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Introduction
Genome-wide association studies (GWAS) are useful for 
the discovery of genetic variants underlying complex human 
diseases, such as breast cancer and Type II diabetes.1,2 These 
genetic association studies typically compare the allele/geno-
type frequency for each single-nucleotide polymorphism 
(SNP) between cases and controls. Large projects such as the 
HapMap and 1,000 Genomes have shown that, in addition to 
single-nucleotide sequence variations (SNVs), structural alter-
ations, such as copy number variants (CNVs), also account for 
up to 7.3% of the genetic variation among humans and may be 
involved in the genetic susceptibility to diseases,3–7 including 
cancers.8,9

CNVs were first identified in the early 2000s,10,11 and have 
been found to exist pervasively in human genomes.12,13 Two 
major platforms of DNA microarrays have been commonly 
used for copy number estimation, namely, Affymetrix high 
density SNP arrays and Illumina Bead arrays,14,15 relying on 

the relative intensity, an indirect measurement of hybridization 
of fluorescently labeled DNA fragments to immobilized probes 
on the arrays. Sophisticated statistical models are required to 
accurately infer the actual copy number within samples. In the 
past few years, several methods have been proposed for copy 
number inference. For example, smoothing methods were used 
in early studies in the field,16,17 which fit a smoothing curve for 
the intensities along the genomic region and use certain thresh-
old to infer copy number levels. The smoothing methods have 
been shown to be effective in studies for detecting genomic 
region with copy number changes.18 However, these methods 
suffer from two limitations, namely, difficulty in locating accu-
rate boundaries and difficulty in significance testing for the 
alterations.19 Another group of methods adopt certain change-
point models for the underlying copy number levels.20,21  
A change-point model usually assumes that the SNPs come from 
segments that are uniformly distributed in human genome, and 
their underlying copy numbers are piecewise constants with a 
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series of jump points. By maximizing the likelihood function, 
the parameters as well as the change points can be estimated 
for copy number inference. Such models are further extended 
by various formations of hidden Markov models (HMMs).22–25 
The HMM assumes that the observed intensities of SNPs are 
emitted by an underlying Markov chain. It usually explicitly 
specifies the distribution for the waiting time of copy number 
changes and the jumping probabilities between copy number 
states. These methods have emerged as promising tools for 
copy number inference.

Estimation of array intensity values is challenging due to 
presence of experimental noise, both within an array and among 
arrays of different samples. For example, it is commonly known 
that the level of ozone affects hybridization reactions, which can 
affect interpretation of the results.26,27 In a recent study, we and 
others proposed a novel method to estimate copy number abun-
dance on a single-array single-SNP basis, referred to as the probe 
intensity composition representation (PICR).28 This method 
models the cross-hybridization between DNA sequences via 
their physical binding affinities. It has shown great potential for 
differentiating copy number signals from background noises. In 
this article, we propose to extend the PICR method with hid-
den Markov modeling for copy number inference, referred to as 
the PICR-CNV. The estimated copy number abundance at each 
SNP locus from PICR will first be standardized to achieve par-
ity between multiple samples, to which an HMM will be further 
applied. Our method has two major advantages: 1) By estimat-
ing the CNV abundance through PICR, we expect reduction 
of background noise in intensity values,28–30 and thus be able 
to boost the performance of HMM. 2) our method does not 
require between-samples array normalization, which maintains 
the data integrity and the independency of individual samples. 
The proposed method is compatible with Affymetrix high den-
sity SNP arrays for detection of CNVs.

Methods
This section is organized as follows: We first describe the 
design of Affymetrix 500K SNP array. Then we briefly review 
the estimation of copy number abundance for each single array 
by using a newly established RICR model.28 We introduce the 
multi-array standardization of the copy number abundance to 
achieve equal footing between individuals. Finally, we explain 
the PICR-CNV by applying an HMM to integrate multiple 
SNPs for copy number inference.

