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Recent evidence suggests the existence of a nexus between inflammatory pathways and
the female sex hormone 17b-estradiol, resulting in increased interferon-stimulated genes
(ISGs), autoantibodies, and dysregulation of immune cells in SLE. However, the molecular
mechanisms and the effect of estradiol on candidate target genes and their pathways
remains poorly understood. Our previous work suggests that female SLE patients have
increased estradiol levels compared to healthy controls. In the present study, we explored
the effects of 17b-estradiol treatment on expression of IFN (interferons)-stimulated genes
and pro-inflammatory cytokines/chemokines. We found significantly increased (5-10-fold)
expression of IFN-regulated genes in healthy females. Furthermore, we found significantly
increased plasma levels of IL-6, IL-12, IL-17, IL-18, stem cell factor (SCF), and IL-21/IL-23
in SLE patients compared to healthy controls, and those levels positively correlated with
the plasma levels of 17b-estradiol. In addition, levels of IL-21 positively correlated with the
SLE disease activity index (SLEDAI) score of SLE patients. In vitro treatment of PBMCs
from either SLE patients or healthy controls with 17b-estradiol at physiological
concentration (~50 pg/ml) also significantly increased secretion of many pro-
inflammatory cytokines and chemokines (IL-6, IL-12, IL-17, IL-8, IFN-g; MIP1a, and
MIP1b) in both groups. Further our data revealed that 17b-estradiol significantly increased
the percentage of CD3+CD69+ and CD3+IFNg+ T cells; whereas, simultaneous addition of
17b-estradiol and an ERa inhibitor prevented this effect. Collectively, our findings indicate
that 17b-estradiol participates in the induction of pro-inflammatory cytokines and
chemokines and further influences interferon genes and pathways.
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INTRODUCTION

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease associated with pathogenic
autoantibodies and increased levels of type 1 interferon (IFNs) and their signaling molecules both in
mice and in humans (1–10). Recently 17b-estradiol has been shown to amplify the activation of
IFNa signaling in B cells (11). In addition, previous studies suggest that exacerbation of SLE is more
common during pre-menstrual periods and during pregnancy, in which women experience
increased estrogen levels (12). Others have suggested that SLE is mediated by autoantibodies and
estrogen has been shown to stimulate antibody production by B cells (13). Altogether these studies
org October 2021 | Volume 12 | Article 7253251
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suggest the existence of a nexus between inflammatory pathways
and 17b-estradiol, resulting in increased IFN-stimulated genes
(ISGs) and autoantibodies in SLE patients.

In women, treatment with 17b-estradiol-containing
medications increases risk for SLE and clinical flares (14–17).
Estrogen promotes SLE in part by expanding autoreactive
marginal zone B cells and by altering helper T cell activation
via calcineurin pathways (18, 19), thus promoting pro-
inflammatory cytokine generation and T/B cell activation
(20–23). The role of type 1 IFNs and the female sex hormone
17b-estradiol in the pathogenesis of autoimmunity has been
described earlier (4, 5, 10). One study has identified the
estrogen receptor alpha (ER-a) gene (ESR1) as a target induced
by both IFNa and IFNg in distinct cell types, including splenic
cells, from lupus mice (24). ER-a (NZBxNZW) F1 knockout
female mice do not develop glomerulonephritis (25), and estrogen
treatments have been shown to exacerbate the disease and
increase mortality (26). In contrast, another study showed that
ER-a-/- mice (lacking ER-a in the C57BL/6 background) but not
those lacking ER-b (ER-b-/- mice) exhibit immune complex-type
glomerulonephritis, proteinuria, and destruction of tubular cells
with severe infiltration of B lymphocytes in the kidney and the
presence of anti-DNA antibodies in the serum (27). Thus, the role
of ER-a in SLE in mice is not completely clear. The interaction
among type I and type II IFNs and 17b-estradiol in the regulation
of immune response genes expressed in the peripheral blood of
SLE patients has been reported (28). The study showed effects of
IFNa co-stimulation with either TNF, IFNg, or E2. TNF has
repressive effects while IFNg has synergistic effects on IFN gene
expression in vitro. Additionally, the cross-regulation of TNFa on
IFNa in autoimmune diseases including SLE patients has been
shown (29). The exact mechanism by which 17b-estradiol
interacts with IFN in SLE is poorly understood. Further these
studies did not identify pathways that may be involved in
molecular regulation. The identification and characterization of
the molecular mechanisms underlying estradiol’s induction of
candidate target genes remains to be elucidated in SLE. Recently
we reported that female SLE patients have significantly increased
plasma estradiol levels compared to healthy controls. We also
found that testosterone levels were decreased in female SLE
patients compared to healthy female controls (30). In the
present study, we tested the concept that increased amount of
17b-estradiol predisposes women to lupus by driving activation of
pro-inflammatory pathways that relate to production of type 1
Frontiers in Immunology | www.frontiersin.org 2
IFN, generation of Th17 cells by IL-21/23, generation of Th1 cells
by IL-12, and regulation of IFN pathways and genes.
MATERIALS AND METHODS

