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Abstract: In this work, a crosslinked polycarboxylate superplasticizer (crosslinked-PC) was synthe-
sized via the free radical polymerization reaction. Pentaerythritol tetraacrylate (PETA) was used as
the crosslinked agent. A comparative comb-like polycarboxylate superplasticizer (comb-like-PC) was
prepared under the same reaction conditions. The dispersion retention capacity, dispersion capability,
hydration characteristics of the cement paste and setting time were investigated in detail. At the
dosage of 0.6% bwoc, the fluidity of the cement/crosslinked-PC paste was about 340 mm, which
was 40~50 mm larger than the cement/comb-like-PC paste. The dispersion retention capacity of the
cement/crosslinked-PC paste was observed to be much superior due to higher adsorbed amounts
on the cement particles. Moreover, the cement/crosslinked-PC paste exhibited the initial and final
setting durations of 196 and 356 min, respectively, which indicated an enhancement of 18 and 68 min
compared to the cement/comb-like paste. The crosslinked copolymers exhibit a stronger retarda-
tion effect than the comb-like copolymers due to their enhanced adsorbed amounts and stronger
steric hindrance effect. This is further illustrated by the characterization of the hydration process
and hydration products. It can be concluded that it is feasible to improve the dispersive capacity
and the dispersion retention capacity of PC by changing the molecule structure from comb-like to
slightly crosslinked.

Keywords: polycarboxylic; crosslinked; superplasticizer

1. Introduction

The polycarboxylic superplasticizers (PCs) have been widely applied in the field of
commercial concrete. As China has emerged as the world’s largest construction market,
it has also boosted the application of superplasticizers. PCs have become the essential
components of concrete owing to its advantages such as its low dosage, notable disper-
sive and dispersion retention capacity, environmental friendliness and designability of
molecular structure [1–6]. In general, the PC molecules show a comb-like structure, which
consists of a linear backbone with polyethylene glycol side chains and carboxylate [7–10].
The PC molecules could adsorb on the surface of cement particles, thereby hindering the
aggregation of cement particles due to the steric hindrance of the long polyethylene glycol
chains [11–14]. With the increasing demand for the performance of commercial concrete, it
is very important to develop PCs with novel structure to satisfy the practical application
requirements. Thus, the exploration of a diversified design of PC structure is an important
scientific issue that is attracting significant research attention.

With the advancements in molecular structure diversification, the molecular structure
design for PCs has become a focus of research for attaining a superior performance. A
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number of research studies have reported the synthesis of novel PCs with the crosslinked
molecular structures, with much improved performance. Etsuo et al. controlled slump
loss by introducing the diethylene glycol diacrylate as a crosslinking agent in PC copoly-
mers [15]. Cai et al. found that a crosslinked polycarboxylate superplasticizer could
effectively improve the fluidity of mortar and maintain its fluidity as well [16]. Liu et al. re-
ported the synthesis of the CLPCs. The developed CLPC performed an obvious slow-release
function and demonstrated a higher paste flow after 150 min than the initial material [17].
Liu et al. designed and prepared an “octopus-like” PC with a star-shaped structure, in
which each arm consisted of polycarboxylate and polyethylene glycol [18]. Thus, PCs can
theoretically achieve strong steric hindrance, which significantly improves their effective-
ness and performance. Lin et al. explored the influence of two crosslinked polycarboxylate
superplasticizers. It was observed that the superplasticizer with the linear crosslinking
agent imparted the cement paste samples higher water reduction rate, superior disper-
sion effect and greater retardation effect than the uncrosslinked superplasticizer and the
superplasticizer with a macrocyclic crosslinking agent [19].

In this work, a crosslinked polycarboxylate superplasticizer (crosslinked-PC) was
synthesized. Pentaerythritol tetraacrylate (PETA) was used as the crosslinked agent. The
dispersion maintaining ability, dispersion capability, hydration characteristics of the cement
paste and setting time were investigated in detail. Additionally, the adsorption behavior of
crosslinked-PC was investigated by measuring the adsorption amount, and the working
mechanism of the crosslinked-PC in the cementitious system was further summarized.

