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Abstract: The interest in the NLO response of organic compounds is growing rapidly, due to the ease
of synthesis, availability, and low loss. Here, in this study, Cu(II)-catalyzed selective N-arylation of
2-aminobenzimidazoles derivatives were achieved in the presence of different bases Et3N/TMEDA,
solvents DCM/MeOH/H2O, and various aryl boronic acids under open atmospheric conditions.
Two different copper-catalyzed pathways were selected for N-arylation in the presence of active
nucleophilic sites, providing a unique tool for the preparation of NLO materials, C-NH (aryl) deriva-
tives of 2-aminobenzimidazoles with protection and without protection of NH2 group. In addition to
NMR analysis, all synthesized derivatives (1a–1f and 2a–2f) of 5-bromo-2-aminobenzimidazole (1)
were computed for their non-linear optical (NLO) properties and reactivity descriptor parameters.
Frontier molecular orbital (FMO) analysis was performed to get information about the electronic
properties and reactivity of synthesized compounds.

Keywords: benzimidazole; N-arylation; optimization; FMOs analysis; non-linear optical properties

1. Introduction

There are 30 derivatives of 2-aminobenzimidazole registered in the world as drugs that
exhibit diverse pharmacological activities, e.g., antiparasitic, antifungal, antiviral, and anti-
allergic [1]. The 2-aminobenzimidazoles are interesting compounds with many biological
effects, such as immunotropic, diuretic, antihistamine, and highly selective characteristics
of p38aMaP inhibition [2–4]. Moreover, 2-aminobenzimidazole derivatives with antiviral
activity against herpes simplex virus (HSV), human cyclomegalo virus (HCMV), and
HIV have also been developed and patented [5–7]. The benzimidazole moiety is also a
component of chemosensor receptors, which are utilized to recognize anions selectively
and play an essential part in several biological activities [8]. The polyfunctionality of the
cyclic guanidine moiety in the 2-aminobenzimidazole has made it a building block for the
synthesis of a wide range of pharmacologically important benzimidazole derivatives [9,10].
Therefore, the selective N-arylation of amino-substituted N-heterocycles without protection
and with protection of nucleophilic sites is important synthetically, as it gives an easy
approach to a variety of different bio-actively potent N-arylated compounds.

Optimizing a catalytic pathway for substrates, where a couple of hetero atom sites are
available for cross-coupling reactions, is an actual challenge for the organic chemist. The
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selective N-arylation of heteroaromatics, which has more than one nucleophilic site, could
be precious because it quickly develops molecular complexity in target molecules with
the fewest synthetic influences. However, a large number of transition metal-catalyzed
protocols have developed as incredible tools for numerous types of regio/chemoselective
N-(hetero) arylation reactions in organic synthesis [11]. Different Pd- and Cu-catalyzed
arylations, such as Goldberg [12], Ullman [13], and Buchwald–Hartwig [14] procedures,
were used for N-arylations of azoles. More recently, the copper-catalyzed Chan–Lam
coupling method for arylation of N-nucleophile by using copper acetate and aryl boronic
acids was introduced as the standard because of its mild reaction conditions [15,16]. The
Chan–Lam coupling has been used for N-arylation of various amines, anilines, esters,
imidazoles, and nitrogen-containing heterocycles [17].

These days computational chemistry [18] has emerged as a well-recognized partner of
experimental chemistry. Computational chemistry is an extremely vast topic but herein we
limited ourselves to density functional theory (DFT) [19]. Over the last 40 years, density
functional theory (DFT) has become the most dominant and powerful tool in computational
quantum chemistry for the modeling and simulation of chemical systems. Materials
demonstrating great non-linear optical response play a key role in telecommunication,
optical information processing, optical computing, etc. [20,21]. Nadeem and co-workers
studied benzimidazole derivatives to tune the second-order nonlinear optical molecular
switching by proton abstraction. Their results illustrate that substituted compounds
have robustly large off–on NLO switching with a difference in βo values of 7, 63, 85,
and 75 times larger than their neutral counterparts, respectively [22]. Tayade and Sekar
examined Benzimidazole-Thiazole based NLOphoric Styryl Dyes both experimentally and
theoretically. The nonlinear response based on α, and βwas increased after the substitution
of acceptor groups [23]. Thakare et al. experimentally and theoretically analyzed the NLO
response of BODIPY–benzimidazole conjugate. The results obtained from the DFT method
are in good accordance with those produced from solvatochromic method. The values
obtained for nonlinear absorption coefficient (β) and third-order susceptibility χ(3) are
7.45 × 1012 and 3.85 × 1013, respectively [24]. These reports shed light on the importance
of substituted benzimidazole synthesis and their use in the field of optical and nonlinear
optical materials using the DFT method.

In the present study, 2-aminobenzimidazole and its derivatives were synthesized
via Chan–Lam cross-coupling reaction and analyzed theoretically for structural, spectro-
scopic [25], and NLO properties [26]. Density functional theory (DFT) calculations were
used to investigate quantum chemical parameters, such as electron affinity (EA), ionization
potential (I), electronic chemical potential (µ), electrophilicity index (ω), and chemical hard-
ness (η) [27] of synthesized derivatives of 5-bromo-2-aminobenzimidazole. We hope that
electron-donating and withdrawing groups substitution can enhance the NLO response of
the newly designed bezimidazoles, and we will obtain large first-order hyperpolarizability
for these compounds.

2. Results and Discussion
2.1. Chemistry

For the acquisition of optimized protocol for selective C-NH arylation of 5-bromo-2-
aminobenzimidazole, we initiated our examination by adopting two different protocols
in which we used 5-bromo-2-aminobenzimidazole (1) and its derivative N-(5-bromo-1H-
benzo[d]imidazol-2-yl)acetamide (2) with aryl boronic acids in presence of Cu(OAc)2 as a
catalyst, Triethylamine (Et3N) or Tetramethylethylenediamine (TMEDA) as a base, and the
solvent DCM and methanol. The reaction was carried out at normal temperature under an
open-air environment (Scheme 1).

N-(5-bromo-1H-benzo[d]imidazol-2-yl)acetamide (2) was synthesized after selective
protection of amino group of 5-bromo-2-aminobenzimidazole (1) by acetic anhydride at
40 ◦C through a previously reported method [28].
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Scheme 1. Synthesis of and 5-bromo-1H-benzo[d]imidazol-2-amine derivatives (1a–1f), N-(5-
bromo-1H-benzo[d]imidazol-2-yl)acetamide (2), and N-(5-bromo-1H-benzo[d]imidazol-2-yl)acet-
amide derivatives (2a–2f). Reagents and conditions: (1) Cu(OAc)2 (0.94 mmol), 1 (0.94 mmol), Aryl-
boronic acid (1.88 mmol), Et3N/TMEDA (1.88 mmol), MeOH/H2O (8:1), r.t., air, time of 2 h; (2) 1 (47 
mmol), acetic anhydride (5 mL), temperature of 40 °C, time of 4 h; (3) Cu(OAc)2 (0.59 mmol), 2 (0.39 
mmol), Arylboronic acid (0.47 mmol), Et3N/Py (0.59 mmol), DCM (10 mL), r.t., air, time of 24–72 h. 