Subjects
We enrolled 14 subjects who were 18 years or older and fulfilled
the American College of Rheumatology revised criteria for the
classification of SLE (31, 32) and 14 healthy donors (19-70 years
of age) with no history of autoimmune disease. Subjects’
characteristics including age, sex, clinical parameters,
medications and SLEDAI score are shown in Table 1. Subjects
had regular menstrual cycles (occurring monthly and lasting
2 to 6 days) and were not taking any contraceptives or sex
hormones (estrogen, progesterone, androgen, or testosterone).
Irregular menstrual cycle was a criterion for exclusion from the
study. Only patients with stable disease activity (SLEDAI <6
and not >6 for past 2 visits) using immunosuppressive drugs,
such as glucocorticoids and mycophenolate (1-2 g/day) at stable
doses for the past two months, and daily prednisone doses
not to exceed 10-15 mg/day, were recruited for the study.
Patients with comorbid conditions, such as a. patients with
renal dysfunction (serum Cr ≥1.8); b. pregnant women;
c. uncontrolled non-lupus medical disease that might affect
peripheral T cells; d. patients or controls receiving sex hormone
therapies, including DHEA, were excluded from the study.
Disease activity was recorded based on the SLE disease activity
index (SLEDAI) (33). For estradiol and cytokines measurement,
we obtained control and SLE plasma samples from the UCLA
Rheumatology Biobank. The study was approved by the
Institutional Review Board of the University of California Los
Angeles. Written informed consent was obtained from each
subject who participated in the study.

Mice
NZBxNZW F1 (H-2d/z) mice were purchased from the Jackson
Laboratories (Bar Harbor, ME, USA) or bred at the University of
California Los Angeles (UCLA). Male and female mice were
housed under pathogen-free conditions. All mice were treated
in accordance with the guidelines of the University of California
Los Angeles Animal Research Committee, an Institution
accredited by the Association for Assessment and Accreditation
of Laboratory Animal Care (AAALAC).
TABLE 1 | SLE patient demographics, clinical parameters, medications and disease characteristics including SLEDAI score.

Age, Mean (SD) Sex, Female/Male Ethnicity ESR CRP ANA Anti-dsDNAab SLEDAI Medications

38.5 (15.27) Female (78.65%)
Male (21.45%)

Asian (14.3%)
Hispanic (21.4%),
White (64.3%)

38.5
(15.3)

0.60
(0.28)

8/14+ ve 368.4
(317.5)

6.57
(3.20)

Patients were on prednisone,
hydroxychloroquine, methotrexate, plaquenil,
Imuran, folic acid,
Vitamin D, topomax
Cellcept (mycophenolate mofetil), furosemide
Data are presented as medians, means (SD) or number (%) as indicated. Age range was between 20-72 years, ESR (Erythrocyte sedimentation rate) range was 3-31, CRP (C- reactive
protein) range was in between 0.5-1.5, ANA (Anti-nuclear antibody) was positive in 8 patients out of 14. 6 had < 1:40, Anti-dsDNA Ab (Anti-double strand DNA Ab) range was between
200-1243, SLEDAI (SLE disease activity index) range was between1-10. Medications listed are for all the combined patients. Healthy controls had similar demographics including age
range and had no medications at the time of blood draw.
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Spleen Cells Isolation, RNA Isolation and
Real-Time PCR
Spleen cells were isolated from 8-10-week-old male and female
BWF1 mice and single cell suspensions prepared by passing cells
through cell strainers (Fisher). ACK lysing buffer (Sigma, St
Louis, MO, USA) was used to lyse and remove red blood cells.
White blood cells were lysed with TRIzol (Invitrogen Inc.,
Carlsbad, CA) and RNA isolated as per the manufacturer’s
protocol. Real-time PCR was performed with 100 ng of RNA
from each sample with rodent IFI202b-specific primers and
probe (Applied Biosystems, Foster City, CA, USA). All values
were normalized to GAPDH levels.

Cell Isolation and Preparation
Peripheral blood mononuclear cells (PBMCs) were isolated on a
density gradient (Histopaque-1077, Sigma-Aldrich, St. Louis,
MO, USA) from blood samples of lupus patients and healthy
volunteers. Lymphocytes were washed twice in serum free media.
Red blood cells (RBC) were lysed with RBC lysing solution
(Sigma-Aldrich, St. Louis, MO, USA).