2. Materials and Methods

Materials Pentaerythritol tetraacrylate (PETA), acrylic acid (AA), potassium perox-
odisulfate (KPS), sodium methylallyl sulphonate (SAMS) and thioglycolic acid (TGA)
were provided by Aladdin Industrial Corporation (Shanghai, China). The methyl allyl
polyethylene glycol (HPEG) (Mw = 2200 g/mol) was provided by Taijie Chemical Co., Ltd.
(Shanghai, China). The cement (P.I 42.5) was supplied by China United Cement Corpora-
tion (Beijing, China). AA, HPEG, SAMS and TGA were added to a flask and dissolved in
40 mL deionized water through the continuous agitation reactor. The crosslinker PETA and
initiator KPS were mixed completely in deionized water (30 mL) and then added to the
flask by peristaltic pump at a rate of 0.5 mL/min. The polymerization was carried out at
75 ◦C for four hours. The prepared sample was denoted as crosslinked-PC. A comparative
sample was performed in the absence of PETA under the same reaction conditions and
which was denoted as comb-like-PC. The aqueous products were neutralized to pH = 7 by
NaOH solution. The synthetic routes of the crosslinked-PC and comb-like-PC are shown in
Figure 1 and the monomer combination of PCs are shown in Table 1.

Methods Fourier Transform Infrared (FTIR) Measurement. FTIR spectra were mea-
sured with an FTIR spectrometer (Nicolet 570, Madison, WI, USA). The spectra were
recorded with a spectral range of 400~4000 cm−1. All samples were dried at 60 ◦C for 12 h
in a vacuum oven before FTIR measurements.

Gel Permeation Chromatography (GPC) Measurement. The molecular weights were
measured with Waters 1525/2414 instrument (Waters, Milford, MA, USA). PEG was used
as the calibration standard, the measurement was performed at 25 ◦C.

1H-NMR Measurement. The 1H-NMR results were measured with a 400 MHz DRX-
400 spectrometer (Bruker, Karlsruhe, Germany). Samples for measurement were dissolved
in deuteroxide. The chemical shift values were expressed in δ values (ppm) relative to
tetramethylsilane (TMS) as an internal standard.
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Table 1. Monomer combination in synthesis of the PCs.

Sample HPEG
(mmol)

KPS
(mmol)

AA
(mmol)

SAMS
(mmol)

PETA
(mmol)

TGA
(mL)

H2O
(mL)

Comb-like-PC 20 15 30 10 0 0.5 60
Crosslinked-PC 20 15 30 10 3.2 0.5 60

Cement Paste Fluidity Measurement. Cement paste fluidity test was measured de-
pending on the standardization of GB/T 8077-2012 [20]. The dosages of PC were added in
the range of 0.1~0.7% (solid amount) by weight of cement (bwoc) with a water/cement
(w/c) ratio of 0.35. The time dependent fluidity loss was carried out depending on the
standardization of GB/T 50080-2002 [21].

Total organic carbon (TOC) Measurement. The adsorbed amounts of the PCs on
cement particles were measured with a TOC analyzer (Multi N/C3100, analytikjene AG,
Jena, Germany). In total, 10 g blank cement was mixed with superplasticizer solution (0.1
to 0.7% bwoc, 40 g), respectively. Then, the cement paste was centrifuged at 5000 rpm for
10 min. The supernatant solution was diluted with deionized water for TOC measurement.
Each sample was tested thrice, the average value was calculated.

Setting Time. The initial and final setting time of cement pastes were determined by
a Vicat analyzer depending on the standard GB/T 1346-2011 [22]. The initial setting was
recorded as the Vicat needle was 4 ± 1 mm from the floor, the final setting was recorded as
the Vicat needle penetrated 0.5 mm into the cement paste. Each sample was tested thrice,
and the average value was calculated.

Isothermal Calorimetry Measurement. The hydration heat was measured with an
isothermal conduction calorimeter(TAMair, Thermometric, Jarfalla, Sweden) for 7 days.
In total, 10.0 g cement was filled into 20 mL glass ampoules, mixed with the PC solution
(w/c = 0.4).