design of Affymetrix 500K sNP array. Oligonucleotide 
microarrays annotate each SNP using a set of 24 probes of 
25-mer photolithographically synthesized immobilized nucleic 
acid sequences. The target sequences are labeled with 3’-fluores-
cent dye before hybridization to the array, and their abundance are 
often measured with the fluorescent intensity on the array after 
hybridization.31–33 In a 500K SNP array, six quartets are adopted 
to interrogate a single dimorphic SNP site with its possible alleles 
commonly denoted as A and B. Each quartet consists of four 
types of probes that are 25 base pairs in length. These probes are 

designed either perfectly matching (PM) the target sequence or 
mismatching (MM) at a particular nucleotide site for each allele: 
perfect match A, mismatch A, perfect match B, and mismatch B, 
denoted, respectively, as PA, MA, PB, and MB for short. The probe 
sets are also designed to hybridize with either sense strands (s = 1) 
or antisense strands (s = –1). The quartets have different shifts (k) 
for the nucleotide on the probe sequence (k may take the values 
–4, –3, –2, –1, 0, 1, 2, 3, 4) from the center nucleotide of the probe 
sequence (k = 0 at position 13 of the 25 base pairs) (see Fig. 1A of 
Matsuzaki et al.34 for detailed illustration.).

estimation for copy number abundance by PIcr. The PICR 
method takes into account the cross-hybridization between DNA 
sequences via a positional-dependent nearest neighbor (PDNN) 
model.28 In PICR, the florescent intensity of a particular probe set is 
decomposed into four terms: the baseline intensity (b), the products 
of allelic copy numbers abundance (NA, NB) and the binding affinity 
between target and probe sequences with respect to different alleles 
(fA, fB), and a measurement error (ε) [Equation (1)]. The binding 
affinities (fA, fB) are inherently determined by the physical property of 
the DNA sequences. The allelic copy number abundance can then be 
estimated via a linear regression between the intensities and binding 
affinities. Each probe set may be perfectly matched or mismatched 
to either allele as described above (PA, MA, PB, MB).
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Multi-array equal footing by standardization. By using 
PICR, the allelic copy number abundance is estimated on a 
single-array single-SNP basis. Since all the raw fluorescence 
intensities are subject to experimental scales, which may vary 
among arrays, it is essential to achieve equal footing for mul-
tiple arrays before any further analysis. We propose to define a 
standardized copy number abundance (SCN) as
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where Ni, j,A (Ni, j,B) denotes the allelic copy number abundance 
for SNP j of subject i, and se(Ni, j, A + Ni, j,B) denotes its estimated 
standard deviation of Ni, j, A + Ni, j,B via the linear regression model 
of Equation (1). Assuming the raw intensities are normally dis-
tributed among probe sets, these standardized copy numbers 
are expected to have identical distributions for i = 1,…, N; 
∀j = 1,…,K, and hence, are expected to be on the same scale.

PIcr-cNV: a hidden Markov model for copy num-
ber inference. Modeling strategy and copy number states. As 
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illustrated by Equation (2), our objective is to detect total copy 
number changes among subjects. We assume that an inter-
rogated locus covering an SNP may have five possible copy 
numbers states, with its total copy number ranging from 0 to 4  
(Table 1). For simplicity, we also refer to the copy number at an 
interrogated locus as the copy number of the SNP locus in this 
article. Such copy number states are not observed directly, and 
hence, are latent. Following the same notation with existing meth-
ods,22,24 the inference of these hidden states is based on two types 
of observations, log R ratios (LRR) and B allele frequencies (BAF ), 
which can be calculated by the estimated allelic copy numbers 
abundance. We first estimate the standardized copy number abun-
dance for the jth SNP of subject i, and define its LRR as
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The SCN estimates among controls are regarded as a 
reference level for each SNP locus. We further define the BAF as
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 and aj ,bj are the corre-

sponding thresholds for accurate genotyping of SNP j with the 
PICR. Similar to a few previous studies, an HMM is adopted to 
integrate LRR and BAF for copy number inference.22,24,25 Our 
method differs from the existing ones by using standardized copy 
number abundance to calculate corresponding LRR and BAF 
rather than the probe intensities.

Transition probability for the hidden copy number states. We 
assume that the copy number states at SNP loci follow a time-
dependent continuous Markov process, with genomic position of 
SNPs as “time”. The transition probability is dependent on the dis-
tance between SNPs. Let zi, j be the underlying copy number state 
for the jth SNP of subject i, and let dj, j ′ be the physical distance 
between SNP j and SNP j ′ on the chromosome based on reference 
genome. We define the transition probability between the copy 
number states of SNPs j and j ′ as
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Here, ps,s ′ (dj, j′)is the probability for a hidden state s at 
SNP j to stay at the same state at SNP j ′ over a distance of 

dj,j ′, which is modeled by an exponential distribution with para-
meter 1/λs. Therefore, λs has the interpretation of the expected 
“time” (distance) for the copy number at a particular state s. The 
longer the distance, the less likely the copy number states will 
remain the same. Similar modeling strategies have been com-
monly adopted in previous studies.22,24