N-(5-bromo-1H-benzo[d]imidazol-2-yl)acetamide (2) was synthesized after selective 
protection of amino group of 5-bromo-2-aminobenzimidazole (1) by acetic anhydride at 
40 °C through a previously reported method [28]. 

Generally, N-arylation of the heterocyclic compound with aryl boronic acid takes 
place under anhydrous conditions. In one protocol of direct N-arylation of 5-bromo-2-
aminobenzimidazole (1) to produce its derivatives 1a–1f (Figure 1), we used a TMEDA 
base and Cu(OAc)2·H2O catalyst with mixed parotic solvent (CH3OH/H2O 8:1). The de-
sired products were obtained in good yield within only 2 h [29]. In contrast, in the second 
protocol for selective N-arylation of N-(5-bromo-1H-benzo[d]imidazol-2-yl)acetamide (2) 
to produce its derivatives 2a–2f (Figure 2), we used anhydrous Cu(OAc)2 instead of 
Cu(OAc)2·H2O with aryl boronic acid in presence of dry DCM instead of CH3OH/H2O, 
Et3N, and 4 Å molecular sieves [15,30]. This method was not found efficient, as we failed 
to isolate the desired product in good yield, even after 24 h, and various tedious steps, 
such as protection of 5-bromo-2-aminobenzimidazole (1) involved in this method. It was 
noticed that, by the addition of TMEDA base and a small amount of water, the yield of 
desired products is enhanced significantly. 

Scheme 1. Synthesis of and 5-bromo-1H-benzo[d]imidazol-2-amine derivatives (1a–1f), N-(5-bromo-1H-benzo[d]imidazol-
2-yl)acetamide (2), and N-(5-bromo-1H-benzo[d]imidazol-2-yl)acetamide derivatives (2a–2f). Reagents and conditions:
(1) Cu(OAc)2 (0.94 mmol), 1 (0.94 mmol), Arylboronic acid (1.88 mmol), Et3N/TMEDA (1.88 mmol), MeOH/H2O (8:1),
r.t., air, time of 2 h; (2) 1 (47 mmol), acetic anhydride (5 mL), temperature of 40 ◦C, time of 4 h; (3) Cu(OAc)2 (0.59 mmol),
2 (0.39 mmol), Arylboronic acid (0.47 mmol), Et3N/Py (0.59 mmol), DCM (10 mL), r.t., air, time of 24–72 h.

Generally, N-arylation of the heterocyclic compound with aryl boronic acid takes
place under anhydrous conditions. In one protocol of direct N-arylation of 5-bromo-2-
aminobenzimidazole (1) to produce its derivatives 1a–1f (Figure 1), we used a TMEDA base
and Cu(OAc)2·H2O catalyst with mixed parotic solvent (CH3OH/H2O 8:1). The desired
products were obtained in good yield within only 2 h [29]. In contrast, in the second
protocol for selective N-arylation of N-(5-bromo-1H-benzo[d]imidazol-2-yl)acetamide (2)
to produce its derivatives 2a–2f (Figure 2), we used anhydrous Cu(OAc)2 instead of
Cu(OAc)2·H2O with aryl boronic acid in presence of dry DCM instead of CH3OH/H2O,
Et3N, and 4 Å molecular sieves [15,30]. This method was not found efficient, as we failed
to isolate the desired product in good yield, even after 24 h, and various tedious steps,
such as protection of 5-bromo-2-aminobenzimidazole (1) involved in this method. It was
noticed that, by the addition of TMEDA base and a small amount of water, the yield of
desired products is enhanced significantly.
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Figure 1. Synthesized 5-bromo-1H-benzo[d]imidazol-2-amine derivatives (1a–1f). 
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Figure 2. Synthesized N-(5-bromo-1H-benzo[d]imidazol-2-yl)acetamide derivatives (2a–2f).Differ-
ent aryl/heteroaryl boronic acids were used in Suzuki Cross-coupling reactions under optimized 
conditions to get the desired derivatives of 5-bromo-2-amino benzimidazole (1). The %age yield of 
various synthesized derivatives 1a–1f and 2a–2f are given in Tables 1 and 2. 

Table 1. Optimization of Cu(II)-catalyzed C-N cross-coupling of 5-bromo-2-amino benzimidazole 
and aryl boronic acid in MeOH/H2O at room temperature. 

Entry Aryl Boronic Acid Base Product Yield (%) 
1 4-MeC6H4B(OH)2 Et3N 1a trace 
2 4-MeC6H4B(OH)2 TMEDA 1a 70 
3 4-OMeC6H4B(OH)2 TMEDA 1b 80 
4 3-ClC6H4B(OH)2 TMEDA 1c 78 
5 3-NC5H4B(OH)2 TMEDA 1d 73 
6 3,5-Me2C6H3B(OH)2 TMEDA 1e 71 
7 3-SC4H3B(OH)2 TMEDA 1f 69 
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Figure 2. Synthesized N-(5-bromo-1H-benzo[d]imidazol-2-yl)acetamide derivatives (2a–2f).Different aryl/heteroaryl
boronic acids were used in Suzuki Cross-coupling reactions under optimized conditions to get the desired derivatives
of 5-bromo-2-aminobenzimidazole (1). The %age yield of various synthesized derivatives 1a–1f and 2a–2f are given in
Tables 1 and 2.

Table 1. Optimization of Cu(II)-catalyzed C-N cross-coupling of 5-bromo-2-aminobenzimidazole
and aryl boronic acid in MeOH/H2O at room temperature.

Entry Aryl Boronic Acid Base Product Yield (%)

1 4-MeC6H4B(OH)2 Et3N 1a trace
2 4-MeC6H4B(OH)2 TMEDA 1a 70
3 4-OMeC6H4B(OH)2 TMEDA 1b 80
4 3-ClC6H4B(OH)2 TMEDA 1c 78
5 3-NC5H4B(OH)2 TMEDA 1d 73
6 3,5-Me2C6H3B(OH)2 TMEDA 1e 71
7 3-SC4H3B(OH)2 TMEDA 1f 69

Table 2. Optimization of Cu(II)-catalyzed C-N cross-coupling of 5-bromo-1H-benzo[d]imidazol-2-
amine and aryl boronic acid in DCM at room temperature.