Rheological Measurements. Rheometric measurement of cement pastes were per-
formed by a DHR Rheometer (TA Instruments, Newcastle, DE, USA) using a vane fixture
to assess changes in paste viscosity.

X-ray Diffraction (XRD) Measurement. X-ray diffraction was measured with a D8
ADVANCE power diffractometer (Bruker, Karlsruhe, Germany), the diffraction angle (2θ)
was from 2 to 50◦.
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Compressive Strength Measurement. Compressive strength measurements were
determined by a TYE-2000B machine(Luda Construction Instrument Co., LTD, Tianjin,
China). The cement mixture (w/c = 0.35) was fed into a 7 cm × 7 cm × 7 cm mold. The
cement block was hydrated for 7 days.

Scanning electron microscope (SEM) Measurement. The morphology of the hydra-
tion products was measured with a scanning electron microscope (JSM-5900, JEOL Co. Ltd.,
Tokyo, Japan). Ethanol was utilized to discontinue the hydration process.

3. Results and Discussion
3.1. Structure of the Comb-like-PC and Crosslinked-PC

Figure 2a shows the FTIR spectra of the comb-like-PC and crosslinked-PC. For both
comb-like-PC and crosslinked-PC, the absorption signals at 1105 and 2880 cm−1 attributed
to the C-O-C vibration and stretching vibration of polyethylene glycol, respectively [18].
Furthermore, the absorption signal at 1730 cm−1 corresponded to the binding of -C=O for
carboxylic acid. The peak at 3450 cm−1 was attributed to the stretching vibration of the
-OH and the signals at 1470 cm−1 were due to C-H bending vibrations, respectively [23].
These results demonstrated the existence of the carboxyl and polyethylene glycol in both
comb-like-PC and crosslinked-PC structure.
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Figure 2. FTIR (a) and 1H−NMR (b) spectra comb-like-PC and crosslinked-PC.

Figure 2b shows the 1H-NMR spectra of the comb-like-PC and crosslinked-PC. For
all samples, the peaks between 3.4~3.8 and 4.5~5.0 ppm corresponded to the H atoms
of polyethylene glycol [18]. Crosslinked-PC shows a characteristic peak (a) at 3.93 ppm
corresponding to the H atoms of -CH2- in crosslinker PETA but no peak at this position for
comb-like-PC. Furthermore, the characteristic peak (b) at 1.84 ppm in crosslinked-PC also
does not exist in comb-like-PC, which belonged to the H atoms of double bonds in PETAs’
structure. The aforementioned characteristic peaks of the H atoms in PETA demonstrated
that the crosslinker was introduced to the crosslinked-PC successfully.

The molecular weight of comb-like-PC and crosslinked-PC were analyzed by GPC
measurement. The respective GPC curves are displayed in Figure 3, and the molecular
weight and polydispersity (PD) values are calculated in Table 2. The PD values of the comb-
like-PC and crosslinked-PC were determined as 2.55 and 2.82, respectively. Furthermore,
compared to the comb-like-PC, the crosslinked-PC showed a higher molecule weight. This
is mainly due to the formation of a slightly crosslinking network, the crosslinker PETA
plays a role in connecting comb molecular chains. Thus, FTIR, 1H-NMR and GPC results
demonstrated that the PCs with different structures were prepared successfully.
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Table 2. The molecular weight and distribution of PCs.

Sample Mn Mw PD

Comb-like-PC 27,348 69,706 2.55
Crosslinked-PC 38,882 109,588 2.82

3.2. Fluidity and Time-Dependent Fluidity Loss

Figure 4 shows the fluidity of the cement/PC paste varying with the dosage. Com-
pared to the cement/comb-like-PC paste, the cement/crosslinked-PC exhibited a higher
fluidity in the dosage range of 0.1~0.7% bwoc. The saturated dosages of the comb-like-PC
and crosslinked-PC were observed to be about 0.6% bwoc. At the dosage of 0.6% bwoc,
the fluidity of the cement/crosslinked-PC paste was about 340 mm, which was 40~50 mm
larger than the cement/comb-like-PC paste. The result indicated that the crosslinked-PC
exhibited a higher dispersive capacity than the comb-like-PC. The dispersive capacity of
the PCs is mainly attributed to the steric hindrance of polyethylene glycol side chains. The
polyethylene glycol chains can form stable hydrophilic adsorbed layers on the surface of
cement particles. As the crosslinked-PC consisted of the crosslinker PETA and comb-like
molecule chains, thus, it could be inferred that the crosslinked-PC showed a superior steric
hindrance effect than the comb-like-PC.

