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Abstract  

Background: Outdoor air pollution is associated with an increased risk for psychopathology. Although the neural 
mechanisms remain unclear, air pollutants may impact mental health by altering limbic brain regions, such as the 
amygdala. Here, we examine the association between ambient air pollution exposure and amygdala subregion 
volumes in 9–10-year-olds. 
Methods: Cross-sectional Adolescent Brain Cognitive DevelopmentSM (ABCD) Study® data from 4,473 
participants (55.4% male) were leveraged. Air pollution was estimated for each participant’s primary residential 
address. Using the probabilistic CIT168 atlas, we quantified total amygdala and 9 distinct subregion volumes from 
T1- and T2-weighted images. First, we examined how criteria pollutants (i.e., fine particulate matter [PM2.5], 
nitrogen dioxide, ground-level ozone) and 15 PM2.5 components related with total amygdala volumes using linear 
mixed-effect (LME) regression. Next, partial least squares correlation (PLSC) analyses were implemented to 
identify relationships between co-exposure to criteria pollutants as well as PM2.5 components and amygdala 
subregion volumes. We also conducted complementary analyses to assess subregion apportionment using amygdala 
relative volume fractions (RVFs). 
Results: No significant associations were detected between pollutants and total amygdala volumes. Using PLSC, 
one latent dimension (LD) (52% variance explained) captured a positive association between calcium and several 
basolateral subregions. LDs were also identified for amygdala RVFs (ranging from 30% to 82% variance 
explained), with PM2.5 and component co-exposure associated with increases in lateral, but decreases in medial and 
central, RVFs.  
Conclusions: Fine particulate and its components are linked with distinct amygdala differences, potentially playing 
a role in risk for adolescent mental health problems.   
 

Graphical Abstract 
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1. Introduction  

Nearly one in five children in the United States suffer from mental health conditions (1). The average age of onset 
for these concerns is adolescence, peaking at 14.5 years of age (2). While many social, environmental, and genetic 
risk factors have been identified, the specific etiology of most psychopathologies remains largely unknown (3). 
Understanding the risk factors potentially associated with the emergence of these conditions is critical for prevention 
and early intervention. In this regard, mounting evidence supports a relationship between outdoor air pollution 
exposure and risk for psychopathology during childhood and adolescence, albeit with mixed findings depending on 
pollutants, exposure timings, and outcomes (4–7). Ambient air pollution is a ubiquitous mixture of chemicals, 
increasing recognized as a pervasive neurotoxicant (8,9), and associated with many neurodevelopmental (10–12) 
and mental health (13–15) conditions. Several criteria pollutants are routinely monitored, including ground-level 
ozone (O3), nitrogen dioxide (NO2), and particulate matter (PM) (16). O3 is produced through chemical reactions of 
nitrogen oxides and volatile organic compounds (17), whereas NO2 is emitted by vehicles and power plants when 
fuel is burned (18). PM is composed of many particles and liquid droplets through chemical reactions between 
pollutants and other sources (19). Fine particulate matter (PM2.5; <2.5μm) and smaller particles are emerging as 
potentially the most harmful of all common pollutants for human health, due to their ability to penetrate deeper into 
the lung and cross into the bloodstream (20,21). The components in PM2.5 can be further classified, and have 
different environmental origins and chemical features (22). Studying criteria air pollutants along with PM 
components allows for a more robust understanding of the contributions of different pollution sources and the 
mental health implications of distinct pollutants (23).   
 