Cell Culture, 17b-Estradiol Treatment, and
Flow Cytometry Analyses
PBMCs from SLE patients and healthy controls (4x106 cells)
were cultured with 17b-estradiol (50 pg/ml; Sigma-Aldrich, St.
Louis, MO, USA) for 24-48 hours range in complete media
containing fetal calf serum. After culture, supernatants were
collected and cells washed and lysed for RNA analyses. For
immunophenotyping flow cytometry study, SLE patients and
healthy control PBMCs (2x106) were obtained and treated with
17b-estradiol (0, 10, 50 pg/ml) for 24 hours in serum-free media
in the presence or absence of the 17b-estradiol receptor a
antagonist ICI-182780 (10 pg/ml; TOCRIS, Minneapolis, MN,
USA). Cells were washed twice, stained with anti-CD3 (SK7),
anti-CD69 (L78), and anti-IFNg (25723.11) antibodies and
analyzed by FACS. 20 µl of antibody was used for the staining
of the cells as per manufacturer’s protocol (BD Biosciences, San
Jose, CA). Dead cells were excluded from the analyses based on
FSC (forward scattering) and SSC (side scattering) and only live
cells were used for the analyses. For intracellular IFNg staining,
cells were first fixed, permeabilized (as per manufacturer’s
protocol; BD Biosciences, San Jose, CA), and stained. Cells
were washed two times with PBS and data were acquired at the
UCLA Flow Cytometry Core Facility. FACS Calibur™, BD LSR
II, BD FACS Aria II instruments were used for data acquisition.
FACS antibodies were from BioLegend, eBiosciences, or BD
Biosciences (San Jose, CA, USA). Data were analyzed using
FCS Express™ De Novo software (Ontario, Canada).

Measurement of Estradiol, Cytokines/
Chemokines, and Myriad RBM Human
MAPs (Multi-Analyte Profile) Assays
Cytokines, chemokines, and other biomarkers were analyzed from
the culture supernatant from 17b-estradiol treated or non-treated
PBMCs from SLE patients and healthy controls by RBM
multiplexed immunoassay analysis (Myriad RBM Inc., Austin,
Frontiers in Immunology | www.frontiersin.org 3
TX, USA) following the manufacturer’s protocol. 100 ul of
supernatant was used in these assays. Human IL-6, IL-12, IL-17A,
IL-18, IL-21, and IL-23 weremeasured by ELISA kit fromBioLegend
(San Diego, CA, USA). Estradiol levels were measured in plasma
and culture supernatants by commercial ELISA (Calbiotech Inc.,
Spring Valley, CA) as per manufacturer’s instructions.

RNA Isolation, Gene Expression, and Real
Time PCR Analyses
RNA was isolated from cultured PBMCs with TRIzol (Invitrogen
Inc., Carlsbad, CA). Gene expression analyses of candidate target
genes were analyzed and real-time PCR performed as described
earlier (34–38). Quantitative one-step real-time PCR was
performed using TaqMan technology (100 ng of total RNA)
on an ABI Prism 7900 HT Sequence Detection System
(Applied Biosystems, Foster City, CA, USA, OASL, LY6E,
IFI202b, and GAPDH primers and probes were obtained from
Applied Biosystems.

Statistical Analyses
Data was analyzed using Prism 4.0 (GraphPad Software, San
Diego, CA). Comparisons between two groups were performed
using paired one- or two-tailed Student’s t test. One and two-
way ANOVA analysis was performed for more than two-
grouped data sets. Linear regression analysis was performed to
correlate 17b-estradiol levels with IL-6 and IL-21 levels. Results
are expressed as mean ± SEM. p<0.05 was considered significant.
RESULTS

Healthy Females Have Significantly Higher
Interferon Regulated Genes
Since lupus is a gender biased disease with female to male ratio of
9:1, we were interested to see whether expression of interferon-
related genes was different in healthy male and female volunteers.
Peripheral blood mononuclear cells (PBMC; 1-2 x106 cells) were
collected, lysed, RNA isolated, and real-time PCR performed
with human LY6E, OASL, and GAPDH specific primers and
probes (Applied Biosystems, Foster City, CA, USA). These genes
were selected because their expression levels in SLE patients are
strongly correlated with SLEDAI (SLE disease activity index)
scores (39, 40). We found that healthy females have significantly
higher levels (5-10-fold) of the interferon-regulated gene (OASL)
compared to healthy males (Figure 1A). We also found that
LY6E, another interferon-regulated gene, was increased in
healthy females compared to healthy males (Figure 1B). These
data suggest that healthy females have higher interferon-related
gene signature compared to healthy males.

Female BWF1 Lupus Mice Have
Significantly Increased Expression of
Interferon Genes Compared to Age and
Sex Matched Males
To better understand the gender-based differences in expression
of a type one-interferon-induced gene (IFI202b) between the
October 2021 | Volume 12 | Article 725325
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sexes, we isolated splenocytes from age matched male and female
lupus prone NZBxNZW (F1) (BWF1) mice. RNA was isolated
and real-time PCR was performed with gene specific primers and
probe for IFI202b. We found that female BWF1 mice had
significantly increased expression of IFI202b compared to male
mice (Figure 1C). These data suggest that gender-based
differences of interferon-inducible gene (IFI202b) expression in
lupus has clinical significance since IFI202b has been identified as
a lupus susceptibility gene (41–43).