To evaluate the performance of the superplasticizers, the dispersion retention capacity
is another important factor. Dispersion retention capacity is defined as the decrease in flu-
idity over time. Thus, the change in fluidity was recorded over 2 h. As shown in Figure 4b,
the dispersion retention capacity of the cement/crosslinked-PC paste was observed to be
much superior than the comb-like-PC. The fluidity of the cement/crosslinked-PC paste
was substantially unchanged, while the cement/comb-like-PC paste was noted to drop
about 70 mm after 2 h. For the crosslinked-PC, the steric hindrance of the crosslinked-PC
played an important role in the dispersion retention capacity of the cement pastes. As
the comb-like molecule chains grafted on the crosslinker PETA, the crosslinked emanative
structure exhibited a much stronger steric hindrance compared to the linear comb-like
molecular chains. Thus, the steric hindrance effect provided by the crosslinked-PC main-
tained the dispersibility of the cementitious system, which was in accordance with the
paste fluidity results. Moreover, due to the existence of Ca(OH)2, cement suspension shows
strong alkalinity. Thus, it can be inferred that at the initial stage of hydration, the ester
groups from crosslinker PETA could be hydrolyzed into carboxylate radical in the cement
suspension. As shown in Figure 5, while the crosslinker was broken, the crosslinked struc-
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ture can be hydrolyzed into comb-like molecular fragments. Thus, a secondary dispersion
of the hydrolytic fragments was carried out in the suspension, which improved the disper-
sion retention capacity of the cement pastes [24]. However, the exact mechanism of the
dispersion of crosslinked-PC in the cementitious system requires further investigation.
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3.3. Adsorption on Cement Particles

Figure 6 exhibits the adsorbed amounts of the PCs in the cement pastes at different
dosages. For the comb-like-PC, the extent of adsorption is observed to increase with the
PC dosage, followed by reaching a plateau at a dosage of 0.5% bwoc. Compared with the
comb-like-PC, the crosslinked-PC exhibited higher adsorbed amounts. It has been reported
that the dispersive capacity of cement paste is mainly due to the adsorption on the surface
of the cement particles, and the preferred adsorbate is noted to be the hydrating ettringite
(AFt) [15,25,26]. The dispersive capacity of PC is well related to the adsorbed amounts and
can be interpreted on the basis of the surface coverage [27]. The crosslinked structure shows
a stronger steric hindrance than the comb-like structure, which leads to a high content of
the absorbable polar groups in copolymers; thus, a high probability of adsorption on the
surface of cement particles occurred [28].
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3.4. Setting Duration of the Cement Pastes

The setting time is directly related to the cement hydration process [29]. As soon
as the water was added to the cement, the complex hydration reactions started and the
cement pastes began to coagulate and harden. As shown in Figure 7, the initial and final
setting times of the blank cement paste were 63 and 105 min, respectively. The setting
time of the cement/comb-like-PC paste was significantly extended. Furthermore, the
cement/crosslinked-PC paste exhibited the initial and final setting durations of 196 and
356 min, respectively, which indicated an enhancement of 18 and 68 min as compared to
the comb-like-PC. The observed phenomenon could be attributed to enhanced adsorption
amounts of the crosslinked-PC on the surface of the cement particles. A high extent of
calcium chelated complexes as well as a remarkable inhibition of the hydration process were
observed for the crosslinked-PC, resulting in the retardation of the hydration process [30].
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3.5. Hydration Heat Flow of Cement

