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It has always been an ambitious goal in medicine to repair or replace morbid tissues for regaining the organ functionality.
This challenge has recently gained momentum through considerable progress in understanding the biological concept of the
regenerative potential of stem cells. Routine therapeutic procedures are about to shift towards the use of biological and molecular
armamentarium.The potential use of embryonic stem cells and invention of induced pluripotent stem cells raised hope for clinical
regenerative purposes; however, the use of these interventions for regenerative therapy showed its dark side, asmanyhealth concerns
and ethical issues arose in terms of using these cells in clinical applications. In this regard, adult stem cells climbed up to the top list
of regenerative tools and mesenchymal stem cells (MSC) showed promise for regenerative cell therapy with a rather limited level of
risk. MSC have been successfully isolated from various human tissues and they have been shown to offer the possibility to establish
novel therapeutic interventions for a variety of hard-to-noncurable diseases.There have beenmany elegant studies investigating the
impact of MSC in regenerative medicine. This review provides compact information on the role of stem cells, in particular, MSC
in regeneration.

1. Introduction

Being first isolated in 1966 from bone marrow, mesenchymal
stem cells (MSC) are adult stromal nonhematopoietic cells,
well known for their potential to differentiate into osteoblasts
and osteocytes [1].They have the ability to recruit hematopoi-
etic host cells when forming bone in vivo [2, 3]. These cells
are characterized by their spindle-like shape [4] and adher-
ence capability to polymeric surfaces, for example, plastic.
Although they are most known for their osteogenic differ-
entiation potential, MSC have the ability to commit into all
three lineages (osteogenic, chondrogenic, and adipogenic).
MSC express CD105, CD73, and CD90 (cell-surface markers)
but lack the expression of CD14, CD19, CD34, CD45, and
HLA-DR [5]. MSC have been isolated and purified not only
from bone marrow where they cooperate with hematopoietic
stem cells (HSC) to form the niche, but also from various
tissues, such as umbilical cord [6–9] and umbilical cord blood
[10–13], white adipose tissue [14–16], placenta [17], and the

amniotic membrane of placenta [4, 18–20]. The capacity of
MSC to differentiate into cell lineages and develop teratoma, a
preserved tumor that contains normal three-germ layer tissue
and organ parts, is a reason to consider them as multipotent
progenitor cells suitable for regenerative therapy.

Beside their potential to differentiate into osteoblasts in
the process of osteogenesis, there have been several other
regenerative roles attributed to MSC.These cells can serve as
pericytes [21, 22] wrapping around blood vessels to support
their structure and stability [23]. MSC have also shown the
potential to integrate into the outer wall of the microvessels
and arteries in many organs, such as spleen, liver, kidney,
lung, pancreas, and brain [24, 25]. This led to the speculation
that both bone marrow- and vascular wall-derived MSC as
well as white adipose tissue-, umbilical cord blood-, and
amniotic membrane-derivedMSC could act as cell source for
regenerative therapy to treat various disorders such as osteo-
porosis, arthritis, and vessel regeneration after injury [26–
29]. MSCmay also be induced to differentiate into functional
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Table 1: A selection of registered clinical trials on the basis of MSC as the relevant therapeutic tool (https://www.clinicaltrials.gov).

Title Recruitment Conditions Phases Intervention Sponsors

1 Mesenchymal Stem Cells in Knee
Cartilage Injuries Completed

Articular
cartilage

disorder of knee
Phase II

Biological:
autologous

mesenchymal stem
cells

University of
Jordan

2
“One-Step” Bone Marrow

Mononuclear Cell Transplantation in
Talar Osteochondral Lesions

Recruiting Osteochondritis Phase III

Procedure: bone
marrow cells

transplantation on
collagen scaffold

Istituto Ortopedico
Rizzoli

3
Mesenchymal Stem Cell Based
Therapy for the Treatment of
Osteogenesis Imperfecta

Active, not
recruiting

Osteogenesis
imperfecta Phase I

Biological:
mesenchymal stem

cells

Hospital de Cruces;
Hospital

Universitario
de Getafe; Hospital

Infantil
Universitario Niño
Jesús, Madrid,

Spain

4
Treatment of Patients With Newly
Onset of Type 1 Diabetes With

Mesenchymal Stem Cells
Completed Type 1 diabetes

mellitus —
Biological:

mesenchymal stem
cells

Uppsala University
Hospital

5 Mesenchymal Stem Cells for Multiple
Sclerosis Recruiting Multiple

sclerosis
Phase I
Phase II

Drug:
mesenchymal stem

cells; drug:
suspension media

University
Hospital,
Toulouse

6
Autologous Mesenchymal Stem Cells
Transplantation in Cervical Chronic
and Complete Spinal Cord Injury

Recruiting Spinal cord
injury Phase I

Biological:
autologous

mesenchymal cells
transplantation

Hospital Sao Rafael

neurons, corneal epithelial cells, and cardiomyocytes under
specific pretreatments ex vivo and in vivo that broaden the
capacity of these cells in regenerative therapeutic interven-
tions [30–35]. In a previous study, umbilical cordmatrix stem
cells derived fromhuman umbilical cordWharton’s Jelly were
aimed to treat neurodegenerative disorders such as Parkin-
son’s disease by transplantation into the brain of nonimmune-
deficient, hemiparkinsonian rats [36]. Interestingly, pheno-
typic characterization of umbilical cord matrix-derived stem
cells revealed a similar surface marker expression pattern to
mesenchymal stem and progenitor cells (positive for CD10,
CD13, CD29, CD44, and CD90 and negative for CD14, CD33,
CD56, CD31, CD34, CD45, and HLA-DR). The transplanta-
tion resulted in a significant reduction of rotator behavior
as a symptom for Parkinson’s disease, thus suggesting an
additional therapeutic role for umbilical cord matrix stem
cells (MSC) in treating central nervous disorders [36].