SLE Patients Have Increased Levels of
IL-6, IL-17, and IL-21 Pro-Inflammatory
Cytokines. Plasma Estradiol Levels
Positively Correlates With IL-6 and IL-21,
and Plasma IL-21 Levels With SLE Disease
Activity Index (SLEDAI) Scores.
Because both clinical and genetic polymorphism studies indicate
roles of IL-6 (44), IL-17 (45, 46), IL-12/23 (47, 48) and IL-21
(49–52) in SLE pathogenesis, we chose these genes for analysis.
We first analyzed IL-6 levels in plasma and found that IL-6 was
significantly increased in SLE patients compared to healthy
controls (Figure 2A). Interestingly, we also found significant
positive correlations between plasma levels of estradiol and IL-6
in SLE patients (Figure 2B). Further, we found that in vitro cell
culture of PBMCs from both SLE patients and healthy controls
treated with 17b-estradiol at physiological concentration (50 pg/
ml) increased secretion of many pro-inflammatory cytokines
including IL-6 in the healthy control group (Figure 2C). The
increase in the SLE group was also significant for IL-6
(Figure 2D). We also found that IL-21 levels in plasma of SLE
patients was significantly increased compared to healthy controls
(Figure 3A) and the IL-21 level positively correlated with plasma
levels of estradiol (Figure 3B). Importantly, we also found
positive correlation between plasma IL-21 and SLEDAI (SLE
disease activity index) score in SLE patients (Figure 3C).
Furthermore, we found that plasma IL-17 levels were
significantly increased in SLE patients compared to healthy
controls (Figure 3D). In addition, we noted that secreted IL-17
levels were significantly increased when healthy controls PBMCs
Frontiers in Immunology | www.frontiersin.org 4
were cultured with 17b-estradiol (50 pg/ml) (Figure 3E).
However in SLE patients, the secreted level of IL-17 did not
reach the significance threshold (Figure 3F). Further, we found
that plasma level of 17b estradiol positively correlated with
plasma levels of IL-17 and IL-12 p40 protein (Figures 3G, H).

These data indicate that 17b-estradiol influences many pro-
inflammatory cytokines in both healthy controls and in SLE
patients albeit differentially. This differential response may be
due to environmental milieu in SLE patients’ immune cells.
However, future detailed study will be required to pin-point
the exact mechanisms.

Plasma Levels of Various Pro-
Inflammatory Cytokines/Chemokines
Increased in SLE Patients Including
Interferon (IFNg), Interleukins (IL-18, IL-23),
and Stem Cell Factor (SCF)
Tomeasure levels of pro-inflammatory cytokines and chemokines,
we used multiplex RBM to analyze the plasma of SLE patients
and healthy controls. We found that protein levels of IFNg, IL-23,
and IL-18 were increased in SLE patients compared to healthy
controls (Figures 4A–C). In addition, we found that the level
of IL-8 was increased and SCF was significantly increased
in SLE patients (Figures 4D, E). The levels of MIP1-a and
MIP1-b were comparable between healthy controls and SLE
patients (Figures 4F, G). However, the level of monocyte
chemotactic protein-1(MCP-1) was slightly increased in
SLE patients (Figure 4H). These data suggest that lupus patients
do indeed have increased plasma levels of many pro-
inflammatory biomarkers.

17b-Estradiol Increases Pro-Inflammatory
Cytokines and Chemokines in Both
Healthy Control and SLE Patients’ PBMCs
17b-estradiol treatment differentially increased several pro-
inflammatory chemokines and cytokines in vitro. We found
increased level of IL-8 in plasma of SLE patients compared to
healthy controls (Figure 4D). In addition, culture supernatant of
PBMCs treated with 17b-estradiol in both healthy controls and
B CA