The exothermic heat flow curves of the hydration process are shown in Figure 8a. As
observed, the addition of the PCs had a retardation effect on the hydration process of the
cement pastes. Moreover, compared to the comb-like-PC, the crosslinked-PC exhibited a
more noticeable retardation effect, which contributed to the dispersion retention capacity
of the cement paste [31].
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The parameters of the hydration kinetics were obtained from the exothermic heat flow
curves in Figure 8a and the parameters are listed in Table 3. Figure 8b shows the heat flow
curve of the blank cement paste. In general, the hydration process can be divided into five
stages [26,32], the starting point of the acceleration period was denoted as tA, the end point
of the acceleration period was denoted as tC, and the point of the maximum acceleration
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rate was denoted as tB. Meanwhile, the heat generation rate during the induction period
was denoted as (dQ/dt)A, and the maximum hydration rate in the acceleration period was
denoted as (dQ/dt)C, respectively. kA–B corresponds to the secant slope on the exothermic
heat flow curve between A and B, which means the acceleration rate in the acceleration
period. As noted in Table 3, the comb-like-PC and crosslinked-PC evidently delayed the
induction period, implying the ion diffusion was decelerated due to the adsorption of
the comb-like-PC and crosslinked-PC on the surface of cement particles. Moreover, the
crosslinked-PC shows a more evident retardation of the cement hydration process than the
comb-like-PC, which was consistent with the results that showed the adsorption amounts
of the crosslinked-PC were higher than those of the comb-like-PC. As compared to the
blank cement paste, kA–B and (dQ/dt)C decreased on the addition of the comb-like-PC and
crosslinked-PC. Moreover, the comb-like-PC led to a weaker retardation effect than the
crosslinked-PC, thus, suggesting that crosslinked-PC had a strong impact on delaying the
generation of the hydrates during the acceleration period. Thus, the crosslinked copolymers
exhibit a stronger retardation effect than the comb-like copolymers due to their enhanced
adsorption amounts and strong steric hindrance effect.

Table 3. The cement hydration parameters extracted from the heat evolution curves.

Sample tA (h) kA–B (dQ/dt)A (mW/g) (dQ/dt)C (mW/g)

Cement 2.79 0.25 0.11 0.32
Cement/Comb-like-PC 3.85 0.15 0.07 0.30

Cement/Crosslinked-PC 4.05 0.14 0.05 0.29

3.6. Rheology Behavior of Cement Pastes

The addition of PC has an influence on the rheological response of cement paste [33].
Figure 9 shows the viscosity η’ of cement pastes (w/c = 0.35) with the PC dosage of
0.5% bwoc. A shear thinning behavior was observed for all samples from a shear rate of
0.01~50 rad/s. With a dosage of 0.5% bwoc, the cement paste containing cement/comb-
like-PC and cement/crosslinked-PC had a viscosity at 0.01 rad/s of 37.6 and 23.5 Pa s,
respectively. Cement paste had the highest viscosity at 0.01 rad/s at 105.2 Pa s, which is
about 3 and 4 times than that of cement/comb-like-PC and cement/crosslinked-PC paste,
respectively. This suggests that the crosslinked-PC led to a more significant sharp reduction
in yield stress than comb-like-PC, which is consistent with the results of fluidity. With
the increase in shear rate, a clear shear thinning behavior for the pastes occurred. Thus,
the addition of crosslinked-PC sharply decreased the aggregation of cement pastes and
resulted in the transition from the solid-like to liquid-like viscoelastic behaviors.