Emission probability for the observations. Since the 
copy number states are not observed directly, a set of emis-
sion probabilities are used to model the distribution of the 
observed variables (LRR and BAF ) given the copy number 
states at SNP loci. Similar to a few previous studies, we mod-
eled LRR and BAF by mixture distributions.22,24,25 Denote 
zi, j , Ri, j , and Bi, j , as the underlying copy number state, LRR, 
and BAF for the jth SNP of subject i. We first assume that 
the LRR and BAF at a particular SNP locus are conditionally 
independent given its underlying copy number state, so that

 p(Ri,j, Bi,j |zi,j) = p(Ri,j |zi,j) p(Bi,j |zi,j)

Further, the emission probability of LRR is modeled with the 
mixture of a uniform distribution and a normal distribution as

 

p R z s
R R

f R

i N j K

i j i j
R

M m
R i j R s R s( ) ( ) ( , );

;

, , , , , ,
−

− µ σ= = +

≤ ≤ ≤ ≤

π
π1

1 1 ;; ;1 5≤ ≤s

where f (., µ, σ) denotes the probability density function for a nor-
mal distribution with mean µ and variance σ2. Here, we assume 
that the genotyping may fail with a small probability of πR. Under 
such a case, LRR is observed as a background noise, which fol-
lows a uniform distribution between its possible minimum (Rm) 
and maximum values (µR,s ). Otherwise, it follows a normal dis-
tribution with a mean µR,s and variance ( ),σ R s

2  with respect to 
its underlying copy number states. As illustrated by Table 1, the 
expected mean and the variance of LRR observations vary by the 
underlying copy number states. Similarly, the expected values 
of BAF also vary by the underlying copy number states and the 

Table 1. Configuration of five possible copy number states.

STATE (z) CoPY 
NUMBER

PoSSIBLE 
gENoTYPES

ExPECTED LRR ExPECTED 
BAF

1 0 – (Deletion) log(0) =–∞ 0

2 1 A;
B

log2(1/2) = –1 0
1

3 2 AA;
AB;
BB

log2(1) = 0 0
0.5
1

4 3 AAA;
AAB;
ABB;
BBB

log2(3/2) = 0.585 0
0.33
0.67
1

5 4 AAAA;
AAAB;
AABB;
ABBB;
BBBB

log2(2) = 1 0
0.25
0.5
0.75
1
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underlying genotypes (Table 1). We model the emission proba-
bility of BAF at a particular SNP locus with the mixture of a uni-
form distribution and normal or truncated normal distributions:
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a
where Φ(., µ, σ) denotes the cumulative distribution function for 
a normal distribution with mean µ and variance σ2; Gs denotes 
the total number of all possible genotypes at a SNP locus with 
copy number state s; and µs,g and σs,g are the mean and standard 
deviation of BAF for a SNP locus with copy number state s and 
genotype g (Table 1). Further, ψs,g denotes the prior probability 
of BAF for copy number state s and genotype g, which can 
be calculated by a binomial distribution based on the B allele 
frequency in the population (bpf ).22,24,25 For example, an SNP 
with genotype AAB has copy number 3 and an expected BAF of 
1/3. The prior probability of the BAF can be calculated as
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Parameter estimation and copy number inference. In practice, 
we assume πR = πB = 0.01 as the empirical error rate for geno-
typing, and λs, 1 # s # 5, are predetermined to account for the 
size of copy number variants. The set of parameters that need 
to be estimated includes

Ω = {ω(s) = p(z = s) as starting probability; s = 1, 2, 3, 4, 5
P = (ps,s ′) as transition probability; 1 # s,s′ # 5
µR,s; mean of R; s = 1, 2, 3, 4, 5
σR,s; standard deviation of R; s = 1, 2, 3, 4, 5

µB,s,g; mean of B; s = 1, 2, 3, 4, 5; g = 1,2.Gs
σB,s, g; standard deviation of B; s = 1, 2, 3, 4, 5; g = 1, 2.Gs}

The parameters in Ω are optimized by using a forward-back-
ward algorithm, also known as the Baum–Welch algorithm.35 After 
the parameter estimation, the inference of copy number states is car-
ried out by the Viterbi algorithm.36 The computational algorithms 
are commonly used in previous studies, and are not detailed here.