The brain mechanisms linking air pollution and risk for psychopathologies remain unclear. Inhaled pollutants are 
translocated to the nasal cavity and lungs, where they can cross into the bloodstream and circulate throughout the 
body (24), causing peripheral inflammation and oxidative stress (25). Some particles can directly access the brain 
by crossing the blood-brain barrier (BBB), which can induce BBB and neuronal damage, cell death, and a cascade 
of neuroinflammation (26). Emerging evidence also suggests that inhalation of metals plays a key role in 
neurotoxicity of airborne particles, causing neuronal cell death, oxidative stress, and inducing dyshomeostasis in 
the brain (27,28). Among PM components, heavy metals and organic compounds are emerging as particularly toxic 
for human health (29–31). In addition to these cellular and molecular processes, the amygdala is one brain region 
by which air pollution may affect mental health. The amygdala is a subcortical, limbic structure that plays a role in 
emotion regulation, fear, and social behavior (32). Early adolescence marks a critical period of amygdala 
development, as it reaches its peak total volume at 9-11 years (33), while the development of cortico-limbic circuitry 
continues through adolescence (34,35). While neuroimaging research has typically investigated the amygdala as a 
singular structure, it is composed of functionally and cytoarchitecturally distinct subregions (36), which have been 
associated with emotional processing (37), anxiety (39,43,44), and neurodevelopmental (38,39) and mood (40–42) 
disorders. However, studies examining associations between air pollution and amygdala structure during childhood 
and adolescence are few, with mixed findings. While three studies have linked prenatal air pollution exposure with 
amygdala volumes in infants (45) and 9-12 year-olds (46,47), several others have failed to detect a relationship 
between prenatal or childhood/adolescent air pollution exposure and amygdala volumes in children/adolescents 
(46,48–50). Furthermore, no study has assessed the relationship between air pollution exposure and amygdala 
subregions, nor have they explored the impact of co-exposures to PM2.5 components on amygdala subregion 
volumes.  
 
The aim of the current study was to fill these gaps by examining the relationships between ambient air pollutants 
and amygdala subregion volumes in 9–10-year-olds. Exposures to annual criteria pollutants and PM2.5 components 
were estimated for each participant’s primary residential address at the time of their MRI scan. We implemented 
the high-resolution, in vivo probabilistic CIT168 atlas to bilaterally segment total amygdala volumes and nine 
amygdala subregions for each participant (51,52). We then conducted a series of analyses to characterize the 
associations between air pollution and amygdala volumes. First, we implemented linear mixed-effect (LME) models 
to investigate whether each pollutant independently related to total amygdala volume. Next, considering that 
individuals are not exposed to a given pollutant in isolation (53), we implemented a multivariate data-driven 
method, partial least squares correlation (PLSC) to identify associations between co-exposure to pollutants and 
amygdala outcomes. We ran four PLSC analyses examining relationships between two classes of air pollutants, 
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criteria air pollutants and PM2.5 components, and nine amygdala subregions of interest. We conducted these analyses 
first using probabilistic subregion volumes. Then, to account for differences in the relative apportionment of the 
subregions, we ran a second set of analyses using the relative proportion of each subregion volume to total 
hemispheric amygdala volume, hereby referred to as amygdala relative volume fractions (RVFs). Given the number 
of studies failing to find an association between air quality and amygdala volumes, we hypothesized that air 
pollutants may not be associated with total amygdala volume, but rather co-exposure to PM2.5 components would 
be associated with distinct amygdala subregion differences at 9-10 years old.  

2. Methods and Materials 

2.1 Study Design 

The current study utilized a subsample of cross-sectional data collected on Siemens 3T MRI scanners from the 
ongoing Adolescent Brain Cognitive DevelopmentSM (ABCD) Study® obtained during the baseline enrollment visit 
(NIMH Data Archive [NDA] annual 3.0 [imaging data] and 5.0 [all other data] releases; 44,45) The ABCD Study 
implemented identical recruitment protocols to enroll 11,880 9- and 10-year-old children (mean age = 9.49; 48% 
female) from 21 sites between October 2016 and October 2018 across the United States in a 10-year longitudinal 
study (56–58). Centralized Institutional Review Board (IRB) approval was obtained from the University of 
California San Diego, and each of the 21 study sites obtained approval for experimental and consent procedures 
from their local IRB. Each child’s parent or legal guardian provided written consent for their child to participate in 
the study; each child also provided their written assent. Participants were eligible for enrollment in the ABCD Study 
if they were 9.0-10.99 years at the baseline visit and were fluent in English. Participants were excluded if they had 
severe sensory, neurological, medical, or intellectual limitations, or if they were unable to complete the MRI scan. 
A thorough description of study design and procedures can be found elsewhere (56,58). 
 