Entry Aryl Boronic Acid Base Product Yield (%)

1 4-MeC6H4B(OH)2 Et3N 2a 40
2 4-MeC6H4B(OH)2 Pyridine 2a 37
3 4-OMeC6H4B(OH)2 Et3N 2b 42
4 3-ClC6H4B(OH)2 Et3N 2c 41
5 3-NC5H4B(OH)2 Et3N 2d 45
6 3,5-Me2C6H3B(OH)2 Et3N 2e 49
7 3-SC4H3B(OH)2 Et3N 2f 39

In the present study, it was observed that the base can significantly affect the Chan–
Lam coupling. Et3N and pyridine are commonly used bases in Chan–Lam cross-coupling
reactions. These bases contain amine additives which donate the electron pair to Cu(II) and
allow it to oxidize Cu(III) intermediate and also capture the acetic acid which produces dur-
ing the transmetallation step. For selective N-arylation of 5-bromo-2-aminobenzimidazole
(1) without protection, we used TMEDA and Et3N as bases and obtained products in good
yield with TMEDA base. It is observed that TMEDA act as a bidentate ligand and forms a
more stable complex with copper which enhances its reactivity toward the NH group of
imidazole ring as compared to Et3N for its selective N-arylation [31,32].
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2.2. Density Functional Theory (DFT) Studies

All synthesized compounds (1a–1f and 2a–2f) were computationally studied to inves-
tigate the structural–properties relationships. First of all, compounds were optimized at
B3LYP functional of DFT by using GAUSSIAN 09 software [33]. For molecular orbitals
description, Pople’6-31+G(d,p) [34] was used (Figure 3A,B). Frequency analysis were com-
pleted at the same level of theory for further confirmation of these structures as true minima
energy structures on potential energy surfaces. A frontier molecular orbitals (FMOs) analy-
sis and reactivity descriptor parameters were calculated at B3LYP/6-31+G(d,p) method [35].
Nonlinear optical (NLO) properties along with polarizabilities and first hyperpolarizabil-
ity parameters were evaluated using CAM-B3LYP [36], LC-BLYP [37], andωB97XD [38]
density functionals with 6-31+G(d,p) basis set.
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2.2.1. Frontier Molecular Orbital (FMO) Analysis

FMOs analysis is performed to get information about the electronic properties and
reactivity of compounds. The energies of HOMOs (EHOMOs) and LUMOs (ELUMOs) explain
electronic properties and HOMO–LUMO gaps (GH-L) validate kinetic stability and reactiv-
ity of compounds. Large GH-L declared the less reactivity and more stability of compound
and vice versa [39]. The energies of HOMOs (EHOMOs), energies of LUMOs, (ELUMOs), and
HOMO–LUMO energy gaps (GH-L) of all compounds are summarized in Table 3.
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Table 3. Energy of HOMOs (EHOMOs) and LUMOs (ELUMOs), HOMO-LUMO energy gap (GH-L), dipole moment (µo),
polarizability (αo), and first static hyperpolarizability (βo) of compounds 1a–1f and 2a–2f.

Compounds EHOMO (eV) ELUMO (eV) GH-L (eV) µo (Debye) αo (Au) βo (Esu)

Density Functionals B3LYP CAM-B3LYP

1a −5.81 −1.12 4.69 8.46 228 4.61 × 10−30

1b −5.78 −1.11 4.66 7.95 215 5.66 × 10−30

1c −5.99 −1.50 4.49 4.91 210 3.81 × 10−30

1d −6.02 −1.77 4.25 5.63 190 4.40 × 10−30

1e −5.79 −1.10 4.69 7.56 222 4.00 × 10−30

1f −5.91 −1.39 4.52 6.32 188 4.30 × 10−30

2a −6.44 −1.40 5.04 6.05 235 2.02 × 10−30

2b −6.19 −1.11 5.08 5.93 240 3.54 × 10−30

2c −6.59 −1.68 4.91 3.74 236 2.00 × 10−30

2d −6.66 −1.87 4.79 5.35 215 2.40 × 10−30

2e −6.42 −1.39 5.03 6.03 247 2.01 × 10−30

2f −6.52 −1.52 5.00 4.69 215 2.37 × 10−30

Among the compounds 1a–1f, 1d has the smallest GH-L (4.25 eV), whose EHOMO and
ELUMO are−6.02 and−1.77 eV, respectively. Thus, 1d is considered as kinetically less stable
and moderately reactive among 1a–1f series. Previously reported gaps for substituted
benzimidazole-, thiazole-, and benzothiazole-based compounds range from 3 to 0.63 eV.
They are reported as highly stable compounds [23,40,41]. On the other side, 4.69 eV of
GH-L is calculated for compounds 1a, 1b and 1e, which represent more stability and less
reactivity of these compounds. The other compounds have GH-L values of 4.25 to 4.52 eV,
which represent their adequate stability with moderate reactivity. In the other series (2a–2f),
2d has the lower GH-L (4.79 eV), similar to the results of compound 1d. The rest of the
compounds have GH-L values from 4.91 to 5.08 eV and represent high stability and less
reactivity of these compounds. All compounds of this series have a larger GH-L and are
ultimately less reactive compared to compounds 1a–1f (Table 3).

The FMOs isodensity distributions of compounds 1a–1f are shown in Figure 4A. The
isodensity in HOMOs is distributed on benzimidazole rings and bromine atoms attached
to these rings in compounds 1a and 1e. Bromine is a strong electron-withdrawing group so
electronic densities move toward it. However, some of the isodensity also reside on oxygen,
chlorine, nitrogen, and sulfur atoms of compounds 1b–d and 1f, respectively, because these
atoms also have more electronegativity like bromine atoms. The result is the shift of elec-
tronic density from benzimidazole rings towards heteroatoms (C, O, N, S, and Cl) attached
as substituents. This specific distribution explains the lower HOMO–LUMO gaps of these
compounds (1b–d and 1f) compared to other compounds (1a and 1e). The isodensity shift
is prominent for 1d compared to other compounds. The isodensity in LUMOs is mainly
distributed on phenyl rings in all compounds (1a–1f, except 1d). These results clarify
that the electron densities are migrating mainly from the donor (electron-donating groups
terminal) to the acceptor unit (electron-withdrawing groups terminal). Compounds (2a–2f)
also have similar isodensity distributions and their HOMO and LUMO densities are given
in Figure 4B. Isodenisties are localized on the benzimidazole rings in compounds 2a–d and
2e. LUMO densities are present on the aromatic rings. In compounds 2c and 2f, HOMO
densities shifted towards the chloro-substituted aromatic and thiophene rings and LUMO
densities are on the benzimidazole rings. The gaps are mainly due to the smaller values
of the LUMOs of 1d and 2d, and since the LUMOs are mainly centered on the N-arylated
part, the gap is smaller due to the accepting nature of the pyridine. As shown by its highest
electrophilicity value, the ω values of 1d and 2d are 3.56 and 3.80 eV, respectively.
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2.2.2. Reactivity Descriptor Parameters