These findings were enough evidences for scientists to
speculate a promising role for MSC in regenerative therapy.
In the past years,MSC have been used in clinical trials aiming
for regeneration of tissues such as bone [37] and cartilage
[38] as well as treatment of disorders such as spinal cord
injury [39], multiple sclerosis (MS), Crohn’s disease [2, 40],
and graft-versus-host disease (GvHD) [41] due to their broad
differentiation capacity and potential of hematopoietic cell
recruitment [5, 42, 43].

Several clinical trials are running to identify different
aspects of MSC application in terms of safety and efficacy.

Table 1 indicates a number of clinical trials using MSC for
various treatments and regenerative interventions. As of date
(07.10.2016), a total number of 657 clinical studies were found
that involve mesenchymal stem cells for different clinical
phases.

2. Stem Cells as Potential Tools for
Regenerative Therapy: Promise and Perils

In the recent decade, somatic stem cells have become attrac-
tive tools for cell therapy and regenerative medicine due
to their proliferation and differentiation potential as well as
established isolation and propagation protocols that promote
a high standard of purity and functionality of the cells when
applied in vivo. Adult stem cells (ASC) and progenitors, in
particular mesenchymal stem cells have been derived from a
variety of tissues such as umbilical cord and umbilical cord
blood, placenta, bone marrow, epithelium, and white adipose
tissue. These cells have been characterized, expanded, and
applied for transplantation procedures in which allogeneic
adult stem cells give rise to committed cells such as osteo-
cytes, adipocytes, and chondrocytes as well as functional
vessels in the process of neovasculogenesis [44–49].

The proliferation rate of adult stem cells and in particular
MSC is a crucial parameter for stem cell therapeutic interven-
tions like patient-specific tissue regeneration.There are, how-
ever, limitations with regard to the amount of tissue that can
be taken from the patient, the limited propagation capacity

https://www.clinicaltrials.gov
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of the cells that are isolated from the tissue, and restrictions
in terms of passage number of the cells to be utilized for
regenerative therapy. Therefore, it has been of great interest
to enhance the proliferation rate of (mesenchymal) stem cells,
especially in terms of patient-specific regenerative therapy. In
this regard, low-level laser therapy (LLLT) has been tested in
vitro to stimulate and enhance proliferation capacity of the
cells. According to systematic review conducted by Ginani et
al., LLLT is increasingly used as a method to enhance prolif-
erative potential of adipose tissue-, dental pulp-, periodontal
tissues-, and bone marrow-derived stem cells to date [50].
Ballini et al. showed that LLLT irradiation promotes prolifer-
ation capacity of dental pulp stromal cells and enhances the
expression of proteins that are involved in osteogenesis [51].

Considering the tissue-specificity property of stemcells in
determining their regenerative potential, it is of interest to test
and compare the impact of LLLT on proliferative potential of
stem cells that are derived from different tissues to ensure a
more effective regenerative strategy approach.

MSC are, however, not considered as the only cellu-
lar mediators for enhancement of regenerative therapy, as
embryonic stem cells (ESC) and, later on, induced pluripotent
stem cell (iPSC) technology through cellular reprogramming
were introduced and aimed to push regenerative cell therapy
beyond its existing limits.

Pluripotent, inner blastocyst cell mass-derived cells are
defined as embryonic stem cells (ESC) that can proliferate
without limitation, possess the potential of self-renewal, and
are able to differentiate into different cell types derived from
all the three germ layers [52]. These characteristics together
with the human embryonic stem cell (hESC) capability to
differentiate into human adult cells led to the speculation
that hESC might be useful for allogeneic cell transplantation
research as well as clinical trials for treatment of diseases such
as spinal cord injury, cardiovascular disorders, and diabetes
[53, 54].

Differentiating hESC to numerous cell types including
osteoblasts, cardiomyocytes (CM), hepatocytes, neurons, and
endothelial cells (EC) to be used in cell replacement therapy
(CRT) has been increasingly taken into consideration [55].
However, the procedure of deriving tissue-specific cells from
hESC is challenging and requires establishment of repro-
ducible methods for therapeutic interventions. A number
of studies focusing on hESC differentiation into tissue-
specific CM that do not express stemness markers are still in
progress [56]. Moreover, CM populations derived from hESC
have been shown to respond to drug stimuli and thus are
suitable for assessment and development of small molecule
therapeutics ex vivo [55, 57].

During the past few years, several studies were carried
out to investigate differentiation of ESC into dopamine-
producing neural cells [58, 59] and bone tissue [60] which
can shed light to the future clinical trials using hESC to treat
spinal cord injuries and bone damage.

ESC research offers great promise for understanding
mechanisms of cell differentiation which ultimately leads to
discovery of novel treatments for diseases such as myocardial
infarction [61, 62]. Pluripotent stem cells can readily be cul-
tured in vitro and can differentiate into all types of committed

cells [61, 63]. With the ongoing progress in the field of
ESC and regenerative medicine, these cells could be induced
to differentiate into variety of committed cells that could
be used for therapeutic interventions such as regenerative
transplantation. Embryonic stem cells (ESC) were therefore
identified as potential playmakers for regenerative therapy.

The therapeutic potential and benefit of ESC, however,
have been a matter of debate and raised ethical concerns
due to the opinion that the process of deriving embryonic
stem cells results in severe damage to the embryo. Moreover,
the existing complications and some as-of-yet unclarities in
differentiation potential and proliferation rate of ESC pose
risk of undesired complications such as teratoma formation
and cancer development. Therefore it is not an approved
procedure in several countries. Although research has over-
come many of these limitations to date, ESC are still not
fully approved for being used in cell therapy procedures and
regenerative application [64].