2.2 Participant Sample Selection 
 
A total of 4,473 participants were included in the current analytic sample (Table 1, Figure S1). Given the CIT168 
atlas was developed and validated using T1-weighted (T1w) and T2-weighted (T2w) imaging data collected on a 
Siemens MRI scanner (51,52) and large differences have been reported in the ABCD study due to scanner 
manufacturer (59,60), 7,273 participants with neuroimaging data collected on Siemens MRI scanners from 13 
ABCD Study sites were eligible for the current study (Table S1). Of these, 6,525 met quality control criteria set by 
the ABCD Study for T1w and T2w image inclusion and 6,449 successfully passed amygdala segmentation by our 
team. To ensure estimates were reliable within individual amygdalae, we also required each participant to have an 
intra-amygdala contrast-to-noise ratio (CNR) > 1.0 for T1w and T2w images, as previously published in detail for 
this technique (see 49 supplemental data). Of the preprocessed participants, 4,754 participants had a CNR > 1.0 in 
either hemisphere of T1w and T2w images and were therefore considered to have high-quality amygdala 
segmentations (52,61,62). Due to the nature of PLSC, we were only able to include participants with complete 
listwise data (i.e., exposures, covariates, and brain data). From the 4,754 participants with usable amygdala data, 
281 participants were removed due to missingness (see Table S2 for comparison between analytic and whole ABCD 
samples).  
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Table 1. Demographics for analytic sample. Values represent N (frequency) or Mean (Standard Deviation). The 
parent report Neighborhood Safety/Crime Survey (NSC) is on a 1-5 scale with 5 indicating a higher degree of 
perceived neighborhood safety. Note: Race/Ethnicity categories reported in table were collapsed into smaller 
categories in final analytic models; see Table S2 for categories used in analyses.  
 

N total participants  
 

4,473 

Age (years) 9.98 (0.63) 
 

Sex 
   Female 
   Male 
 

 
1996 (44.6%) 
2477 (55.4%) 

 
Race/Ethnicity 
   Asian 
   American Indian / Native American / Native Hawaiian / 
   Other Pacific Islander / Other 
   Hispanic 
   Non-Hispanic Black 
   Non-Hispanic White  
   Multiracial 
   Missing/Refused 
   Don’t Know 
 

 
63 (1.3%) 
34 (0.8%) 

 
807 (18.0%) 
586 (13.1%) 
2622 (58.6%) 
340 (7.6%) 
19 (0.4%) 

2  

Household Income 
   < $50k 
   ≥ $50k & < $100k  
   ≥ $100k 
   Don’t Know/Refused 
 

 
1067 (23.9%) 
1241 (27.7%) 
1847 (41.3%) 
318 (7.1%) 

 
Highest Parental Education 
   < HS Diploma 
   HS Diploma/General Educational Development 
   Some College/Associate’s Degree 
   Bachelor’s degree 
   Post-Graduate Degree 
   Missing/Refused 
 

 
129 (2.9%) 
390 (8.7%) 

1111 (24.8%) 
1256 (28.1%) 
1581 (35.3%) 

6 (0.1%) 
 

Urbanicity 
   Rural Area 
   Urban Clusters 
   Urbanized Area 
 

 
335 (7.5%) 
156 (3.5%) 

 3982 (89.0%) 

BMI Z-Score  
 

0.3 (1.2) 
 

Weekly Physical Activity (days) 
 

3.6 (2.3) 
 

Avg. Daily Screen Time (hours) 
 

3.0 (2.4) 
 

Neighborhood Safety  
 

3.9 (0.9) 
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2.3 Air Pollution Exposure Estimates 

Annual average concentrations of ambient air pollution exposure were estimated at the addresses of each child, as 
previously described (63). In brief, daily estimates of PM2.5 (µg/m3) and NO2 (ppb), and daily 8-hour maximums of 
O3 (ppb) were derived at a 1-km2 resolution using hybrid spatiotemporal models, which utilize satellite-based 
aerosol optical depth models, land-use regression, weather data, and chemical transport models (64–66). Similarly, 
annual mean concentrations to fifteen PM2.5 components—bromine (Br), calcium (Ca), copper (Cu), elemental 
carbon (EC), iron (Fe), potassium (K), ammonium (NH4

+), nickel (Ni), nitrate (NO3
-), organic carbon (OC), lead 

(Pb), silicon (Si), sulfate (SO4
2-), vanadium (V), zinc (Zn)—were estimated monthly at a 50-meter spatial resolution 

using hybrid spatiotemporal models as previously described (67,68). These exposure estimates were then averaged 
for the 2016 calendar year to correspond to the baseline enrollment period of the ABCD Study and assigned to the 
primary residential address of each child provided by the caregiver at the baseline study visit.  