For further interpretation of the reactivity of compounds (1a–1f and 2a–2f), some
other reactivity descriptor parameters were also analyzed and the results of their analysis
are shown in Table 4. These parameters involve electron affinity (EA), ionization potential
(I), electronic chemical potential (µ), chemical hardness (η), and electrophilicity index (ω).
According to Koopman’s theorem, the negative values of HOMOs and LUMOs correspond
to ionization potential (I) and electron affinity (EA), respectively [42–44].

The value of chemical hardness (η) is mathematically calculated as follows:

Chemical hardness (η) = (EHOMO − ELUMO)/2

The chemical hardness of 1a–2f compounds is from 2.13 to 2.35 eV. The highly unstable
and most reactive compound is 1d based on its small chemical hardness value (η = 2.13 eV).
Compounds 1a, 1b, and 1e are stable compounds which are also confirmed from their η
values of 2.34, 2.33, and 2.35 eV, respectively. The chemical hardness of other compounds
is between 2.24 and 2.26 eV representing their moderate stability and reactivity. Ionization
energy is between 5.78 and 6.02 eV and electron affinity are in the range of 1.10–1.77 eV.
Looking towards compounds 2a–2f, we see that 2d has lower chemical hardness (2.39 eV),
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and others are noticed as hard compounds; their η values range from 2.45 to 2.54 eV. The
ionization potential and electron affinity values of 2a–2f are more than those of 1a–2f
(Table 4).

Table 4. Ionization potential (I), electron affinity (EA), chemical hardness (η), electronic chemical
potential (µ), and electrophilicity index (ω) of compounds 1a–1f and 2a–2f.

Compounds I (eV) EA (eV) η (eV) µ (eV) ω (eV)

1a 5.81 1.12 2.34 −3.47 2.56
1b 5.78 1.11 2.33 −3.45 2.55
1c 5.99 1.50 2.24 −3.75 3.12
1d 6.02 1.77 2.13 −3.89 3.56
1e 5.79 1.10 2.35 −3.44 2.53
1f 5.91 1.39 2.26 −3.65 2.94
2a 6.44 1.40 2.52 −3.92 3.04
2b 6.19 1.11 2.54 −3.65 2.63
2c 6.59 1.68 2.45 −4.14 3.49
2d 6.66 1.87 2.39 −4.26 3.80
2e 6.42 1.39 2.52 −3.90 3.03
2f 6.52 1.52 2.50 −4.02 3.23

Electronic chemical potential (µ) tells about the charge transfer at their ground state
inside the compounds, and it is mathematically represented as follows:

Electronic chemical potential (µ) = (EHOMO + ELUMO)/2

where the µ of compounds 1a–1f is from −3.44 to −3.89 eV. The highest µ value (−3.89 eV)
and lowest µ value (−3.44 eV) were calculated for 1d and 1e, respectively. In other series
(1a–1f), compound 2d also has a high value of µ (−4.26 eV), which signifies that more
charge transfer is from an electron donor to acceptor group.

Based on energy, the electrophilicity index (ω) represents the stability of compounds
when an extra charge is transferred from the surrounding [44], and it is mathematically
calculated as follows:

Electrophilicity index (ω) = µ2/2η

For compounds 1a–1f, the ω values range from 3.61 to 4.02 eV. The compound 1d has
the highest ω value of 3.56 eV which indicates that it is less stable for the incoming charge.
The presence of electron donor and acceptor groups linked through extended conjugation
is the reason for less stability of this compound and enhance its reactivity as incoming
charge causes more delocalization of electronic density. In the series of 2a–2f, the ω value
of 2d is 3.80 eV and represents the more charge accepting capability of these compounds.
Other compounds have a low ω value, i.e., up to 2.63 eV.

2.3. Non-Linear Optical (NLO) Properties

From the start of this century, scientists are following the methods to produce non-
linear optical (NLO) materials because of their potential consumptions in optical data
storage, optical communication, optical computing, optical limiting, medical imaging, laser
devices, etc. [45,46]. To increase the NLO response of the compounds, different strategies
are adopted, such as push–pull mechanism [47], metal–organic framework [48], excess
electron system [45,49], etc. The organic molecules develop a strong NLO response as the
transformation of electrons from donor to acceptor group is responsible for the improved
value of βo [50]. Polarizability (αo) and first hyperpolarizability (βo) parameters are used
to measure the NLO response of respective compounds.

Polarizability (αo) and hyperpolarizability (βo) parameters of optical and nonlinear op-
tical properties are studied at different density functionals, i.e., CAM-B3LYP, LC-BLYP, and
ωB97XD (vide infra). CAM-B3LYP has a 0.65 fraction of nonlocal exchange at an asymptotic
distance and is a highly reliable method for calculating hyperpolarizabilities [36]. Full
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range-separated functionals LC-BLYP [37] and ωB97XD [38] have the correct 1.00 fraction
of nonlocal exchange they are also well-known funtionals in the field of NLO. Almost com-
parable results are obtained at all selected density functionals where polarizability ranges
from 182 to 239 au and hyperpolarizability is between 1.73 × 10−30 and 5.63 × 10−30 esu
for 1a–1f and 2a–2f at LC-BLYP. Polarizability values for all them (1a–1f and 2a–2f) is from
188 to 246 au and hyperpolarizability is between 5.31 × 10−30 and 1.90 × 10−30 esu at
ωB97XD. Moreover, 188 to 247 au and 2.00 × 10−30 to 5.66 × 10−30 esu are the polariz-
ability and the hyperpolarizability ranges for 1a–1f and 2a–2f at CAM-B3LYP (Table 3 and
Supplementary Materials Table S1). The highest polarizability (247 au) and hyperpolariz-
ability (5.66 × 10−30 esu) are calculated at CAM-B3LYP functional. Therefore, the results
of CAM-B3LYP are given in the main manuscript other results are given in supplementary
material (Table S1). The short-range intermolecular interaction plays important role in
describing optical and nonlinear optical properties of all these compounds due to which
the results of CAM-B3LYP are better than the other two functionals.