Other groups of potential playmakers in regenerative
therapy, induced pluripotent stem cells (iPSC), have come
to the scene by Takahashi and Yamanaka who successfully
produced induced pluripotent stem cells (iPSC) using mouse
embryonic and adult fibroblast cells and introducing four
transcription factors SOX2, OCT 3/4, KIF4, and c-myc to
cells [65]. Later, they generated iPSC also from human
somatic fibroblasts and established reprogramming strategies
to convert differentiated human adult cells into a pluripotent
state. Park et al. were able to generate iPSC from adult,
neonatal, and fetal primary cells of human including skin
fibroblasts [66]. Consequently, patient- and disease-specific
stem cell generation methods were developed as crucial steps
towards modern regenerative medicine and cell therapy [67].
For instance, Maehr et al. generated type 1 diabetes-specific
iPSC from patients by reprogramming their fibroblasts with
three transcription factors (OCT4, SOX2, and KLF4) with
the potential of differentiating into insulin-producing cells
that could be used to treat type 1 diabetes [68]. In 2012, John
B. Gurdon and Shinya Yamanaka were jointly awarded the
Nobel Prize in Physiology or Medicine for discovery of the
path throughwhich differentiated cells can be reprogrammed
to become pluripotent.

Several studies on the implication and capacity of iPSC
technology for therapeutic approaches have been carried
out through which iPSC were generated from committed
and somatic cells [69, 70]. These studies investigated their
cellular, molecular, and functional properties and compared
them with pluripotent and multipotent stromal cells. A
differentiation protocol was investigated by Moslem et al.
through which human iPSC derived-MSC were generated
from fibroblasts and bone marrow-derived mesenchymal
stem cells (BM-MSC) [70]. The iPSC-MSC generated in this
study expressed a surfacemarker profile similar to that of nor-
mal BM-MSC, while having a shorter population doubling
period, therefore possessing a more advanced proliferation
capacity. Furthermore, iPSC-MSC revealed immunomodula-
tory properties through eliminating the proliferation capacity
of CD4+ cells and reducing proinflammatory cytokines in a
lymphocyte population admix [70].
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Table 2: Selected genes and primers involved in human iPSC-MSC technology studies.

Gene Implication Primer sequence 5-3
Forward

Human peroxisome proliferator-activated receptor 𝛾
(PPAR𝛾)

Proliferation
capacity CTAAAGAGCCTGCGAAAG

Human peroxisome proliferator-activated receptor 𝛼
(PPAR𝛼)

Proliferation
capacity ACTCCGTCTTCTTGATGAT

Octamer-binding transcription factor 4
(OCT4) Stemness CCTCACTTCACTGCACTGTA

Kruppel-like factor 4
(KLF4) Stemness GATGAACTGACCAGGCACTA

Myc
(C-MYC) Stemness TGCCTCAAATTGGACTTTGG

Sex determining region Y-box 2
(SOX2) Stemness CCCAGCAGACTTCACATGT

Lin-28 homolog A
(LIN28) Stemness AGTAAGCTGCACATGGAAGG

Collagen 2
(COL2a)

Chondrogenesis
Osteogenesis TCTACCCCAATCCAGCAAAC

Runt-related transcription factor 2
(RUNX2) Osteogenesis CAGTAGATGGACCTCGGGAA

Aggrecan
(ACAN) Chondrogenesis CTGGACAAGTGCTATGCCG

Alkaline phosphatase
(ALP)

Chondrogenesis
Osteogenesis CAACAGGGTAGATTTCTCTTGG

Osteocalcin
(OC) Osteogenesis AGTCCAGCAAAGGTGCAGCC

Kang et al. also established amethod for generating iPSC-
MSC with morphological characteristics and surface marker
expression profile similar to that of BM-MSC [69]. The
iPSC-MSC generated in this study revealed osteogenic and
chondrogenic differentiation capacity comparable to those
of BM-MSC, but they revealed less efficiency in terms of
adipogenic differentiation capacity [69]. Table 2 indicates a
selection of genes and primers that have been involved in
human iPSC-MSC technology studies [69–73].

The iPSC technology has undoubtedly raised hope
in regenerative biology; however its use in regenerative
medicine did not appear as a facile, straight-forward proce-
dure, as iPSC technology led to complications in cell therapy
and regeneration [74].The genetic stability in reprogrammed
cells has not been proven to remain constant [75, 76] and
because of genetic alterations, these cells have not been
considered as reliable tools for clinical use in transplantation
and regeneration to date.

In comparison with ESC and iPSC, adult somatic stem
cells do not cause ethical and severe health issues and are
therefore widely used in regenerative research. There have
been, however, limitations concerning the in vitro expansion
and pluripotency when using adult somatic stem cells for
therapy [64]. Nevertheless, lower risk in terms of application,
low incidence of post-therapy complications, and less ethical
concerns compensate the limitations of ASC in terms of
expansion rate and pluripotency to a significant extent.

Further investigations are still required for application
of ESC and iPSC in regenerative medicine until these cells

would be considered as effective tools for clinical regenerative
therapy. For this reason, other options such as new sources
of ASC, in particular, MSC as an important adult stem cell
subfamily, have been considered for establishment of success-
ful and progressive cell-based regenerative and therapeutic
procedures.Theneed for novel cell sources is obvious because
of increasing need of regenerative cell therapy for diseases
that are, as of date, difficult, if not impossible to be cured.

3. Tissue Specific MSC: Diversity in
Regenerative Potential

MSC are present in several adult tissues. Despite simi-
lar morphology and phenotypic properties amongst MSC
that have been isolated from various tissue sources, their
regenerative potential has been shown to differ. It has been
previously described that activated agingmechanism inMSC
has an impact on their regenerative potential, probably due
to DNA damage accumulation [77] and/or impairment of
metabolic system as a result of mitochondrial damage [77,
78]. Nonetheless, several studies have been carried out that
show differences in regenerative capacity of MSC popula-
tions of the same passage number that have been isolated
from different sites [79–81]. The variability in regenerative
potential of MSC populations that are derived from various
tissues might be due to the impact of stem cell niche on cell
fate, known as stem cell niche theory [82], genetic variability,
and/or epigenetic alterations.
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3.1. BoneMarrow-DerivedMSC. Bonemarrow (BM)was one
of the first tissues that had been used for isolation and prop-
agation of mesenchymal stem and progenitors. Bone marrow
aspirate is rich in hematopoietic and nonhematopoietic stem
cells, endothelial progenitor cells (EPC) derived from embry-
onic hemangioblasts, and mesenchymal stem cells (MSC).
MSC have been shown to participate in hematopoiesis or
bone marrow regeneration [83, 84]. They also have the
potential to give rise to “pericytes,” the perivascular cells on
the outer layer of vessels supporting the stability of capillaries
and directing the blood flow [23]. Human BM-MSC have
been shown to successfully participate in neovasculogenesis
and collaborate with endothelial colony forming cells for
establishment of perfused microvessels in vivo [85–87].
BM-MSC have been considered as gold standard tools for
osteogenic and chondrogenic regeneration. There have been,
however, increasing reports on the role of other source-
specific MSC such as umbilical cord blood- (UCB-) MSC
and adipose tissue- (AT-) MSC in promoting osteogenic and
chondrogenic differentiation in vitro and in vivo [88, 89].