2.4 Neuroimaging Data 

As previously published, a harmonized data protocol was utilized across all ABCD study sites (69). Motion 
compliance training and real-time, prospective motion correction were used to reduce motion distortion. T1w 
images were acquired using a magnetization-prepared rapid acquisition gradient echo sequence and T2w images 
were obtained with a fast spin echo sequence with variable flip angle as previously described (69). Both acquisitions 
consist of 176 slices with 1 mm3 isotropic resolution. T1w and T2w images were then reviewed by ABCD study 
staff; only data meeting quality control standards for recommended inclusion and those without clinical findings 
(70) were included. Raw T1w and T2w images were then downloaded from the ABCD 3.0 release (NDA 3.0 data 
release 2023; 54).  
 
Details of the CIT168 atlas construction, validation, comparison with other atlases, and individual difference 
estimates are described elsewhere (51,52). Detailed descriptions of each subregion from this atlas along with its 
successful application to estimate amygdala subregions in children and adolescents have been previously published 
(61,62,71,72). For each participant, we quantified in vivo probabilistic volumes for nine amygdala subregions of 
interest per hemisphere as previously described (61,73). Briefly, prior to segmentation, T1w and T2w images were 
registered via the Human Connectome Project minimal preprocessing pipeline (74). Next, we utilized the CIT168 
atlas, a high-resolution, in vivo probabilistic atlas of human amygdala nuclear subregions, to segment each 
individual’s amygdala into nine subregions (51,52). B-spline bivariate symmetric normalization diffeomorphic 
registration algorithm from ANTs version 2.2.0 was adapted for image registration of T1w and T2w images to the 
CIT168 atlas (Figure 1A) (75). The inverse diffeomorphism was then applied to map the CIT168 probabilistic atlas 
labels to individual space (Figure 1B). Probabilistic label volumes were calculated by weighted summation of the 
label probability over the total volume using fslstats (FMRIB Software Library version 5.0.7). Probabilistic ROI 
volumes were calculated for the left and right hemisphere total amygdala and the following nine subregions: the 
lateral nucleus (LA), dorsal and intermediate divisions of the basolateral nucleus (BLDI), ventral division of the 
basolateral nucleus and paralaminar nucleus (BLVPL), basomedial nucleus (BM), central nucleus (CEN), cortical 
and medial nuclei (CMN), amygdala transition areas (ATA), amygdalostriatal transition area (ASTA), and anterior 
amygdala area (AAA). Finally, the amygdala RVFs for each subregion were calculated by dividing each region's 
probabilistic volume by the total probabilistic volume of the hemispheric amygdala. 
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Figure 1. A) Schematic of CIT168 amygdala subregion labels. Note: The anterior amygdala area (AAA) is not 
visible in this view. Image created with BioRender. B) Representative ABCD participant segmentations using 
the CIT168 Atlas. 3D image created from in vivo segmentation of a representative participant using the 
Quantitative Imaging Toolbox (QIT) (76). Abbreviations: Lateral nucleus (LA), Basolateral Dorsal and 
Intermediate subdivision (BLDI), Basomedial nucleus (BM), Central nucleus (CEN), Cortical and Medial nuclei 
(CMN), Basolateral Ventral and Paralaminar subdivision (BLVPL), Amygdala Transition Area (ATA), 
Amygdalostriatal Transition Area (ASTA), Anterior Amygdala Area (AAA). 