FIGURE 1 | Healthy females have significantly higher interferon-related genes. Peripheral blood mononuclear cells (PBMC) (1-2 x106 cells) were isolated from healthy
males (n=5) and females (n=5) and RNA was isolated. 100 ng of RNA was used for real-time PCR analysis of OASL (A) and Ly6E (B). (C) Female BWF1 mice have
increased IFI202b gene expression. Splenocytes were obtained from 8-10-week-old male and female BWF1 mice (n=2), RNA isolated, and one-step real-time PCR
performed with 100 ng of RNA from each sample. All values were normalized to GAPDH levels. *p < 0.05.
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SLE patients showed significantly increased secretion of IL-8
protein (Figures 5A, B). Plasma levels of MIP1a and MIP1b
were comparable in control vs SLE patients (Figures 4F, G);
however, both MIP1a and MIP1b levels were significantly
increased after 17b-estradiol treatment (Figures 5D, F) in SLE
patients’ but not in healthy control (Figures 5C, E) PBMCs
in vitro. We found that fold increases were much higher in SLE
patients’ cells compared to healthy control cells. We also found
that 17b-estradiol significantly increased the SCF (stem cell
factor) levels in healthy controls cells (Figure 5G); however, in
SLE patients, there were no level changes detected (Figure 5H).
Interestingly, we found that MCP-1 levels were significantly
decreased with the treatment of 17b-estradiol in healthy
control cells (Figure 5I), in contrast to SLE patients’ cells in
which 17b-estradiol treatment significantly increased MCP-1
levels (Figure 5J). Thus, 17b-estradiol-induced changes in
MCP-1 level was bidirectional. We also determined levels of
other cytokines such as (IL-2, IL-4, and IL-10). Our data showed
no change in IL-2 levels in both control and SLE PBMCs treated
with 17b-estradiol (Figures 5K, L). We also found that no
change in control PBMCs levels for IL-4; however, an
significant increased secretion of IL-4 in SLE patients’ PBMCs
Frontiers in Immunology | www.frontiersin.org 5
(Figures 5M, N). Of significance, we also found that IL-10 levels
were significantly decreased in control PBMCs (Figure 5O) and
increased in SLE patients PBMCs treated with 17b-estradiol
(Figure 5P). These changes were dynamic and further
indicates differential effects of 17b-estradiol on various
cytokines in healthy control vs SLE patients’ PBMCs. In
addition, we noted that the absolute value of levels of various
chemokines were higher in the healthy control compared to SLE
patients groups before 17b-estradiol treatment (Figure 5). This
may be due to differences in the diseased state or environmental
milieu in healthy versus diseased cells (SLE), where defects in the
SLE patients’ immune cells including differences in anergy and
unresponsive state, prevent these cells from responding as well as
healthy control cells in the secretion of various cytokines-
chemokines. Additionally, a recent report suggests that SLE
patients’ cells either enter an exhausted state or become
tolerant to stimulation for cytokine production as the disease
worsens (53). Altogether, these data indicate that 17b-estradiol
has differential effect in healthy control and SLE patients’ cells
and participates in the induction of pro-inflammatory cytokines
and chemokines in both control and SLE patients, but at a much
higher level in SLE patients.
B

C D

A

FIGURE 2 | SLE patients have increased levels of the pro-inflammatory cytokine IL-6. Plasma estradiol positively correlates with IL-6. 17b-estradiol increased IL-6
levels in both healthy control and in SLE patients’ PBMCs. (A) Plasma levels of IL-6 were measured in female SLE patients (n=13) and in healthy controls (n=11) by
ELISA. (B) Correlation between plasma 17b-estradiol levels and IL-6 in SLE patients (n=14), (p < 0.0001). PBMCs of healthy controls, n=11 (C) and SLE patients,
n=11 (D) were cultured with 17b-estradiol (50 pg/ml) for 24-48 h and supernatants measured by multiplex assays. *p < 0.05.
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Estradiol Increases Pro-Inflammatory
Cytokine Levels of IFN-g, IL-18, and IL-23
in SLE Patients’ PBMCs Compared to
Healthy Controls
We were interested to see whether estradiol regulates pro-
inflammatory cytokines in SLE patients’ PBMCs. Lupus
patients’ PBMCs were isolated and cultured with a range of
17b-estradiol for 24-48 h (10, 40 and 100 pg/ml) to cover the
Frontiers in Immunology | www.frontiersin.org 6
physiologic plasma levels characteristic of menopause through
the highest levels in the menstrual cycles. Culture supernatants
were obtained and the level of IL-12p40 was measured by ELISA.
We found that 17b-estradiol at mid-cycle levels (40 pg/ml)
significantly increased levels of IL-12 in the supernatant
(Figure 6A). However, at 100 pg/ml, we did not find further
increase of IL-12p40; thereby indicating that the optimum dose
for maximum increase of IL-12p40 is ~40-50 pg/ml. Further, we
B CA

E FD

HG

FIGURE 3 | (A) SLE patients have increased levels of IL-17 and IL-21 pro-inflammatory cytokines. Plasma estradiol levels positively correlates with IL-21.
(A) IL-21 levels in healthy controls (n=12) vs. SLE patients’ (n=12) plasma. (B) Correlation between plasma estradiol levels and IL-21 in SLE female patients (n=15).
(C) Correlation between IL-21 levels and SLEDAI (SLE disease activity index) score in SLE female patients (n=14). (D) IL-17 protein levels in healthy controls (n=12)
vs female SLE patients’ (n=12) plasma. (E) IL-17 protein levels measured from supernatant of PBMCs of healthy (n=11) controls PBMCs culture vs healthy controls
PBMCs+E2 (50 pg/ml). (F) IL-17 protein levels of SLE (n=11) female patients PBMCs vs SLE patients PBMC+E2 were cultured with 17b-estradiol (50 pg/ml) for
24-48 h and supernatant was measured by multiplex assay (MAP) for IL-17. (G) Correlation between plasma estradiol levels and IL-17 in female SLE patients (n=18).
(H) Correlation between plasma estradiol levels and IL-12-p40 in female SLE patients (n=14). *p < 0.05, ***p < 0.001.
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found that 17b-estradiol treatment (50 pg/ml) of healthy PBMCs
significantly increased secreted IL-18 protein level in the
supernatant (Figure 6B). We also found increased IL-23
secretion in healthy control PBMCs after 17b-estradiol
treatment (Figure 6D) but it did not reach the significance
level. There were no significant changes in levels of IL-23
secreted from SLE patients’ PBMCs after 17b-estradiol
treatment (Figure 6E). Thus, our data showed differential
effect of 17b-estradiol on IL-18 and IL-23 expression/secretion.
Importantly, we found that 17b-estradiol treatment of healthy
control and SLE patients (PBMCs) significantly increased the
production of IFNg (Figures 6F, G). Taken together, these data
indicate that estrogen participates in the induction of pro-
inflammatory cytokines and interferon genes.