3.2. Adipose Tissue-DerivedMSC. Adult adipose tissue is rich
in fibroblast-like cells withmultidifferentiation potential [90–
92]. In 2001, these cells were identified as MSC [93], leading
the adipose tissue (AT) to be recognized as a source of
MSC isolation. Reports on the regenerative potential of AT-
MSC showed that they are potent in contributing to vessel
formation [94] and act as pericytes as well as being able to
differentiate into bone (osteoblasts) [89, 95] and cartilage
(chondrocytes) [96, 97]. These cells were isolated from the
liposuction material and they expressed potential to undergo
osteogenic, adipogenic, myogenic, and chondrogenic differ-
entiation in vitro [98]. It has been shown that AT-MSC
have the potential to differentiate into hepatocyte-like cells
in the presence of certain growth factors such as hepatocyte
growth factor (HGF) and fibroblast growth factors 1 and
4 (FGF1, FGF4) [99–101]. These hepatocyte-like cells have
been shown to express phenotypes such as albumin secretion
and lipoprotein absorbance that are known as liver-specific
markers. Moreover, these cells have been shown to home into
the liver parenchyma after being transplanted into the liver
[99]. Reports show a broad range of regenerative potential
attributed to the AT-MSC, from soft tissue regeneration
(hepatocyte regeneration and vasculogenesis) to hard tissue
formation (osteogenesis).

3.3. Umbilical Cord and Cord Blood as MSC Sources. Several
studies revealed that cells isolated from Wharton’s Jelly
(WJ), a component of umbilical cord extracellular matrix,
express stemness characteristic and multipotency [102, 103].
These cells also express biomarkers similar to those of bone
marrow mesenchymal stem cells (BM-MSC). Mesenchymal
stem cells derived from Wharton’s Jelly within the umbilical
cord have been shown to give rise to various cellular types
of nerve system and connective tissue [104, 105]. Umbilical
cord-derived mesenchymal stem cells (UC-MSC) express
biomarkers such as Nanog and Oct3/4A [104]. These cells
have been known as hypoimmunogenic cells due to their

ability to modulate NK cells and promote regulatory T-cell
expansion [104, 106, 107].

The potential of UC-MSC to participate in neovasculo-
genesis [85, 108, 109] and differentiate into hepatocyte-like
cells [110] strongly suggests that UC-MSC can give rise to
various cell types, which indicates the ability of UC-MSC to
go beyond lineage borders. Considering their proliferation
potential in vitro and their immunoregulatory properties,
these cells are extremely promising for regenerative applica-
tions in various treatment settings [106].

There have been, however, contradictory reports in terms
of surface markers that are expressed on UC-MSC surface
[111]. According to ISCT report, CD105 is a required surface
marker for verification of MSC [5]. However, several reports
contradict each other, as in some studies CD105 has been
shown to be present on UC-MSC surface [112–114] and
its expression is constant even in different, long-term cell
passages [115], whereas a number of reports have argued
against the ability of UC-MSC to express CD105 as a surface
marker. These studies claim that even though CD105 is
expressed in UC-MSC, the expression of this surface marker
is detectable up till passage 5 [116, 117].

UC-MSC have been shown to maintain a high differenti-
ation potential in vitro as these cells have shown the ability to
differentiate into adipocytes, chondrocytes, osteoblasts, mus-
cle cells, cardiomyocytes, beta cells, endothelial cells, neurons
and dopaminergic neurons, and so forth [111, 118–121].

It has been shown that regenerative potential of UC-MSC
can differ if the cells are obtained from an individual with
metabolic disorders such as type 1 diabetes. Kim et al. indi-
cated that UC-MSC derived from diabetic pregnant women
show lower potential of osteogenic and adipogenic differen-
tiation, whereas their surface marker expression profile is not
significantly affected. The cell population doubling has also
been shown to diminish in UC-MSC from diabetic mothers
when compared to UC-MSC from healthy individuals [122].
This finding leads us to conclude that metabolic disorders
of the mother have an impact on biological properties of
UC-MSC, which attributes to the baby. This has to be
taken into consideration when choosing a cell source for
clinical application and/or in case of patient-specific clinical
regenerative strategies.

Umbilical cord blood (UCB) has always been considered
as a source of hematopoietic stem cells (HSC) [10, 123].
Nonetheless, recent findings suggest that UCB serves as
a source of MSC with a high regenerative potential [10].
It has been revealed that UCB-MSC can differentiate into
osteoblasts, chondrocytes, and pericytes in course of vessel
formation [85, 86, 124]. The phenotypic characterization of
UCB-MSC has been shown to be consistent with that of BM-
MSC [125]. There have been reports on UCB-MSC ability
to differentiate into neuron-like cells [126] under certain
conditions, which indicate their ability to give rise to cells of
all three germ layers [124, 126].

3.4. Dental Tissue-Derived MSC. Dental tissues are special-
ized tissues and they do not undergo continuous remodeling
as has been indicated in other bony tissues; therefore, stem
cells that are obtained from dental tissue might show a
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restricted differentiation capacity compared to BM-MSC
[127, 128].