 

2.5 Demographics & Other Variables 

Covariates included in our analyses were selected based on previous literature and the construction of a directed 
acyclic graph (Figure S2) (77). Sociodemographic variables such as race/ethnicity (White, Black, Hispanic, Asian, 
or Other), average household income in US Dollars (<50K, 50-100K, >100K, Don’t Know/Refuse to Answer), 
highest household education (<High School Diploma, High School Diploma /GED, Some College, Bachelor 
Degree, Post-Graduate Degree, Missing/Refused), urbanicity (Rural, Urban Clusters, Urbanized) and parent-report 
perceived neighborhood safety were included due to known disparities in air pollution exposure across 
socioeconomic status, race/ethnicity, and neighborhood safety, and known relationships between these variables 
and amygdala size (78–81). Measures of weekly physical activity (days per week) and average daily screen time 
(hours) were included, as previously published by our lab (82), since they may influence time outdoors, and thus 
exposure levels. We also included demographic factors and precision imaging variables such as the child’s age at 
scan, sex assigned at birth (female or male), body mass index (z-scored; BMIz), and handedness (right, left, or 
mixed), as well as MRI scanner headcoil (32- or 64-channel) and MRI serial number, which account for site and 
scanner differences (70). Finally, intracranial volume (ICV) was included in models using absolute volumes to 
account for variation in total amygdala size.  

2.6 Statistical Analyses 

Analyses were conducted using R Version 4.3.2 (83). LME models were run to test the independent relationships 
between air pollution and total amygdala volume. That is, 36 single-pollutant models were run using the 
lme4::lmer() function to test associations between 18 outdoor air pollutants (three criteria pollutants,15 PM2.5 

components) and left and right total amygdala volume. Models included the same covariates listed in section 2.5 
but implemented site as a random effect in place of MRI serial number. False discovery rate correction was 
implemented to correct for multiple comparisons (see Supplemental Methods). 
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PLSC analyses were conducted as previously reported (82,84,85). Briefly, PLSC is a multivariate statistical method 
that compares two multidimensional datasets that may have cross-correlated features (86) to identify patterns of 
shared covariance, or latent dimensions. To identify relationships between these datasets, PLSC employs singular 
value decomposition on the correlation matrix of these data matrices, identifying latent dimensions that capture the 
maximum shared covariance and the corresponding variables contributing to these latent dimensions, explained by 
their loadings. Considering the high multicollinearity between exposure to air pollutants and amygdala subregion 
volumes, PLSC is an optimal statistical approach due to its ability to handle highly cross-correlated data (see 
Figures S3-5 for correlograms). We ran separate PLSC analyses to examine relationships between exposure to 
three criteria pollutants and 15 PM2.5 components and amygdala subregion volumes. Considering subregion sizes 
may vary as a function of total amygdala volume, we also conducted two complementary PLSC analyses using 
each set of exposures and relative proportions of amygdala subregions (i.e., RVFs). The PLSCs with probabilistic 
volumes were conducted to determine if air pollution exposure is linked to overall amygdala subregion volumes, 
whereas the PLSCs with RVFs were implemented to investigate if air pollution relates to differences in the relative 
subregion composition of the amygdala. Before execution of our PLSCs, five components (EC, NH4

+, NO3
-, OC, 

SO4
2-) were converted from µg/m3 to ng/m3 so that PM2.5 components had identical units. To account for covariates 

(see section 2.6.1), we applied linear regression to residualize out the set of covariates from the data matrices, and 
then performed PLSC analysis on the residualized data. For permutation testing, data were resampled 10,000 times 
without replacement to identify significant latent dimensions. The probability of significance was determined based 
on the number of times permuted singular values exceeded the observed singular value, along with calculating the 
percentage of variance explained visually using scree plots. The bootstrap test evaluated the robustness of saliences 
loading onto significant latent dimensions by resampling the data 10,000 times, leaving out one sample each time. 
Confidence bootstrap ratios were derived by dividing the mean of a variable's bootstrapped distribution by its 
standard deviation. Bootstrap ratios exceeding 2.5 (corresponding to p < 0.01) were considered statistically reliable 
and significant (87). The PLSC analysis was carried out using the TExposition and TInPosition packages (88), 
followed by a validation procedure with the data4PCCAR::Boot4PLSC() function (89). 