17b-Estradiol Increases Levels of
CD3+CD69+ and CD3+IFNg+ T Cells in SLE
Patients’ PBMCs
To test whether 17b-estradiol treatment alters T cell activation,
we cultured PBMCs from SLE patients with a physiological
concentration of 17b-estradiol in serum-free media for 24
hours. FCS (fetal calf serum) is known to have varied levels of
endogenous androgen and other factors that may influence E2-
PBMC culture data (54). Therefore, we used serum-free media to
Frontiers in Immunology | www.frontiersin.org 7
avoid further complexity in the results. As shown in Figure 7, we
found that 17b-estradiol at 10-50 pg/ml concentrations
significantly increased the percentage of CD3+CD69+

[Figures 7A, B (Panels B, C) and CD3+IFNg+ Figures 7A, B
(Panels F, G)] T cells; whereas, addition of an inhibitor of the ER-
a prevents this effect [Figure 7A (Panels 7D, H) and Figure 7B
(Panels G, H)]. Thus, our data indicates that 17b-estradiol
increases CD69 expression and IFNg production in T cells of
SLE patients.
DISCUSSION

The present study was designed to identify and validate estradiol-
regulated candidate genes that may be responsible for lupus
development in females. The specific interferon genes were
chosen based on their high expression in most patients with SLE
(39, 40). We provide evidence that 17b-estradiol regulates IFN
genes differentially in healthy controls and in SLE patients. We
demonstrated significant increased protein level of secreted IFN-g
after 17b-estradiol treatment. Further, we showed that SLE patients
have increased plasma concentrations of IL-6, IL-17, and IL-21
pro-inflammatory cytokines compared to healthy controls. Our
data for IL-6 was in agreement with other investigators who have
B CA

E F

D

G H

FIGURE 4 | Plasma levels of pro-inflammatory cytokines, chemokines including stem cell factor (SCF) were increased in SLE patients. To address the differences of
pro-inflammatory cytokines and chemokines between healthy controls and SLE patients, plasma levels of pro-inflammatory cytokines, chemokines and stem cell
factor (SCF) were measured in healthy controls (n=10-12) and SLE patients (n= 10-12) by RBM multiplex assay. (A) IFN-g, (B) IL-18, (C) IL-23, (D) IL-8, (E) Stem cell
factor (SCF), (F) MIP1a, (G) MIP1b, and (H) MCP-1. *p < 0.05.
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FIGURE 5 | 17b-estradiol increases pro-inflammatory chemokines in both healthy control and SLE patients’ PBMCs. PBMCs of female healthy controls and female
SLE patients were cultured with 17b-estradiol (50 pg/ml) for 24-48h range (n=10-12). Culture supernatants were obtained and levels of IL-8 (A, B), MIP1a (C, D),
MIP1b (E, F), SCF (G, H) MCP-1 (I, J), IL-2 (K, L), IL-4 (M, N), and IL-10 (O, P) were measured by multiplex assays (MAP). Conditions: (A, C, E, G, I, K, M, O).
Healthy female control cells (PBMCs), Healthy female control cells + E2 (50 pg/ml) n=11, (B, D, F, H, J, L N, P). SLE female patient cells (PBMCs), SLE female
patient cells + E2 (50 pg/ml) n=10. *p < 0.05.
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found similar increased IL-6 level in active SLE patients (55–57).
Herein, we showed that 17b-estradiol further increased protein
level of IL-6 in healthy control cells (Figure 2) and thus plays an
important role in SLE disease pathology. Lupus nephritis patients
have increased level of urinary IL-6 and expression of IL-6 was
increased in the glomerular tissues (58–60). Further, plasma
estradiol levels were positively correlated with levels of IL-6,
IL-12 p40, IL-17, and IL-21 in our data. To our clinical
significance, we found that plasma level of IL-21 also positively
correlated with SLEDAI score of SLE patients.