results
simulation study. In the simulation study, we simulated 

a segment of the genome with length of 106 base pairs. We 
first assumed 10K SNPs with their physical position uni-
formly distributed in the genome. Each SNP was simulated 
for its underlying copy number state, and the observed probe 
intensities were measured by LRR and BAF. PICR-CNV was 
then applied to infer the underlying copy number states. In 
the simulation, the expected lengths of the copy number states 
were set at λ3 = 50K for a normal copy number of two copies, 
and λl = 5K; l = 1, 2, 4, 5 for other copy number states. The 
transition probability between copy number states was set as
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The observation of B was further truncated at 0 and 1.
We simulated 100 subjects by using the above model param-

eters. For each subject, the underlying copy number states and 
genotypes of 10K SNPs were first simulated in a sequential order 
according to the transition probabilities. The frequencies of allele 
B in the population followed a uniform distribution between 
[0.1, 0.9]. For each SNP, the observations of LRR (R) and 
BAF (B) were then simulated by using the emission probability 
according to its underlying copy number states and genotypes. 
Two subjects were randomly selected to estimate the parameters 
by using the Baum–Welch algorithm. The estimated parameters 
were then used to infer the underlying copy number states for all 
subjects by using the Viterbi algorithm. Owing to computational 
concerns, the convergence criteria were met when the summa-
tion of the absolute change of all parameters was less than 10–3. 
We calculated the error rates for the inferred the copy number 
states of all SNPs in all subjects. Because the expected lengths of 
the copy number variants (λs ) were predetermined and may have 
an impact on the performance of the inference, we also examined 
the error rates when they were incorrectly specified.

The simulation results are summarized in Table 2. It is 
seen that the proposed method was accurate for inferring the 
underlying copy number states when λs was correctly speci-
fied. The overall error rate for all SNPs is 1.34e–04. When 
λs was incorrectly specified, the error rate increased with the 
level of mis-specification. In our simulation, we found that 
the error rate was not seriously inflated with an up to 10-fold 
overspecification of λs. It was also noted that the error rate for 
SNPs with normal states of two copies decreased by the level 
of overspecification of λs. This was because the normal states 
of two copies had the largest expected length, and an SNP was 
more likely to be inferred as two copies when λs was large. On 
the other hand, the error rate for SNPs with normal state of 
two copies increased when λs was underspecified. Overall, the 
error rate was still properly controlled when λs was incorrectly 
specified.

Application to breast cancer data. We also applied the 
proposed method to study CNVs that are associated with 
breast cancer development, using a recent GWAS data among 

Table 2. Error rate for inference of copy number states with correctly and incorrectly specified expected length of copy number states.

AVERAgE No. of SNP wITH CoPY NUMBER STATE IN EACH SUBjECT

HMM STATE 1 2 3 4 5 ToTAL

557 163 8,875 185 220 10,000

λ used in HMM Error rates for copy number state inference

λTrue 5.92e–04 1.53e–04 2.37e–05 1.40e–04 1.32e–03 1.34e–04

2λTrue
a 3.97e–03 4.91e–04 1.69e–05 7.01e–04 4.46e–03 3.55e–04

5λTrue 4.18e–03 6.13e–4 1.80e–05 7.01e–04 4.51e–03 3.71e–04

10λTrue 4.38e–03 9.20e–04 1.80e–05 1.08e–03 4.87e–03 4.02e–04

0.5λTrue 9.69e–04 1.53e–04 3.27e–05 1.56e–04 1.32e–03 1.66e–04

Note: ameans the model specified λ is 2 times greater than the true λ.

a genetically isolated population of Ashkenazi Jews (AJ),37 in 
which all participants have their four grandparents of Jewish 
and of Eastern European ancestry. We are limiting our study 
to the inherited genetic variation, and potential somatic muta-
tions are beyond the scope of our current study. The original 
study had three phases. The first phase included 249 breast 
cancer cases without BRCA1 and BRCA2 mutations, and 299 
cancer-free AJ women as controls. The second phase was a rep-
licate study using 343 candidate SNPs among 950 AJ cases 
and 979 AJ controls. The third phase was also a GWAS study 
that included 243 AJ cases and 187 controls. The participants 
from phase I and phase III were genotyped with Affymetrix 
500K SNP array, while those from phase II were genotyped 
by Illumina GoldenGate assay. We focused our analysis on the 
phase I and phase III data. It is also worthwhile to note that 
samples from phase I were genotyped by using a combination 
of a commercial version and an early access version of Affyme-
trix 500K SNP arrays. This mismatch of arrays has imposed 
additional challenge to the application of existing methods that 
require between-array normalizations. However, since PICR is 
a single-array method and does not require multiple array algo-
rithms, the application of PICR is straightforward as long as 
the raw florescent intensity values are valid.