3. Results  

Sociodemographic and descriptive statistics for the final analytic sample (n = 4,473) are included in Table 1 and 
Tables S1 and S2. The final analytic sample had more male, Non-Hispanic White, and higher income individuals 
than the full ABCD sample, which is more urban, of higher socioeconomic status, and has higher levels of parental 
education than the U.S. population (90). Annual average exposures for the sample are presented in Table S3. 
Notably, PM2.5 exposure was 7.47 (1.47) µg/m3, NO2 was 19.3 (6.21) parts per billion (ppb), and O3 was 42.1 (4.47) 
ppb, which are significantly lower concentrations than the most recent EPA standards of 9 µg/m3 for PM2.5 (t(4,472) 
= -69.59, p < 0.001), 53 ppb for NO2 (t(4,472) = -363.19, p < 0.001), and 70 ppb 8-hour maximum for O3 (t(4,472) 
= -418.23, p < 0.001). These concentrations, however, are significantly higher than the World Health Organization 
(WHO) 2021 Air Quality Guidelines of 5 µg/m3 for PM2.5 (t(4,472) = 111.86, p < 0.001), 10 ppb for NO2 (t(4,472) 
= 100.14, p < 0.001), and significantly lower than the 60 ppb peak season 8-hour maximum for O3 (t(4,472) = -
268.53, p < 0.001) (91). Descriptive statistics for total amygdala and subregion volumes and RVFs can be found in 
Table S4. 
 
Using LME modeling, no significant associations were identified between pollutants and total hemispheric 
amygdala volumes (Table S5). Using PLSC, no significant latent dimensions were identified between exposure to 
criteria pollutants and amygdala subregion volumes (Figure S6). In contrast, one significant latent dimension was 
identified, explaining 52% of the shared variance, between exposure to the 15 PM2.5 components and amygdala 
subregion volumes (Figure S7). Specifically, higher Ca exposure was positively associated with volumes of the 
bilateral LA, BLDI, and BLVPL, as well as the left BM and AAA (Figure 2).  
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Figure 2. Variable loadings for the association between PM2.5 components and amygdala subregion volumes. 
Variables passing bootstrap ratio threshold (2.5; p < 0.01) are displayed in color. Significant subregions mapped 
into 3D brain space using in-vivo segmentation from a representative participant using the Quantitative Imaging 
Toolbox (QIT) (76); red denotes subregions with positive loadings (enlargement). Abbreviations: Bromine (Br), 
Calcium (Ca), Copper (Cu), Elemental Carbon (EC), Iron (Fe), Potassium (K), Ammonium (NH4

+), Nickel (Ni), 
Nitrate (NO3

-), Organic Carbon (OC), Lead (Pb), Silicon (Si), Sulfate (SO4
2-), Vanadium (V), Zinc (Zn); Lateral 

nucleus (LA), Basolateral Dorsal and Intermediate subdivision (BLDI), Basomedial nucleus (BM), Central nucleus 
(CEN), Cortical and Medial nuclei (CMN), Basolateral Ventral and Paralaminar subdivision (BLVPL), Amygdala 
Transition Area (ATA), Amygdalostriatal Transition Area (ASTA), Anterior Amygdala Area (AAA). 
 
 
 
PLSC analyses of amygdala apportionment revealed one significant latent dimension between criteria pollutants 
and amygdala subregion RVFs, explaining 82% of the variance (Figure S8). Within this significant dimension, 
PM2.5 was found to primarily drive these associations (Figure 3A). The PLSC between PM2.5 components and 
subregion RVFs identified two significant latent dimensions, explaining 39% and 30% of the variance, respectively 
(Figure S9). The first dimension suggested that overall co-exposure to the 15 PM2.5 components (i.e., no single 
pollutant driving the association based on variable loadings) was associated with increased RVFs of the bilateral 
LA and decreased RVFs of the bilateral BM, right CEN, and left CMN (Figure 3B). The second latent dimension 
was driven by higher exposure to K and OC relating to overall differences in RVFs (no specific region driving the 
association based on variable loadings) (Figure 3B). 
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Figure 3. Variable loadings for criteria air pollutants, PM2.5 components, and amygdala subregion RVFs. A) 
Criteria Pollutants; B) PM2.5 components. Variables passing bootstrap threshold (p < 0.01) are displayed in color. 
Significant subregions mapped into 3D brain space for visualization purposes using the Quantitative Imaging 
Toolbox (QIT) (76); red denotes subregions with positive loadings (i.e. larger relative proportion with exposure) 
and blue denotes subregions with negative loadings (i.e., smaller relative proportion with exposure). Abbreviations: 
fine Particulate Matter (PM2.5), Nitrogen Dioxide NO2), ground-level ozone (O3); Bromine (Br), Calcium (Ca), 
Copper (Cu), Elemental Carbon (EC), Iron (Fe), Potassium (K), Ammonium (NH4