Polarizability is the distribution of electron density in a system. The compounds
having electron-donating and accepting groups at the opposite edge of phenyl rings
have a high value of αo because of positive and negative centers. On the other side, the
compounds having equal electronic density distribution due to similar functional groups
on the opposite terminal have a low αo value. The compound 1a has a high value of αo
(220 au) whereas 1e has a low αo value (182 au). Other compounds have moderate αo
values, from 183 to 208 au. The αo values of compounds 2a–2f range from 208 to 239 au.
The αo value of 2e is high due to electron-withdrawing and donating groups attached at
opposite terminals of the ring.

Benzimidazole ring act as electron-rich species when phenyl ring having different
substitution are attached. The shifting of electronic density occurs due to an extended
conjugated system between electron-withdrawing and donating groups, the correspond-
ing intersystem charge transfer (ICT) increases the βo. The compound 1b displayed the
largest βo value (5.66 × 10−30 esu), because of the strong electron-donating group (MeO-)
at the para position of the aromatic ring, and on the other side of this molecule, the
electron-withdrawing bromine group is attached. According to the push–pull mechanism,
shifting of electronic density (ICT) occur under extended conjugation. A βo value of
(4.61 × 10−30 esu) was observed for compound 1a where a lower electron-donating methyl
group is attached to the phenyl ring compared to the methoxy group. The βo values of 1d,
1e, and 1f compounds are 4.40 × 10−30, 4.00 × 10−30, and 4.30 × 10−30 esu, respectively.
All these compounds have electron-donating property-based substations, i.e., pyridine,
di-methylbenzene, and thiazole rings, which enhance βo. In compound 1c, chlorine and
bromine groups are present on opposite terminals of the compound and result in a lower
βo value (3.81 × 10−30 esu). Both halogen groups withdraw electronic density towards
themselves, and the ICT transfer is low compared to other above-discussed compounds.
For compounds 2a–2f, βo values are in a range from 2.00 × 10−30 to 3.54 × 10−30 esu.
Compounds (2a–2f) have a lower βo compared to compounds (1a–2f), but the overall
results are similar 1a–2f series. The reason is the acetamide group where resonance oc-
curs between the nitrogen and carbonyl groups, and it also acts as an electron-donating
group, although the extent of donation is low. Strong electron-donating methoxy of 2b
(3.54 × 10−30 esu), moderate electron-donating pyridine, and thiophene groups of 2d
(2.40 × 10−30 esu) and 2f (2.37 × 10−30 esu) enhance delocalization of the π bonding and
electron-withdrawing group bromine on the other side accept the electronic density. The
shifting of density is more in the case of methoxy group as compared to thiophene and
pyridine. The sulfur of thiophene (2f) has the opposite effect due to the electronegativ-
ity of sulfur, so its βo is lower than the methoxy group. A low electron-donating group
methyl in compounds 2a (2.02 × 10−30 esu), 2e (2.01 × 10−30 esu) has a lower tendency to
undergo ICT and have comparatively low βo. The lowest βo value is obtained for 2c due
to electron-withdrawing groups’ attachment on the opposite side but due to the presence



Molecules 2021, 26, 6920 10 of 17

of moderately electron-donating group the ICT is more compared to 1c and a value of
2.00 × 10−30 is seen.

We compare the result of 1b at CAM-B3LYP with already reported compounds from
benzimidazole family and their comparative graph is given in Table 5. The table clearly rep-
resents that values of our designed compounds are close to the already reported compounds
(salicylidenephenyl)benzimidazole] (Spbzl) at B3LYP, salicylidenephenyl)benzimidazole]*
(Spbzl*) at CAM-B3LYP and 4-((3-(1H-benzimidazol-2-yl)phenylimino)methyl)-3-hydroxy-
benzoic acid (Pbzlb) at CAM-B3LYP.) in the gaseous phase at B3LYP and CAM-B3LYP
level [51]. The table shows almost similar NLO response of our compounds to already
reported on which justifies the better performance of our compounds.

Table 5. Hyperpolarizabilty values of currently reported compound 1b at CAM-B3LYP, and already
reported salicylidenephenyl)benzimidazole] (Spbzl) at B3LYP, salicylidenephenyl)benzimidazole]*
(Spbzl*) at CAM-B3LYP and 4-((3-(1H-benzimidazol-2-yl)phenylimino)methyl)-3-hydroxybenzoic
acid (Pbzlb) at CAM-B3LYP.

Compounds Hyperpolarizability (βo)

1b 5.66 × 10−30

Spbzl 1.27 × 10−29

Spbzl 8.50 × 10−30

Pbzlb 1.48 × 10−29

2.4. UV–VIS Absorption Analysis

UV–VIS absorption analysis is performed by using the TD-DFT method to get an
insight into electronic excitation that occurs from a lower energy state to a higher energy
state [52]. UV–VIS spectra of the parent compound (1) and substituted compounds (1a–2f
and 2a–2f) are given in Figure 5. Results of oscillating strength (f o), excitation energies (∆E),
and wavelength (λ) of all compounds (1,1a–2f and 2a–2f) are given in Table 6 The redshift is
seen in all substituted compounds (1a–2f) in comparison to the parent compound (1). The
pronounced effect is seen for 1a compound in series of 1a–2f compounds. The electronic
excitation takes place from donor–acceptor groups. In compounds where on both sides of
the parent skeleton electron-donating and withdrawing groups are attached, this excitation
is more prominent. In compound 1a, the electron-withdrawing bromine group (-Br) is
attached, while, on the other side, the electron-donating methyl group (-CH3) is attached.
A prominent redshift of 248 nm wavelength is observed for it (1a). Based on the electron-
donating capability of other groups, the corresponding redshift is observed. The increasing
trend of wavelength is as follows: 1a (248 nm) > 1b (226 nm) > 1d (221 nm) > 1f (217 nm) >
1e (213 nm) > 1c (212 nm).

Table 6. Oscillating strength (f o), excitation energies (∆E) and wavelength (λmax) of parent and
substituted compounds (1,1a–2f and 2a–2f).