Dental pulp stem cells (DPSC) are amongst different
human dental stem and progenitor cells that have been
isolated and characterized to date [128]. DPSC possess self-
renewal and differentiation capacity. Human pulp cells can
differentiate into odontoblastic cells in vitro, possessing
polarized cell bodies and the ability to accumulate min-
eralized nodules [129–131]. Although dental tissue-derived
stem cells are obtained from specialized tissue and they
are most potent for differentiation into odontogenic cells,
DPSC also have the potential to differentiate into other
cells such as adipocytes and neurons [132]. Recently, it has
been revealed that DPSC have the potential to give rise to
chondrocytes, osteoblasts, and myocytes in vitro [133, 134].
To date, the regenerative application of dental pulp-MSC
involves regeneration of the whole tooth and partial bony
substrate of the oral cavity in the process of maxillofacial
surgical interventions [135–137].

The osteogenic differentiation potential of the cells iso-
lated from dental follicle (DF) has been investigated by Mori
et al. [138]. This study has revealed that stemness markers are
released by dental bud stem cells. Upon differentiation, these
cells have been shown to express osteoblastic biomarkers such
as collagen I and alkaline phosphatase (ALP) which indicates
their commitment to osteoblast-like lineage [138]. Moreover,
a recent report involving the role of integrin and cadherin in
differentiation of dental bud stem cells has unraveled a crucial
role for integrin 𝛼V𝛽3 during differentiation of these stem
cells into osteoblasts [139]. The data elucidates the impact of
extracellularmatrix (ECM) proteins in directing stem cell fate
towards bone formation [139].

The studies that have been carried out on dental stem
cells and their regenerative potential have raised promise for
using dental tissue-derivedMSC in fracture healing as well as
regenerative bone formation interventions due to disease or
loss of the tissue [137].

3.5. Amniotic Membrane-Derived MSC. The amniotic mem-
brane is a part of the placenta that protects the fetus during
pregnancy and provides nutrient transport to fetus [140].
The amniotic membrane is known as an efficient scaffold
for treatment of burns as well as during skin and corneal
transplantation, since this tissue possesses anti-inflammatory
property [141]. To date, the amniotic membrane is widely
used as a material for clinical interventions. Decellularized
amniotic membrane can serve as a scaffold and can be used
for transplantation interventions.

Amniotic membrane-derived mesenchymal stem cells
(AMN-MSC) have been shown to have the potential to
differentiate into all three mesodermal lineage cells as well
as endodermal lineage cells [142]. They have been shown
to express mesenchymal surface markers such as CD105
and CD90 while lacking the hematopoietic markers such as
CD29, CD34, and CD45 [143]. Moreover, it has been revealed
that the amniotic membrane of placenta can express antian-
giogenic and anti-inflammatory components [144]. These
results further justify the potential of AMN-MSC application

in regenerative medicine, since overcoming inflammation
and immunogenicity issues is amongst the most important
challenges for a successful outcome of regenerative trans-
plantation. Interestingly, despite expression of pluripotent
markers like Oct-4, Nanog, TRA-1-60 and TRA-1-81, AMN-
MSC do not cause teratoma formation [145]. An intact
amniotic membrane (AMN) promotes secretion of anti-
inflammatory and antifibrosis components. It also lacks
vasculature structures as well as neurons, which makes AMN
a suitable scaffold for wound healing [146, 147].

4. Tissue Specific Regenerative
Potential of MSC

The regenerative potential of MSC isolated from different
tissues has been shown to undergo alteration according to the
tissue of isolation [148, 149]. It has been shown that BM-MSC
possess a higher potential in giving rise to osteoblasts and
chondrocytes [79, 149], whereas adipose tissue-derived MSC
(AT-MSC) have been shown to contribute more successfully
to capillary-like network formation in vitro [150] as well
as vasculogenesis in vivo [85, 86]. Umbilical cord blood-
(UCB-) MSC also showed a high potency in giving rise to
pericytes during vasculogenesis [86], whereas their potential
for osteogenic differentiation has been shown to diminish
compared to BM-MSC [151], which still play as the gold
standard for osteogenic differentiation and regeneration.

AMN-MSC were also shown to successfully participate
in neurogenesis, whereas such a regenerative potential has
not been distinguished in UC-MSC [152, 153]. Amniotic
membrane-derived MSC, however, have not been shown to
participate in the process of vasculogenesis as successfully as
UC-, UCB-, AT-, and BM-MSC did [86].

Despite the fact that DPSC and BM-MSC are regulated
by similar factors and they also possess a similar protein
expression profile, these populations have been shown to
alter significantly in their proliferative capacity in vitro and,
more importantly, in their regenerative capacity in vivo
[154]. BM-MSC give rise to bone tissue in the mouse model
under treatment as described in studies [155, 156]. The
chondrogenic and adipogenic potential of BM-MSC has been
higher compared to that of DPSC [157, 158]. Conversely, the
neurogenic differentiation potential of dental mesenchymal
stem cells might be more robust compared to that of BM-
MSC, since these cells possess neural crest origin [127].

BM-, dental pulp- (DP-), and adipose tissue- (AT-)
derived MSC have revealed a greater promise in regenerative
therapy since these adult stem cells might promote patient-
specific regenerative interventions.

5. MSC in Regenerative Therapy

MSC are attractive alternatives for regeneration of the injured
and/or deficient cells and tissues due to their multipotent
differentiation capacity as well as their immunomodulatory
and anti-inflammatory properties through cellular crosstalk
and production of bioactive molecules [159]. MSC have the
unique potential either to directly participate in regeneration
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and repair processes or to play an immune modulatory role
to enhance treatment of autoimmune diseases such as type 1
diabetes (T1D).