+), Nickel (Ni), Nitrate (NO3
-), 

Organic Carbon (OC), Lead (Pb), Silicon (Si), Sulfate (SO4
2-), Vanadium (V), Zinc (Zn); Lateral nucleus (LA), 

Basolateral Dorsal and Intermediate subdivision (BLDI), Basomedial nucleus (BM), Central nucleus (CEN), 
Cortical and Medial nuclei (CMN), Basolateral Ventral and Paralaminar subdivision (BLVPL), Amygdala 
Transition Area (ATA), Amygdalostriatal Transition Area (ASTA), Anterior Amygdala Area (AAA). 
 
 
4. Discussion  
 
To our knowledge, this study is the first to explore the relationships between ambient air pollution exposure and 
amygdala subregion morphology. Previous studies have failed to identify consistent associations between 
childhood/adolescent exposure and total amygdala volumes (46,48–50), highlighting the importance of studying 
amygdala subregions. We aimed to identify novel associations between air pollution exposure and amygdala 
subregions by implementing a multivariate approach to better account for co-exposure to multiple pollutants in a 
large sample of preadolescents. Our results suggest that, while one year of exposure to any single pollutant does not 
relate to total amygdala volume, co-exposure to PM2.5 is associated with distinct amygdala subregion differences in 
early adolescence. Specifically, annual average PM2.5 and three PM2.5 components–Ca, K, and OC–are associated 
with distinct increases in basolateral volumes and differences in amygdala subregion apportionment at ages 9-10 
years-old.  
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While total amygdala volumes increase through early adolescence (33,92), human postmortem (93) and 
neuroimaging studies (39,41,43) suggest heterogeneity in amygdala subregion development during childhood and 
adolescence. Previous studies have found nuclei specific changes in amygdala neuron numbers (93,94) and age-
related differences in amygdala RVFs (61). Using these findings as context, the current study suggests that 
exposures to certain PM2.5 constituents may alter patterns of amygdala development. At 9-10 years, Ca was 
positively associated with several regions of the larger basolateral (BLA) complex (i.e., LA, BLDI, BLVPL, BM) 
and the AAA, which borders the BLA, separated from it by a thin band of fibers (52). Given that air pollutants were 
associated with distinct subregional volumes, but not total amygdala volumes, it is unsurprising that PM2.5 and its 
components were also related to patterns of regional apportionment. Specifically, exposure to PM2.5 components 
was associated with proportionally larger lateral, but smaller medial (i.e., BM and CMN) and central (CEN), 
subregions. A second association was noted between K and OC, attributes of biomass burning, and patterns of 
amygdala apportionment, albeit like total PM2.5 exposure, no single amygdala subregion drove these associations. 
Although this is the first study to examine air pollution and amygdala subregions, it supports a growing body of 
literature linking outdoor air pollutants with amygdala structure and function during development. In humans, 
higher prenatal exposure to coarse particulate matter and lower exposure to NO2 have been associated with smaller 
total amygdala volumes in infancy (45). Prenatal exposure to Si—a PM component in dust often coinciding with 
Ca—was related to larger total amygdala volumes in childhood, whereas prenatal polycyclic aromatic hydrocarbon 
and OC exposure were associated with smaller amygdala volumes at 9-12 years-old (46). Furthermore, in the ABCD 
cohort, our team previously identified associations between childhood PM2.5 exposure and longitudinal changes in 
resting-state functional connectivity of the amygdala and large-scale networks from ages 9 to 13 years-old (95), 
highlighting the impact outdoor air quality may have on the development of amygdala neurocircuitry. 
 