Compounds f o ∆E λmax

1 0.71 5.94 209
1a 0.16 5.00 248
1b 0.32 5.49 226
1c 0.48 5.85 212
1d 0.18 5.62 221
1e 0.65 5.82 213
1f 0.45 5.71 217
2a 0.40 5.69 218
2b 0.14 5.56 223
2c 0.27 5.70 218
2d 0.48 5.78 214
2e 0.37 5.74 216
2f 0.31 5.67 219
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UV–VIS analysis for 2a–2f series of compounds is also performed where hydrogen
is replaced by an amide group (Figure 5). Again, a redshift is seen compared to parent
compound 1, which indicates the electronic excitation; the bathochromic shift is seen
where peaks move toward a higher wavelength. Maximum wavelength is obtained for
compound 2b, where the peak is located at 222 nm. The amide group increases the wave-
length of the compounds that have a lower wavelength in the 2a–2f series, because of the
presence of electron-withdrawing groups at both opposite terminals (compound 2e). The
maximum wavelength for these compounds 2a–2f ranges from 214 to 223 nm. Amide is an
electron-withdrawing group, and it facilitates the push–pull mechanism and delocalization
of electrons. The observed electronic excitations enable these compounds (1a–1f and 2a–2f)
as efficient NLO materials usage in a second-harmonic generation. These compounds
show transparency below 200 nm, so they can also be used in UV laser technology. Su and
co-workers also worked on the single group substitution of benzimidazole; they observed
that electron-donating groups decrease the wavelength, whereas the electron-withdrawing
group increases the observed wavelength [53]. Their calculated wavelength is lower than
our reported maximum wavelength for compounds 1a and 1b.

3. Experimental

All the purchased chemicals (Sigma Aldrich, St. Louis, MO, USA) and solvents were
purified before use by distillation, or, for extra purity, some of the solvents were also
dried in the lab. All the reactions were completed under and open-air environment. The
reaction progress was checked by using a TLC card. Organic solutions were evaporated
from the reaction by using a rotatory evaporator (Buchi, R-210, Allschwil, Switzerland) and
vacuum pump (Buchi, V-700, Flawil, Switzerland). NMR spectra were calculated in CDCl3
and DMSO-d6 by using Bruker ARX 400 and 125 MHz FT–NMR spectrometers (Billercia,
MA, USA). Different aryl boronic acid, bases, and solvents were used for the synthesis of
required compounds by following specific methods.

3.1. General Protocol for the Synthesis of Compounds
3.1.1. General Procedures for the Synthesis of 5-Bromo-1H-benzo[d]imidazol-2-amine
Derivatives (1a–1f)

A dry 100 mL round-bottom flask was loaded with 0.94 mmol of 5-bromo-2-
aminobenzimidazole (1), 0.94 mmol of Cu(OAc)2, and 8 mL of methanol. Then the mixture
was stirred under an open-air environment for 15 min. After that, 1.88 mmol of base Et3N
or TMEDA, 1.128 mmol of aryl boronic acid, and 2 mL of water were added and stirred
again for two hours. The reaction progress was monitored by TLC. After completion, the
reaction mixture was filtered and concentrated by rotary evaporated to get residue [29].
The residue was column chromatographed to get the desired product, which was further
analyzed by using NMR spectroscopic techniques.

3.1.2. Synthesis of N-(5-Bromo-1H-benzo[d]imidazol-2-yl) Acetamide (2)

The mixture of 5-bromo-2-aminobenzimidazole (0.1 g, 0.47 mmol) in 5 mL of acetic
anhydride was heated at 40 ◦C for 4 h. The precipitates of the reaction mixture were cooled
to 0 ◦C, then filtered off and washed with DCM and water. Finally, they were dried to give
the final product with white crystals [28].

3.1.3. General Procedures for the Synthesis of N-(5-Bromo-1H-benzo[d]imidazol-2-yl)
Acetamide Derivatives (2a–2f)

A dry 100 mL round-bottom flask was loaded with 0.39 mmol of N-(5-bromo-1H-
benzo[d]imidazol-2-yl)acetamide, 0.47 mmol of aryl boronic acid, 0.59 mmol of Cu(OAc)2,
0.59 mmol of triethylamine, 100 mg of 4 Å molecular sieves, and then 10 mL of dry DCM.
Then, the reaction mixture was stirred at room temperature, for 36 h; TLC examination was
carried out to monitor the reaction completion. Upon completion, the reaction mixture was
filtered and washed with ethyl acetate (5 mL). Then, the solvent was evaporated by rotary
evaporation to obtain the residue [15,30]. The residue was column chromatographed by
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utilizing a mixture of hexane and ethyl acetate (60/40) to obtain the wanted product with a
good % yield, which was further analyzed by using NMR spectroscopic techniques. The
NMR spectra are given in Supplementary Material (Figures S1–S18).

3.2. Characterization Data

5-bromo-1-p-tolyl-1H-benzo[d]imidazol-2-amine (1a): 1H-NMR (400 MHz, CDCl3): δ = 7.86
(d, J = 6.9 Hz, 3H), 7.18 (d, J = 7.5 Hz, 3H), 7.12 (d, J = 8.0 Hz, 1H), 6.98 (s, 2H), 2.34 (s, 3H).
13C-NMR (125 MHz, DMSO-d6): δ = 158.42, 142.54, 140.36, 138.02, 137.53, 128.95, 128.85,
128.22, 127.79, 124.96, 119.63, 112.46, 111.18, 21.15. Anal. Calcd. For C14H12BrN3: C, 55.65;
H, 4.00; N, 13.91. Found: C, 55.72; H, 4.09; N, 13.88.

5-bromo-1-(4-methoxyphenyl)-1H-benzo[d]imidazol-2-amine (1b): 1H-NMR (400 MHz,
CDCl3): δ = 7.93 (d, J = 7.9 Hz, 2H), 7.70 (d, J = 29.8 Hz, 1H), 7.08 (d, J = 7.4 Hz, 1H),
6.94–6.91 (m, 3H), 6.82 (s, 2H), 3.80 (s, 3H). 13C-NMR (125 MHz, DMSO-d6): δ = 155.58,
140.21, 140.14, 134.50, 130.67, 124.58, 121.64, 1117.64, 116.91, 113.68, 110.82, 110.77, 109.87,
60.33. Anal. Calcd. For C14H12BrN3O: C, 52.85; H, 3.80; N, 13.21. Found: C, 52.83; H, 3.86;
N, 13.25.

5-bromo-1-(3-chlorophenyl)-1H-benzo[d]imidazol-2-amine (1c): 1H-NMR (400 MHz, CDCl3)
δ = 7.85 (d, J = 7.9 Hz, 3H), 7.63 (s, 1H), 7.33 (d, J = 8.2 Hz, 4H), 7.22 (d, J = 6.8 Hz, 1H).
13C-NMR (125 MHz, DMSO-d6): δ = 160.87, 156.29, 150.14, 141.45, 139.32, 139.20, 137.30,
134.46, 121.11, 118.66, 114.38, 112.41, 110.88. Anal. Calcd. For C13H9BrClN3: C, 48.40; H,
2.81; N, 13.03. Found: C, 48.48; H, 2.85; N, 13.00.