5.1. The Role of MSC in Neovasculogenesis. The combina-
tion of multipotent endothelial progenitor cells (EPC) and
mesenchymal stem cells (MSC) is an additional key tool
for stem cell therapy. These cells are localized in bone
marrow stroma as well as vascular inner and outer layer
and perivascular niches and are capable of forming mature
endothelial cells and mesenchymal cell lineages such as
osteoblasts, chondrocytes, adipocytes, and myoblasts [30, 83,
160]. EPC derived from bone marrow, inner vascular wall,
umbilical cord, and umbilical cord blood aswell as circulating
EPC are of great importance for clinical trials and cell
therapy procedures. Being capable of migrating through the
circulation and differentiating into committed endothelial
cells, EPC are crucial mediators for promoting angiogenesis
and de novo vasculogenesis as well as endothelium repair
in case of vascular damage [25, 84, 161, 162]. It has been
previously revealed that SDF-1 can be expressed by activated
thrombocytes within blood flow, which is responsible for
EPC recruitment to artery structures in vivo [163]. This
shows the potential of EPC to participate in vascular repair
of damaged peripheral tissues. As has been indicated in a
previous study, isolation and transplantation of a human EPC
subpopulation (negative for CD34 and CD14, positive for
CD133 and VEGFR2) in nude mice with damaged artery
resulted in a repaired endothelial layer and wound healing
caused by the injected EPC subpopulation [161]. In addition,
bone marrow-derived MSC within perivascular niche have
been shown to form bone marrow stroma, bone, cartilage,
adipose tissue, and myocytes in vivo [26, 30, 84]. Early sig-
naling signature during stem cell mediated vessel formation
has been investigated by Rohban et al. [85]. In this study, a
coculture approach of mesenchymal stem cells and endothe-
lial colony forming cells revealed that the two progenitor
cells collaborate to form stable and perfused microvessels.
Moreover, the study revealed that MSC and endothelial
progenitor cells communicate through signaling molecules
and pathways such as caspase and mitogen activated protein
kinase (MAPK) to direct their fate toward vessel formation.

Mitogen activated protein kinases (MAP kinases) have
been also shown to regulate MSC differentiation to osteo-
or adipogenic lineage [164] with a significant expression of
p38, Erk2, and JNK2 in a time-dependent manner [164] sug-
gesting a crucial role for protein kinase signaling molecules
and their phosphorylation status during differentiation. The
coculture of MSC and ECFC has been shown to result in
vascular structure formation in vivo. The vessels have been
shown to remain stable and functional up to 6 months after
transplantation [85]. This finding justifies the supportive
role of MSC for maintaining the stability and functionality
of neovessels. Figure 1(a) depicts the contribution of MSC
and endothelial colony forming cells (ECFC) in the process
of neovasculogenesis. Figure 1(b) shows the formation of
neovessels in the absence of MSC resulting in the formation
of unstable vasculature.

5.2. The Role of MSC in Osteogenesis and Chondrogenesis.
Bone and cartilage injuries occur as a result of bone fracture,
or joint diseases such as rheumatoid arthritis or osteoarthri-
tis. These disorders have a costly economic and social impact
on the quality of life amongst middle-aged patients. Despite
the progress in orthopedic surgery, bone and cartilage repair
have remained a major challenge because large injuries
do not heal spontaneously [165–169]. The regeneration of
ruptured/injured cartilage in a variety of diseases such as
degenerative osteoarthritis and herniation is a major goal in
cartilage regeneration studies [167, 168, 170, 171].

Studies on mesenchymal stem cells have opened a new
horizon for bone and cartilage tissue engineering. Because of
their multipotent capacity, MSC lineages have been success-
fully used in animal models to repair articular cartilage and
regenerate bone [35, 165, 170, 172, 173]. Recent research stud-
ies have indicated that bone and cartilage might be repaired
through percutaneous implantation of MSC [170, 172–175].

The potential of MSC and progenitor cells in prospective
cell-based regenerative models has been investigated by
Lohberger et al. [176]. The study investigated MSC isolated
from three different intraoral bone sites, as well as dental
pulp with regard to their potential of differentiating into
osteogenic, adipogenic, and chondrogenic lineages. It has
been shown that mesenchymal stromal cells isolated from
these sites have the potential of osteogenic, but also adi-
pogenic and chondrogenic differentiation in vitro [176].

Human mesenchymal stromal cells isolated from bone
marrow (BM) and alveolar bone have been compared accord-
ing to their regenerative potential by Pekovits et al. [177].The
study aimed to evaluate the potential of bone marrow (BM)
and alveolar-derived MSC for regenerative applications in
maxillofacial and oral tissue engineering. The results showed
multilineage differentiation potential (osteogenic and chon-
drogenic differentiation) of alveolar bone-mesenchymal stem
cells in vitro, which was comparable to that of BM-MSC in
vitro [177].

Complete healing occurs when the regenerated tissue
has been integrated into the neighboring host tissue and
the differentiation process has been thoroughly performed
[178, 179]. However, complete bone and cartilage healing
is still highly demanding and complete differentiation into
functional cartilage has not yet been achieved. Complete
healing might be achieved by establishing novel strategies
for using scaffolds in combination with pretreated and/or
untreated MSC in the presence of selective differentiation
factors [178, 180–182]. The long-term behavior of MSC in
combination with growth factors and bioscaffolds implanted
in morbid joints remains to be studied prior to any clinical
application in disorders such as osteoarthritis or rheumatoid
arthritis [182–184].