Although additional research is needed, it is plausible that the observed relationships between air pollution exposure 
and amygdala subregions may have long-term implications for emotional processing and subsequent risk for mental 
health concerns. The BLA is the main thalamic sensory and cortical input region of the amygdala, involved in 
emotional regulation and processing and projecting high-level sensory input (96–98). The BLA plays a key role in 
conditioned fear and stress responses (96) and has been associated with an individual’s susceptibility to anxiety 
(99). The BM, which connects the LA and CEN, plays a significant role in the suppression of stress and fear 
responses, particularly in the context of social anxiety (100,101). The CEN receives intrinsic connections and is one 
of the major output nuclei of the amygdala; the CMN is another recipient of projections, particularly from the BLA, 
CEN, and olfactory bulb (52). Considering these roles in anxiety, fear conditioning, and social cognition (102), 
further investigations are needed to determine whether the identified subregion patterns play a role in the underlying 
neural mechanisms linking air pollution to risk for psychopathologies. An ongoing challenge, however, is the causal 
delay between the neurotoxicant effects of air pollution and observable behavioral differences. While several studies 
have identified positive associations between exposure to PM2.5 and anxiety and depression symptoms 
(14,15,103,104), some of them suggest a delayed onset between the timing of exposure and mental health concerns. 
For instance, a recent study showed that air pollution exposure at age 12 was not associated with concurrent mental 
health conditions, but rather higher incidence of depression at age 18 (105). As such, despite an absent association 
between annual PM2.5 and internalizing or externalizing symptoms in 9-13 year-olds in the ABCD Study (106), the 
current differences in the amygdala, alongside other notable outcomes (46,49,50,107–109), may reflect early 
biomarkers of neurotoxicity that ultimately contribute to increased risk for psychopathologies. Future longitudinal 
research is needed to determine how outdoor air pollution impacts trajectories of amygdala subregion development 
and apportionment and confirm its utility as a potential biomarker for later psychopathology. 
 
Several strengths and limitations of the current study should be noted. We implemented the CIT168 atlas, which 
was created using in vivo Siemens MRI data from healthy young adult brains (51,52). While other amygdala 
segmentation approaches were created from post-mortem samples from older male brains (110,111), the CIT168 
atlas uses high-resolution (700μm) Human Connectome Project data (from which the ABCD Study Siemens 
protocol was derived), along with probabilistic delineations to encode partial volume uncertainty in amygdala 
subregions. Moreover, to improve the reliability of our individual-level volume estimates, we chose a priori to limit 
our analyses to Siemens MRI data and use a stringent criterion for images based on CNR. While these strengthened 
the rigor of our amygdala subregion estimates, it limited our sample size to 4,473 participants from the larger ABCD 
Study. Our final sample included more male, White, and higher socioeconomic status participants, potentially 
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limiting the generalizability of our findings. Furthermore, the participants included in this study are exposed to air 
pollution levels well below the EPA guidelines, though not below all WHO guidelines. While this study contributes 
to the growing knowledge base on associations between air pollution and the developing brain, these findings do 
not necessarily translate to adolescents living in highly polluted countries. Moreover, the data included in this study 
are cross-sectional; thus, while we can assess how current levels of air pollution relate to amygdala volume at one 
moment in time, we are unable to draw conclusions about the impact of chronic exposure on amygdala development.   

To summarize, results of the current study suggest that exposure to PM2.5, specifically co-exposures to various 
components—calcium, potassium, and organic carbon—are related to differences in amygdala volumes and 
apportionment, with expansion in subregions involved in fear conditioning, and reduction in subregions responsible 
for anxiety and fear suppression. Taken together, these findings suggest air pollutant exposure may influence 
structural differences in amygdala subnuclei during a critical period of brain development. Future research 
investigating whether the current findings contribute to the biological underpinnings of the link between outdoor 
air pollution and risk for childhood and adolescent mental health conditions. 
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