We used phase III as an initial study for the analysis. The 
proposed method was first applied to 10 randomly selected 
controls for parameter training. The initial genotype calling 
was conducted by PICR, and all parameters in Ω were opti-
mized and then used to infer the copy number states among all 
participants. We first examine the distribution of the sizes of 
identified CNVs (Fig. 1). The shape of this distribution is con-
sistent with existing studies (Fig. 1 of Li et al.38). For each SNP 
locus, we further conducted a Kolmogorov–Smirnov (KS) test 
to compare the inferred copy numbers between cases and con-
trols. The significant regions were selected if three consecutive 
SNPs showed significant copy number differences at a level of 
1e–07. After the region was selected, a global P-value was fur-
ther calculated by conducting a KS test using the average copy 
number of the SNPs within the region. The results are sum-
marized in Table 3. The findings included 34 genomic regions 
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from 16 chromosomes. The region with the largest number of 
significant SNPs was 4q31.23. This region had 10 SNPs show-
ing significant copy number difference between cases and con-
trols. Besides region 4q31.23, two regions, 1p21.1 and 10q21.1, 
both have seven significant SNPs. Three regions have five SNPs 
with significant copy number differences, including 6q22.33, 
6q27, and 11p12. These results indicate that copy number alter-
ations on chromosome 4, 6, 1, and 11 may have a significant 
impact on the development of breast cancer.

We also applied the same procedure to the phase I data for 
replication. The results are also summarized in Table 3. Among 
the regions identified from phase III data, the copy number 
changes remained significant at five regions: 4q31.23, 6q13, 
12q23.1, 13q14.3, and 2p21. These five regions contained 10, 5, 
4, 4, and 3 SNPs, respectively.

discussion and conclusion
In this study, we have proposed an HMM-based method 
(PICR-CNV) for copy number inference. Through simulations, 
we have shown that the proposed method is highly accurate for 
copy number inference and robust against mis-specification of 
the predetermined model parameter. While it is not straight-
forward to evaluate the copy number inference with real data 
due to the unknown copy number status, we have evaluated the 
proposed standardization approach for genotyping accuracy. We 
applied PICR to 90 HapMap samples with Affymetrix Map-
ping 100K arrays, and found that the genotyping accuracies 
were improved by using standardized copy number abundance 
compared to using raw copy number abundance (99.70% vs 
99.63%). Empirically, we also found that the standardized copy 
number abundance provided better genotype clustering than 
its alternative (Fig. 2). The proposed method was further illus-
trated with an application to breast cancer datasets. The analysis 
of breast cancer data also identified a few genomic regions that 
were significantly associated with breast cancer development.  
Most of these identified regions have been reported in the 
literature for potential involvement in breast cancer. One 
SNP in the region 4q31.23 has been recently reported to 
be significantly associated with breast cancer progression.39 
A gene ARHGAP10-NR3C2, which was located in the region, 
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figure 1. Distribution of the size of identified CNVs based on BRCA GWAS data.

was also known to be related to carcinogenesis through struc-
ture alteration.40 Possible copy number changes of the region 
were also observed from cancer cell line data.41 Regions 1p21.1 
and 10q21.1 have also been reported repeatedly for potential 
association with breast cancer. Chromosome arm 1p was sug-
gested to contain multiple tumor suppressor genes.42 Structure 
alterations of 1p21.1 have been observed from many studies.42–45 
Region 10q21.1 also has multiple candidate tumor suppressors, 
such as ANX7 and CDC2.46,47 Interestingly, for region 6q22.33, 
it was identified by the initial GWAS as a novel locus for breast 
cancer development.37 Our analysis also confirmed this finding 
and also suggested that the copy number changes in the region 
may also play an important role.

