw 
values from the unit itself.

As per earlier reports, measurement accuracy of the 
ZHF device may inhibit use where wide variations or 
rapid temperature change are anticipated.21 However, the 
device is potentially less prone to operator error than other 
non-invasive peripheral devices (which estimate core tem-
perature via correction factor) including aural canal ther-
mometry, which requires careful placement and 
visualization of the tympanic membrane for optimal effi-
ciency, which under normal clinical circumstances is not 
conducted. The ease of use, patient tolerability, and con-
tinuous monitoring capability22,24 suggests that the ZHF 
device may offer a viable option to improve compliance 
with consistent temperature measurement guidelines 
across perioperative care phases and multidisciplinary 
care providers.3,44 Yet the utility and application of the 
device is inhibited by, importantly, lesser measurement 
accuracy and specificity, along with practical concerns 
regarding retrieval of raw values from the unit.

Limitations
This study experienced a relatively high number of device 
and database retrieval failures, partly due to the utilization 
of automatically documented temperature data, resulting in 
a small sample size. For research purposes, manual record-
ings of temperature at narrow intervals over long proce-
dures may improve reliability if cross-checked against 
automatic readings but may inhibit feasibility by increas-
ing data collection burden. Our study offers a pragmatic 

evaluation of the performance of both devices in clinical 
settings, highlighting practical considerations broadly 
applicable to intraoperative temperature monitoring. 
Additionally, extraction of data at 5-min intervals over 
100 min enabled analysis of 448 measurement pairs, facil-
itating data analysis.

Conclusion
The ZHF device achieved lesser measurement accuracy 
with core (esophageal) temperature compared to earlier 
findings. Nonetheless, due to continuous capability, non- 
invasiveness and patient reported acceptability, the device 
warrants further evaluation.

Data Sharing Statement
De-identified participant temperature data are available on 
request from the Corresponding Author.
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