We demonstrated in this study that 17b-estradiol increases
CD3+CD69+ and CD3+IFNg+ T cells in SLE patients and that
17b-estradiol treatment increases secreted IFNg protein levels in
healthy control PBMCs. Thus, 17b-estradiol plays a significant
role in diverting immune responses toward pro-inflammatory
pathways. Our data suggests that increased levels of 17b-estradiol
may contribute to the female predisposition to SLE partly
through the effects of the hormone on pro-inflammatory
pathway activation.

The molecular interaction between pro-inflammatory
pathways and 17b-estradiol in SLE remains to be fully
Frontiers in Immunology | www.frontiersin.org 9
elucidated. Moreover, the molecular mechanisms by which
17b-estradiol interacts with IFN and T cells, B cells, and
antigen presenting cells (APC) in SLE is poorly understood. In
the present study, we showed that 17b-estradiol treatment
increased the expression of early activation marker CD69 and
IFNg on CD3+ T cells (Figure 7). Others have shown increased
numbers of CD4+CD69+ T cells with altered expression of
interleukins and suggested a correlation with loss of self-
tolerance in lupus mice (61). Of clinical significance, a human
study in lupus patients also found that CD69+ T cells are
increased and defective in function (62). Further, we
demonstrated that an antagonist of the estrogen receptor alpha
(ER-a inhibitor) significantly decreased the expression of CD69
and IFN-g in those T cells. In agreement with our study, Walters
et al. (63) showed that estradiol targets the T cell signaling
pathways in SLE and that the interferon-a pathway is
upregulated in response to estradiol in SLE T cells (63).
Previous reports have shown that ER-a was required for toll-
like receptor (TLR)-induced stimulation of IL-23R expression,
which may have effects on T cells and dendritic cells involved in
the IL-23/IL-17 inflammatory pathway (64). Although, we did
B CA

E FD G

FIGURE 6 | 17b-estradiol increases pro-inflammatory cytokines IL-12p40, IL-18, and IL-23 in SLE patients compared to healthy controls. PBMCs from female SLE
patients (n=7) were obtained and 2-4x106 cells were cultured with 17b-estradiol (E2 at 10, 40 and 100 pg/ml) for 24-48 h. Culture supernatants were obtained.
(A) IL-12p40 levels were measured with ELISA (BioLegend). *p < 0.05. (B) IL-18 levels were measured in the supernatant of healthy control PBMCs treated with E2
(50 pg/ml) (n=11). (C) IL-18 levels were measured in the supernatant of SLE patients PBMCs treated with E2 (50 pg/ml) (n=11). (D) IL-23 levels were measured in
the supernatant of healthy control PBMCs treated with E2 (50 pg/ml) (n=8). (E) IL-23 levels were measured in the supernatant of SLE patients PBMCs treated with
E2 (50 pg/ml) (n=9). (F) PBMCs (4x106) of healthy controls (n=9) were cultured with 17b-estradiol (50 pg/ml). Culture supernatants were obtained after (24-48 h) and
the level of secreted IFNg was measured with multiplex assay (RBM-MAP, Austin, TX, USA). *p < 0.05. (G) IFNg levels were measured in the supernatant of SLE
patients PBMCs treated with E2 (50 pg/ml) (n=8). *p < 0.05, **p < 0.01, ***p < 0.001.
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not evaluate the effect of 17b-estradiol on B cells and antigen
presenting cells (such as dendritic cells and monocytes), previous
studies have addressed these cell types (13, 65, 66) and showed
enhancing B cell activity with increased IL-10 expression in
monocytes and increased IFNg production in dendritic and NK
cells. In our studies, we tested the effect of 17b-estradiol
treatment on PBMCs from healthy individuals and found that
17b-estradiol significantly increased production of IL-17
(Figure 3). In agreement with our study, previous studies have
shown that 17b-estradiol induces IL-17 in lupus mice (67, 68).
Thus, our data suggest that 17b-estradiol contribute to enhanced
pro-inflammatory (Th17-IL-17) activation and stimulates the
interferon pathway.

Recently, a connection between IL-23 and IL-17 has
been identified (69). It was postulated that IL-23 promotes
Frontiers in Immunology | www.frontiersin.org 10
signal transducer and transcriptional activator 3 (STAT3)
phosphorylation by Janus kinase 2 (JAK2) and tyrosine kinase
2 (TYK2) by binding to its receptor IL-23R (70, 71). IL-23 has
also been shown to enhance the expression of retinoic acid
receptor-associated orphan receptor gt (RORgt), which is
involved in the expression of IL-17 and other Th17 cytokines
(69, 72). We also showed herein that when SLE patients’ PBMCs
were cultured with 17b-estradiol, IL-12 protein level increased
(Figure 6). The role of IL-12 and the IL-23/Th17 axis has been
recently demonstrated in lupus (73). Higher levels of the IL-
12p40 subunit and circulating frequencies of Th17 cells were
found to be correlated with SLE disease activity index (SLEDAI)
including lupus nephritis (74, 75). A recent study described that
the molecular interaction between IL-12 and IL-12R stimulates
JAK2 and TYK2 activity, leading to the phosphorylation of STAT
B

A

FIGURE 7 | 17b-estradiol (E2) increases the percent expression of CD3+CD69+ and CD3+IFNg+ T cells in SLE patients. Female SLE patient peripheral blood
mononuclear cells (2x106 cells) were obtained and cultured for 24 hours in serum-free media. Cells were stained with anti-CD3, anti-IFNg and, anti-CD69 Abs and
analyzed by FACS. For intracellular IFNg staining, cells were first fixed, permeabilized (as per manufacturer’s protocol; BD Biosciences, San Jose, CA) and stained.