5-bromo-1-(pyridin-3-yl)-1H-benzo[d]imidazol-2-amine (1d): 1H-NMR (400 MHz, CDCl3)
δ = 8.60 (d, J = 4.2 Hz, 2H), 7.66 (t, J = 7.7 Hz, 2H), 7.41 (s, 1H), 7.14 (dt, J = 16.8, 8.4 Hz, 4H).
13C-NMR (125 MHz, DMSO-d6): δ = 161.80, 146.93, 136.70, 135.23, 134.89, 134.53, 133.57,
131.78, 121.71, 119.30, 117.42, 114.69. Anal. Calcd. For C12H9BrN4: C, 49.85; H, 3.14; N,
19.38. Found: C, 49.93; H, 3.15; N, 19.33.

5-bromo-1-(3,5-dimethylphenyl)-1H-benzo[d]imidazol-2-amine (1e): 1H-NMR (400 MHz,
CDCl3) δ = 7.68–7.47 (m, 5H), 7.32 (s, 1H), 7.07 (s, 2H), 2.37 (s, 6H). 13C-NMR (125 MHz,
DMSO-d6): δ = 154.26, 151.85, 149.37, 142.11, 136.30, 130.94, 126.54, 120.85, 118.15, 116.85,
113.22, 111.00, 27.46. Anal. Calcd. For C15H14BrN3: C, 56.98; H, 4.46; N, 13.29. Found: C,
57.02; H, 4.49; N, 13.24.

5-bromo-1-(thiophen-3-yl)-1H-benzo[d]imidazol-2-amine (1f): 1H-NMR (400 MHz, CDCl3):
δ = 7.82 (s, 1H), 7.49 (t, J = 9.7 Hz, 2H), 7.37–7.32 (m, 2H), 7.12 (d, J = 7.3 Hz, 1H), 6.98
(s, 2H). 13C-NMR (125 MHz, DMSO-d6): δ = 154.67, 149.45, 144.50, 129.31, 122.00, 120.36,
117.72, 116.02, 115.76, 115.01, 111.88. Anal. Calcd. For C11H8BrN3S: C, 44.91; H, 2.74; N,
14.28. Found: C, 44.98; H, 2.76; N, 14.25.

N-(5-bromo-1H-benzo[d]imidazol-2-yl)acetamide (2): 1H-NMR (400 MHz, CDCl3): δ = 7.98
(d, J = 2.0 Hz, 1H), 7.62 (dd, J = 9.2, 2.8 Hz, 2H), 6.97 (s, 1H), 5.94 (s, 1H), 2.28 (s, 3H).
13C-NMR (125 MHz, CDCl3): δ = 172.48, 147.28, 134.47, 133.26, 122.63, 117.39, 115.46, 112.57,
23.43. Anal. Calcd. For C9H8BrN3O: C, 42.54; H, 3.17; N, 16.54. Found: C, 42.59; H, 3.20; N,
16.52.

N-(5-bromo-1-p-tolyl-1H-benzo[d]imidazol-2-yl)acetamide (2a): 1H-NMR (400 MHz, CDCl3):
δ = 8.08 (d, J = 8.1 Hz, 1H), 7.85 (d, J = 8.1 Hz, 1H), 7.68 (d, J = 8.1 Hz, 2H), 7.31 (d, J = 8.1 Hz,
1H), 7.22 (d, J = 8.2 Hz, 2H), 4.37 (s, 1H), 2.52 (s, 3H), 2.47 (s, 3H). 13C-NMR (125 MHz,
CDCl3): δ = 172.46, 148.04, 139.77, 137.59, 135.30, 133.73, 130.69, 125.23, 120.74, 118.42,
115.78, 113.78, 23.91, 20.92. Anal. Calcd. For C16H14BrN3O: C, 55.83; H, 4.10; N, 12.21.
Found: C, 55.91; H, 4.14; N, 12.19.

N-(5-bromo-1-(4-methoxyphenyl)-1H-benzo[d]imidazol-2-yl)acetamide (2b): 1H-NMR (400 MHz,
CDCl3): δ = 7.97 (d, J = 1.6 Hz, 1H), 7.84 (d, J = 8.7 Hz, 2H), 7.66 (d, J = 8.8 Hz, 1H), 7.41 (dd,
J = 8.4, 1.2 Hz, 1H), 7.0 (d, J = 8.0 Hz, 2H), 5.91 (s, 1H), 3.88 (s, 3H), 2.24 (s, 3H). 13C-NMR
(125 MHz, CDCl3): δ = 171.98, 162.78, 148.75, 138.98, 135.39, 130.71, 128.74, 123.64, 120.62,
118.89, 116.32, 113.01, 57.46, 23.86. Anal. Calcd. For C16H14BrN3O2: C, 53.35; H, 3.92; N,
11.67. Found: C, 53.42; H, 3.90; N, 11.66.
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N-(5-bromo-1-(3-chlorophenyl)-1H-benzo[d]imidazol-2-yl)acetamide (2c): 1H-NMR (400 MHz,
CDCl3): δ = 8.04–8.02 (m, 1H), 7.94 (d, J = 1.8 Hz, 1H), 7.81 (d, J = 1.7 Hz, 1H), 7.64 (d,
J = 8.5 Hz, 1H), 7.47–7.41 (m, 3H), 5.97 (s, 1H), 2.28 (s, 3H). 13C-NMR (125 MHz, CDCl3):
δ = 172.67, 148.47, 138.78, 135.56, 134.58, 132.67, 130.77, 128.57, 126.82, 124.04, 122.09, 120.02,
117.47, 113.89, 24.01. Anal. Calcd. For C15H11BrClN3O: C, 49.41; H, 3.04; N, 11.52. Found:
C, 49.43; H, 3.09; N, 11.49.

N-(5-bromo-1-(pyridin-3-yl)-1H-benzo[d]imidazol-2-yl)acetamide (2d): 1H-NMR (400 MHz,
DMSO-d6): δ = 8.17 (d, J = 2.3 Hz, 1H), 7.96 (d, J = 7.4 Hz, 2H), 7.80 (dd, J = 8.8, 2.4 Hz, 2H),
7.55 (d, J = 8.8 Hz, 2H), 4.70 (s, 1H), 2.55 (s, 3H). 13C-NMR (125 MHz, CDCl3): δ = 171.94,
147.92, 145.46, 142.56, 136.84, 134.87, 131.75, 129.99, 125.45, 122.04, 118.52, 117.15, 115.97,
23.67. Anal. Calcd. For C14H11BrN4O: C, 50.77; H, 3.35; N, 16.92. Found: C, 50.86; H, 3.41;
N, 16.86.