The associations of the identified regions, including 
4q31.23, 12q23.1, 13q14.3, and 2p21, were also replicated 
by using an independent dataset. The region of 4q31.23 was 
identified by phase III as the one with the largest number of 
significant SNPs. The long arm of chromosome 6 was reported 
to be frequently rearranged in human cancers.48–50 The region 
of 6q13 was among the important regions that showed copy 
number alterations.51,52 For region 12q23.1, a gene SLC5A8 
was identified by a previous study to be affected frequently 
by structure changes.53,54 This gene was actively involved in 
the gene pathway for the development of primary human 
tumors.55,56 The region 13q14.3 has been reported for copy 
number changes in various cancers, such as prostate cancer 
and breast cancer.57–60 The structure changes of 2p12 was also 
suggested to be involved in cancer development.61 While it 
is biologically plausible that the structure changes of these 
regions may play an important role in the development of 
breast cancer, additional studies are needed to further repli-
cate the association and verify the biological functioning and 
mechanisms.

We are also aware that our method may have a few limita-
tions. First, our copy number estimation method is based on the 
design of Affymetrix 500K SNP arrays. Further extension will 
be needed before applying it to Illumina platform or Affyme-
trix 6.0 arrays. Our current study is a secondary analysis of an 
existing GWAS dataset, extending previous genotype-based 
association study to copy-number-based association study. The 
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Table 3. Regions showing significant copy number variation in phase III data and their replication in phase I data.

CHRo. CYToBAND PHYSICAL LoCATIoNa No. of SNPs P-VALUE (PHASE III)b P-VALUE (PHASE I)c

1 p21.1 102622376–102640646 7 2.62e–13 0.954

1 p12 120292824–120312909 3 7.62e–14 0.999

1 q22 154077091–154106555 3 2.453e–11 0.999

2 p21 45759616–45760637 3 1.106e–08 0.014

2 p12 81196767–81197522 3 7.232e–09 0.977

2 q21.1 131925407–131955270 3 4.872e–13 0.999

3 p14.3 57706175–57839689 3 1.228e–09 0.116

4 q26 117544365–117576957 3 4.577e–11 0.138

4 q31.23 148668320–148697327 10 9.43e–15 7.56e–05

4 q32.3 166885930–166957371 5 6.664e–11 0.189

5 q14.3 84350898–84398999 5 4.330e–14 0.720

5 q22.3 115145252–115178424 4 2.220e–16 0.893

6 q13 75247853–75311831 5 5.218e–15 0.034

6 q22.33 128476625–128533696 6 2.409e–13 0.806

6 q23.2 134651674–134672863 5 3.722e–10 0.999

6 q27 165234976–165247908 6 1.752e–09 0.996

7 q22.1 98318717–98361309 4 4.727e–11 0.103

7 q31.31 118754169–118754169 5 1e–17 0.524

8 q11.22 52786953–52796842 3 4.550e–10 0.840

8 q21.3 90963387–90964181 3 2.862e–08 0.772

8 q24.13 125649171–139914783 3 2.30e–08 0.973

8 q24.3 145891814–145948840 4 3.220e–15 7.96e–04

9 p21.3 22270796–22294230 5 6.249e–09 3.33e–03

10 q21.1 56853055–74432554 7 1.084e–09 0.998

11 p13 36306019–36366302 3 8.95e–11 0.223

11 p12 37905557–37916354 6 2.627e–09 0.968

11 q22.3 104741435–104806689 5 4.152e–14 0.999

12 q23.1 94977527–95052366 4 1.11e–16 1.07e–04

13 q13.3 34828145–34846106 4 8.975e–10 0.428

13 q14.3 51036156–51071687 4 5.268e–12 6.83e–09

13 q33.1 103334252–103344370 5 1.589e–09 0.964

14 q23.1 60136001–60140123 5 1.843e–12 0.996

18 p11.31 3597746–3635894 3 4.268e–10 0.417

X q27.3 146596395–146646974 4 5.873e–14 0.086

Notes: alocation based on Human Genome assembly nCBI build 36.1. bPhase III included 243 cases and 187 controls. cPhase I included 249 cases and 299 
controls.

Affymetrix SNPs array has been a major platform for SNP 
genotyping and copy number estimation. It was adopted by 
the Wellcome Trust Case Control Consortium (WTCCC) 
for intensive GWAS of 14,000 cases of seven common dis-
eases and 3,000 shared controls.62 Second, the current study 
only considered the total copy number changes at each locus. 
However, copy number changes may still occur without total 
number changes, such as balanced copy number with prefer-
ential loss of heterozygosity (LOH). Further extensions are 
needed to account for such copy number changes. Third, our 
method currently focuses on detecting the total copy number 

changes in an unrelated population. Detecting copy number 
status for related individuals or paternal (maternal) specific 
copy numbers is beyond the scope of current study.
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