5.3. MSC as Tools for Cornea Regeneration. As indicated
earlier, MSC can differentiate into different mesodermal cells
and they also possess transdifferentiation ability to preserve
phenotypes of neural ectodermal and epithelial cells [185]. It
has been shown that BM-MSC can mimic limbal fibroblast
cells which are crucial in maintenance of epithelial stem cells
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Figure 1: (a) MSC and ECFC collaborate to form stable, perfused, and functional vessels in vivo. The inner layer of the vessel is established
by ECFC (grey), whereas MSC (yellow) form the outer layer of neovessel to support the stability and functionality of the vasculature. (b)
Unstable vessel. In the absence of mesenchymal stem cells, the inner layer of the neovessel raptures due to the lack of pericytes which play a
crucial role for maintenance of vasculature stability in vivo.

in the limbal niche [186]. Both BM-MSC and limbal fibrob-
lasts have been shown to express a similar surfacemarker pro-
file, includingCD106, CD54, CD166, CD90,CD29, CD71, and
CD105. Moreover, both BM-MSC and keratocyte cell types
express CD13, CD29, CD44, CD56, CD73, CD90, CD105,
and CD133 biomarkers and lack HLA-DR, CD34, CD117, and
CD45 on their surface [187]. These studies suggest that MSC
can be induced to differentiate into corneal cells. However,
there is no in vivo evidence which indicates differentiation
of MSC to corneal epithelial cell types. Nevertheless, in vitro
differentiated cells can be used in corneal tissue regeneration
or treatments that involve tissue/cell replacement.

During development, surface ectoderm gives rise to the
corneal epithelium [188]. It has been hypothesized that MSC
might be reprogrammed to ectodermal lineage cells. A study
conducted by Ma et al. indicated that the MSC population
that was transplanted to cornea failed to differentiate into
epithelial cells in vivo [32]. In this study, human BM-MSC
were applied on amniotic membrane, serving as scaffold,
and transplanted on the chemically injured rat cornea. The
study revealed that BM-MSC can survive and cause cornea
inflammation but did not undergo corneal epithelium differ-
entiation [32].

In a preclinical study using rabbits, BrdU labelled BM-
MSC were seeded on fibrin scaffolds and were transplanted
into the alkali damaged cornea. The BrdU positive cells were
shown to participate in the process of cornea healing which
clearly indicated the ability of BM-MSC to differentiate into
corneal epithelial cells [189].

The result of several in vitro experiments supported the
idea that MSC are able to resemble cornea epithelial cell
phenotype under certain conditions; however, up till now, the
in vivo data has not shown supportive evidence that justifies
the in vitro results.

Recently, adipose tissue-derived MSC (AT-MSC) have
shown the ability to differentiate into the corneal epithelium
[190]. Although several scientific groups have reported the
differentiation ofMSC into corneal epithelial cells, the precise
mechanism remains unclear and deserves further investiga-
tion.

A number of studies have revealed the potential of
umbilical cord mesenchymal stem cells (UC-MSC) and bone

marrow mesenchymal stem cells (BM-MSC) to differentiate
into corneal endothelial cells [191, 192]. However, the char-
acteristics and functions of endothelial cells have not been
precisely studied and need to be further investigated.

5.4. Immune Modulatory and Regenerative Potential of MSC
in T1D. Immune-mediated disorders like type 1 diabetes
(T1D) severely affect quality of life in several millions of
patients all over the world. T1D leads to a shorter life span of
the patient, has various side effects including cardiovascular
and ophthalmic disorders and neuropathy. The disease puts
economic pressure both on the health system and the patient.
Therefore, great effort has been made to develop innovative
therapeutic strategies for cell-based therapy through stem
cell immune modulation, autologous/allogeneic stem cell
transplantation, and smallmoleculemediated beta cell regen-
eration for treatment of T1D.

The use of MSC in cell-based therapy in T1D has been
investigated by a number of scientific groups all over the
world [193–203].

The potential of bone marrow-derived MSC in immun-
omodulation of immune-mediated disease T1D and cell-
based regenerative models has been investigated by Fiorina
et al., 2009 [197]. In this study, murine MSC isolated from
bone marrow (BM) have been characterized with regard to
their potential to modulate immunity in T1D. The results
have revealed that transplantation of stromal cells from
BALB/C mice but not from NOD mice into mice that were
prone to diabetes delayed the onset of diabetes development.
This data suggests that allogenic transplantation of MSC
from a healthy donor leads to a better therapeutic outcome
compared to autologous transplantation in diabeticmice.The
study also showed that mouse-derived mesenchymal stromal
cells isolated from BM have the potential of osteogenic,
adipogenic, and chondrogenic differentiation in vitro [197].

Human mesenchymal stromal cells isolated from BM
and peripheral blood (PB) have been tested in a humanized
mousemodel by Lee et al., 2006 [204]. In this study immune-
deficient mice that have been rendered diabetic by means
of streptozotocin (STZ) were used to study the impact of
human MSC in treatment of diabetes. This study showed



Stem Cells International 9

that infusion of human MSC eliminates glucose levels and
increases insulin levels in peripheral blood. HumanDNAwas
also detected in mice kidney and pancreas which elucidates
homing of human MSC in those tissues persumably for
immunomodulatory/regenerative purposes.

Other studies have also focused on MSC derived from
adipose tissue (AT) [201] and placenta [205]. According to the
study, AT-MSC play a protective role for beta cells in diabetic
animal models [201]. Talwadekar et al. have also compared
immunomodulatory properties of placenta-derived MSC to
those of cord-derived stromal cells [205] suggesting enhanced
immunomodulatory properties for placenta-derived MSC
compared to cells that are isolated from other birth-derived
tissues, for instance, umbilical cord. The regeneration of
insulin-producing beta cells and the use of immunomod-
ulatory effect of stem cells in a variety of autoimmune
and/or immune-mediated diseases like T1D are major goals
in relevant clinical studies nowadays.

Investigations on the mesenchymal stromal cells have
opened a new horizon for diabetes research. Because of
their multipotent capacity, MSC lineages have been used
successfully in animal models to suppress immune reactions
that cause beta cell death and the onset of T1D [206]. Recent
research studies have indicated that beta cells within pancre-
atic isletsmight be repaired through transplantation/infusion
of MSC [194, 195, 207–209]. Other studies also showed that
MSC transplantation in animals or patients with T1D can
reverse the disease [195, 208]. However, most of studies
showed that allogenic transplantation is more efficient in
reversing diabetes rather than autologous transplantation
[197, 198, 204].