N-(5-bromo-1-(3,5-dimethylphenyl)-1H-benzo[d]imidazol-2-yl)acetamide (2e): 1H-NMR
(400 MHz, CDCl3) δ = 7.67 (s, 3H), 7.34 (s, 1H), 7.11 (d, J = 6.4 Hz, 3H), 2.34 (s, 3H), 2.32
(s, 6H). 13C-NMR (125 MHz, DMSO-d6): δ = 172.65, 149.19, 136.09, 134.71, 132.25, 129.28,
127.51, 126.28, 124.61, 121.69, 117.05, 113.96, 21.51, 17.65. Anal. Calcd. For C17H16BrN3O: C,
57.00; H, 4.50; N, 11.73. Found: C, 57.06; H, 4.53; N, 11.70.

N-(5-bromo-1-(thiophen-3-yl)-1H-benzo[d]imidazol-2-yl)acetamide (2f): 1H-NMR (400 MHz,
CDCl3) δ = 7.98 (d, J = 7.2 Hz, 2H), 7.84 (s, 1H), 7.63–7.59 (m, 1H), 7.43 (s, 1H), 7.36 (s,
1H), 4.37 (s, 1H), 2.34 (s, 3H). 13C-NMR (125 MHz, DMSO-d6): δ = 172.75, 149.97, 148.28,
135.52, 131.88, 125.49, 122.28, 121.86, 114.90, 113.05, 111.91, 109.59, 21.51. Anal. Calcd. For
C13H10BrN3OS: C, 46.44; H, 3.00; N, 12.50. Found: C, 46.49; H, 2.98; N, 12.56.

3.3. Computational Details

All synthesized compounds (1a–1f and 2a–2f) were computationally studied by using
Gaussian 09 [33] and GaussView 5.0 software [54]. First of all, compounds were optimized
at B3LYP functional of DFT. B3LYP functional is widely used for optimization because of
fewer chances of errors in the geometrical parameters’ description [35,55]. Frequency anal-
yses were done at the same level of theory for further confirmations of these structures as
true minima energy structures on potential energy surfaces. An analysis of frontier molecu-
lar orbitals (FMOs) was performed, and reactivity descriptor parameters were calculated at
B3LYP/6-31+G(d,p) method. Nonlinear optical (NLO) properties, including polarizabilities
and first hyperpolarizability parameters, were measured at CAM-B3LYP [36], LC-BLYP [37],
andωB97XD [38] with a 6-31+G(d,p) [34] level.

4. Conclusions

Consequently, our investigation concentrated on the cross-coupling of 5-bromo-2-
aminobenzimidazole and aryl boronic acids under various reaction conditions. The impact
of different bases and solvents was observed, and we noted that the reaction is not potent
with Et3N and pyridine; however, the reaction products obtained a good yield with TMEDA.
Finally, all synthesized derivatives (1a–1f and 2a–2f) were computationally studied by
applying DFT calculations. Frontier molecular orbital (FMO) analysis provides information
about the electronic properties and reactivity of compounds. Out of 1a–1f, compound 1d,
and out of 2a–2f, compound 2d presented the lowest HOMO–LUMO energy gap of 4.25 and
4.79 eV, respectively. The isodensity shift was more pronounced for these compounds as
compared to others. Reactivity descriptor parameters were also calculated to determine the
chemical reactivity relations of all synthesized derivatives. Compounds 1d and 2d have the
lowest values of chemical hardness (2.13 and 2.39 eV), lower electronic chemical potential
(−3.89 and −4.26 eV), and highest values of electrophilicity index (3.56 and 3.80 eV),
respectively. Also, Compounds 2d has lowest electronic chemical potential (−4.26 eV)
among all compounds. The compounds 1a–1f displayed better results for all properties
when compared to compounds 2a–2f, because the acetamide group shows conjugation
between nitrogen and carbonyl groups, where electronic density shifting is low. Moreover,
polarizability (αo) and first hyperpolarizability (βo) parameters were used to measured
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NLO response. Overall, 1a has a high αo value of 228 au, and 2e exhibited the highest value
of 247 au due to electron-withdrawing and donating groups attached at opposite terminals
of the rings. The highest value of βo is shown by 1b (5.66 × 10−30 au). UV–VIS absorption
analysis is performed to understand electronic excitation in the designed compounds.
These results suggested the use of these compounds in the field of optics and nonlinear
optics.

Supplementary Materials: The following are available online. Figures S1–S18: 1H-NMR and s
13C-NMR pectrum of compound 1a–2f; Table S1: Polarizability and hyperpolarizability of com-
pounds 1a–1f and 2a–2f.

Author Contributions: Conceptualization, N.R., U.R. and M.M.; methodology, N.R. and M.M.;
formal analysis, G.A.; investigation and data curation G.A. and M.M.; writing draft preparation, G.A.
and N.R.; writing—review and editing, N.R., M.M., N.K., G.A. and U.R. All authors have read and
agreed to the published version of the manuscript.

Funding: Article Processing Charges (APC) was funded by Research Management Center (RMC),
Universiti Putra Malaysia (UPM), Malaysia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The present data are part of the Ph.D. thesis research work of Mubeen Mumtaz.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compounds are available from the authors.

References
1. Karaffa, L.S. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals; RSC Publishing: London, UK, 2013.
2. Nawrocka, W.; Zimecki, M.; Kuznicki, T.; Kowalska, M.W. Immunotropic Properties of 2-Aminobenzimidazole Derivatives in

Cultures of Human Peripheral Blood Cells, Part 5. Arch. Pharm. Int. J. Pharm. Med. Chem. 1999, 332, 85–90. [CrossRef]
3. Mor, M.; Bordi, F.; Silva, C.; Rivara, S.; Zuliani, V.; Vacondio, F.; Rivara, M.; Barocelli, E.; Bertoni, S.; Ballabeni, V. Synthesis,

biological activity, QSAR and QSPR study of 2-aminobenzimidazole derivatives as potent H3-antagonists. Bioorganic Med. Chem.
2004, 12, 663–674. [CrossRef]

4. de Dios, A.; Shih, C.; de Uralde, B.L.; Sánchez, C.; del Prado, M.; Martín Cabrejas, L.M.; Pleite, S.; Blanco-Urgoiti, J.; Lorite, M.J.;
Nevill, C.R. Design of potent and selective 2-aminobenzimidazole-based p38α MAP kinase inhibitors with excellent in vivo
efficacy. J. Med. Chem. 2005, 48, 2270–2273. [CrossRef] [PubMed]

5. Nawrocka, W.; Sztuba, B.; Kowalska, M.W.; Liszkiewicz, H.; Wietrzyk, J.; Nasulewicz, A.; Pełczyńska, M.; Opolski, A. Synthesis
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