3.7. XRD and Compressive Strength Analysis of Hydration Products

The main components of cement are tetracalcium aluminoferrite (C4AF), dicalcium
silicate (C2S), tricalcium aluminate (C3A) and tricalcium silicate (C3S). The hydration rates
of C3S, C3A and C4AF are faster than C2S [34]. The solid phase dispersed, disintegrated and
then suspended in the liquid phase. In the early stage of the hydration process, the products
contained needle-like AFt phase, square Ca(OH)2 crystals and amorphous C-S-H gel. The
XRD patterns of cement hydration products are shown in Figure 10a. The diffraction peaks
at 2θ = 18.0, 34.0 and 46.9o occurred due to the formation of the Ca(OH)2 crystals [18].
For the samples hydrated for 1 day, the cement/comb-like-PC exhibited a weak signal at
2θ = 18.0o, while the signal in cement/crosslinked-PC could hardly be observed, which
indicated that the addition of PCs delayed the hydration process. For the XRD patterns of
the hydration products after being hydrated for 7 days, the differences in XRD patterns
could hardly be distinguished; thus implying that the retardation effect of hydration in
the case of the crosslinked-PC was mainly reflected during the early stages. Compared
to the hydration products hydrated for 1 day, due to the conversion from the AFt phase
to the AF-mono (AFm) phase, the diffraction peaks corresponding to the AFt phase were
decreased, and the diffraction signals of Ca(OH)2 became strong after hydration [35,36].
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The compressive strengths versus different PC dosages are shown in Figure 10b. After
hydrating at room temperature for 7 days, blank cement showed a compressive strength of
37.0 MPa. With the addition of PCs, the cement paste exhibited higher dispersive capacity
than blank, and a more dense structure of the hydration products was formed. Thus,
the cement/PC samples show higher compressive strengths than those of blank cement.
Moreover, the compressive strengths of cement/comb-like-PC and cement/crosslinked-
PC were similar and the highest compressive strength of 61 and 60 MPa were obtained
at the PC dosage of 0.2% bwoc, respectively. When the dosage of PC was over 0.2%
bwoc, the compressive strengths of the cement/PC samples decreased with the PC dosage.
Compared to comb-like-PC, the crosslinked-PC led to a more significant delayed effect
on the early hydration process and sightly affected the later compressive strength of the
hydration products.
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3.8. SEM Analysis of the Hydrated Products

Figure 11a–c show the morphology of the hydrated cement products after 1 day. As
observed from Figure 11, both C-S-H and Ca(OH)2 crystal were obvious in the cement
hydration products. On incorporating the crosslinked-PC in the cement, a large extent
of the C-S-H gel was attached on the surface of the Ca(OH)2 crystals. During the early
hydration stage, the hydration products were needle-like AFt phase, square Ca(OH)2
crystal and amorphous C-S-H gel. The cement slurry was in a plastic state, and the porosity
was largely retained. However, the crystals were too small to connect with each other to
result in a steady state. Comparing the effect of the comb-like-PC and crosslinked-PC on
the cement hydration process, it could be concluded that the crosslinked-PC retarded the
hydration of cement and provided a dense structure during the hydration process. After
hydration for 7 days (Figure 11a’–c’), the hydration products connected with each other to
form a less porous network structure, with the paste gaining strength. The SEM analysis
further confirmed that the crosslinked-PC was more efficient in retarding the hydration
of the cement paste, which was consistent with the WAXD results. It is speculated that a
certain amount of the crosslinked-PC can postpone the cement hydration process.
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4. Conclusions

In this study, a pentaerythritol tetraacrylate-based crosslinked-PC has been successful
synthesized. In comparison with the comb-like-PC, the crosslinked-PC exhibited a higher
dispersive capacity. At the dosage of 0.6% bwoc, the fluidity of the cement/crosslinked-PC
paste was about 340 mm, which was 40~50 mm larger than the cement/comb-like-PC paste.
The dispersion retention capacity of the cement/crosslinked-PC paste was observed to be
much superior due to higher adsorbed amounts on the cement particles. Moreover, the
cement/crosslinked-PC paste exhibited the initial and final setting durations of 196 and
356 min, respectively, which indicated an enhancement of 18 and 68 min compared to the
cement/comb-like paste. The crosslinked copolymers exhibit a stronger retardation effect
than the comb-like copolymers due to their enhanced adsorbed amounts and stronger
steric hindrance effect. Moreover, the compressive strengths of the cement/crosslinked-PC
were similar and the highest compressive strength of 60 MPa was obtained at the dosage
of 0.2% bwoc. Thus, it is feasible to improve the dispersive capacity and the dispersion
retention capacity of PC by changing the molecular structure from comb-like to slightly
crosslinked. The findings reported in this study exhibit the potential for expanding the
preparation method of the PCs.
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