Cells were washed two times with PBS and data acquired at the UCLA Flow Cytometry Core Facility. Data were analyzed using FCS Express™ De Novo software
(Thornhill, Ontario, Canada). SLE pt #1. Figure 7A: CD69: Panels (A): Cells alone; (B): Cells + E2 (10 pg/ml); (C) Cells + E2 (50 pg/ml); (D) Cells + E2 (10 pg/ml) +
E2 inhibitor - estrogen receptor alpha antagonist, ICI-182780 (10 pg/ml). IFN-g: (E) Cells alone; (F) Cells + E2 (10 pg/ml); (G) Cells + E2 (50 pg/ml); (H) Cells + E2
(10 pg/ml) + E2 inhibitor (10 pg/ml). SLE pt #2. Figure 7B: CD69: Panels (A) Cells alone; (B) Cells + E2 (10 pg/ml); (C) Cells + E2 (50 pg/ml). IFN-g: Panels (D) Cells
alone; (E) Cells + E2 (10 pg/ml); (F) Cells + E2 (50 pg/ml), (G) Combined data for CD3+CD69+ from SLE patients (n=8). *p < 0.05. (H) Combined data from SLE
patients (n=6) for CD3+IFNg+ T cells; *p < 0.05.
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family members including STAT1 and STAT4 (73, 76). In
addition, genetic polymorphisms within the IL-12/IL12R
pathways have been associated with SLE pathogenesis (77, 78).
Additionally, IL-17 has been shown to significantly induce B cell
proliferation and antibody production synergistically with B cell
activating factor (BAFF) (79–82). Thus, the cells which were
exposed to 17b-estradiol may potentiate the inflammatory
pathways through the IL-12/IL-23 and IL-17-Th17 axis.

The biologic effects of 17b-estradiol are mediated by binding
to its receptors, ER-a and ER-b, expressed in many tissues
including most immune cells (83–86), and by the membrane-
bound G protein-coupled receptor, GPR30 (87). The role of 17b-
estradiol on CD4+ and CD8+ T cells has been described recently
(88–90). ER-a-specific signaling has been shown to be pro-
inflammatory in T cells (91), leading to increased expression of
the Th1-associated transcription factor Tbx21 (Tbet) (92) and
enhanced production of IFNg (93, 94). We found increased
expression of CD69 and IFNg in the CD4+ T cells when
healthy controls or SLE patients’ PBMCs were cultured with
17b-estradiol (data not shown and Figure 7). More recently it
was demonstrated that 17b-estradiol upregulates the cyclic AMP
response element modulator alpha (CREM-a) protein, which
down-regulates the production of IL-2 in human T cells (95).
Differential expression of 17b-estradiol receptors in women with
SLE has also been reported (96). In men with SLE, imbalances in
estrogens and androgens can contribute to increased
susceptibility to the active disease (97–101). Furthermore,
administration of 5-dehydroepiandrosterone (DHEA) has been
demonstrated to reduce disease activity in women with
SLE (102).

We showed recently that plasma 17b-estradiol levels are
significantly increased in female SLE patients compared to
healthy females (30). Furthermore, we found that estradiol
increases pro-inflammatory cytokines and chemokines (IL-8,
IL-18, IL-23, CXCL1-7, MIP1a, and MIP1b), and level of
estradiol positively-correlated with expression of pro-
inflammatory cytokines and chemokines in SLE patients and
with the levels of serum/plasma IL-6, IL-18, and IL-21/23 in SLE
patients (Figures 2B, 3B, 4, 5, and 6). Our finding of increased
level of IL-18 and the role of 17b-estradiol in further enhancing
level of IL-18 in SLE patients has translational significance as
recent studies have shown the impact of functional
polymorphisms in SLE disease pathogenesis (103, 104).
Together, these data indicate that 17b-estradiol increases the
Frontiers in Immunology | www.frontiersin.org 11
expression of interferon genes and pathways and thus could
promote susceptibility to the disease in women. Thus, our data
suggest that women may be more susceptible than men to SLE
and other autoimmune diseases in part because many healthy
women have higher base-line levels of interferon-regulated
genes. However, future studies to delineate the detailed
molecular mechanisms are required to address which signal
transduction pathways are involved.
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