6. Conclusion

Stem cells derived from a variety of sources are promising
tools for regenerative cell therapy. Although stem cell therapy
has opened a new horizon in regenerative medicine, there
are still several obstacles that need to be overcome before
this novel treatment tool can be used in large scale in clinics.
However, it is obvious that regenerative stem cell therapy has
been transformed from scientific fiction to a feasible medical
procedure. Regenerative stem cell therapy has created a lot
of hope amongst scientists and physicians for finding more
effective treatment strategies; nevertheless, it is essential for
this new spectrum to develop further through high quality
investigations and an effective contribution of researchers
and physicians to perform advanced clinical trials aiming to
facilitate MSC application for clinical therapy.
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[148] R. Hass, C. Kasper, S. Böhm, and R. Jacobs, “Different popu-
lations and sources of human mesenchymal stem cells (MSC):
a comparison of adult and neonatal tissue-derived MSC,” Cell
Communication and Signaling, vol. 9, article no. 12, 2011.

[149] H. J. Jin, Y. K. Bae, M. Kim et al., “Comparative analysis of
human mesenchymal stem cells from bone marrow, adipose
tissue, and umbilical cord blood as sources of cell therapy,”
International Journal of Molecular Sciences, vol. 14, no. 9, pp.
17986–18001, 2013.

[150] A. Freiman, Y. Shandalov, D. Rozenfeld et al., “Adipose-derived
endothelial and mesenchymal stem cells enhance vascular
network formation on three-dimensional constructs in vitro,”
Stem Cell Research andTherapy, vol. 7, no. 1, article no. 5, 2016.

[151] A. Ardeshirylajimi, M. Mossahebi-Mohammadi, S. Vakilian
et al., “Comparison of osteogenic differentiation potential of
human adult stem cells loaded on bioceramic-coated electro-
spun poly (L-lactide) nanofibres,” Cell Proliferation, vol. 48, no.
1, pp. 47–58, 2015.

[152] E. Y. Kim, K.-B. Lee, and M. K. Kim, “The potential of
mesenchymal stem cells derived from amniotic membrane and
amniotic fluid for neuronal regenerative therapy,” BMBReports,
vol. 47, no. 3, pp. 135–140, 2014.

[153] S. Uchida, Y. Inanaga, M. Kobayashi, S. Hurukawa, M. Araie,
and N. Sakuragawa, “Neurotrophic function of conditioned
medium from human amniotic epithelial cells,” Journal of
Neuroscience Research, vol. 62, no. 4, pp. 585–590, 2000.

[154] S. Shi, P. G. Robey, and S. Gronthos, “Comparison of human
dental pulp and bone marrow stromal stem cells by cDNA
microarray analysis,” Bone, vol. 29, no. 6, pp. 532–539, 2001.

[155] S. Gronthos, M. Mankani, J. Brahim, P. G. Robey, and S. Shi,
“Postnatal human dental pulp stem cells (DPSCs) in vitro and
in vivo,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 97, no. 25, pp. 13625–13630, 2000.

[156] S. Batouli, M.Miura, J. Brahim et al., “Comparison of stem-cell-
mediated osteogenesis and dentinogenesis,” Journal of Dental
Research, vol. 82, no. 12, pp. 976–981, 2003.

[157] W. Zhang, X. F. Walboomers, S. Shi, M. Fan, and J. A. Jansen,
“Multilineage differentiation potential of stem cells derived
from human dental pulp after cryopreservation,” Tissue Engi-
neering, vol. 12, no. 10, pp. 2813–2823, 2006.

[158] W. Sonoyama, Y. Liu, T. Yamaza et al., “Characterization of the
apical papilla and its residing stem cells from human immature
permanent teeth: a pilot study,” Journal of Endodontics, vol. 34,
no. 2, pp. 166–171, 2008.

[159] M. B. Murphy, K. Moncivais, and A. I. Caplan, “Mesenchymal
stem cells: environmentally responsive therapeutics for regener-
ative medicine,” Experimental and Molecular Medicine, vol. 45,
no. 11, article no. e54, 2013.

[160] O. Ringdén, “Immunotherapy by allogeneic stem cell transplan-
tation,” Advances in Cancer Research, vol. 97, pp. 25–60, 2007.

[161] E. B. Friedrich, K. Walenta, J. Scharlau, G. Nickenig, and
N.Werner, “CD34−/CD133+/VEGFR-2+ endothelial progenitor
cell subpopulation with potent vasoregenerative capacities,”
Circulation Research, vol. 98, no. 3, pp. e20–e25, 2006.

[162] G. C. Schatteman, M. Dunnwald, and C. Jiao, “Biology of bone
marrow-derived endothelial cell precursors,” American Journal
of Physiology—Heart and Circulatory Physiology, vol. 292, no. 1,
pp. H1–H18, 2007.

[163] K. Stellos and M. Gawaz, “Platelets and stromal cell-derived
factor-1 in progenitor cell recruitment,” Seminars inThrombosis
and Hemostasis, vol. 33, no. 2, pp. 159–164, 2007.

[164] R. K. Jaiswal, N. Jaiswal, S. P. Bruder, G. Mbalaviele, D. R.
Marshak, and M. F. Pittenger, “Adult human mesenchymal
stem cell differentiation to the osteogenic or adipogenic lineage
is regulated by mitogen-activated protein kinase,” Journal of
Biological Chemistry, vol. 275, no. 13, pp. 9645–9652, 2000.

[165] A. Ventura, A. Memeo, E. Borgo, C. Terzaghi, C. Legnani, and
W. Albisetti, “Repair of osteochondral lesions in the knee by
chondrocyte implantation using the MACI� technique,” Knee
Surgery, Sports Traumatology, Arthroscopy, vol. 20, no. 1, pp. 121–
126, 2012.

[166] H. Tsuruoka, T. Sasho, S. Yamaguchi et al., “Maturation-
dependent spontaneous healing of partial thickness cartilage
defects in infantile rats,” Cell and Tissue Research, vol. 346, no.
2, pp. 263–271, 2011.

[167] M. Mathieu, S. Vigier, M.-N. Labour, C. Jorgensen, E. Belamie,
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