
sensors

Article

VNF Chain Placement for Large Scale IoT of
Intelligent Transportation

Xing Wu 1,2 , Jing Duan 1, Mingyu Zhong 1 , Peng Li 3 and Jianjia Wang 1,2,*
1 School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China;

xingwu@shu.edu.cn (X.W.); duanjing@shu.edu.cn (J.D.); ms_nymph@shu.edu.cn (M.Z.)
2 Shanghai Institute for Advanced Communication and Data Science, Shanghai University,

Shanghai 200444, China
3 School of Computer Science and Engineering, University of Aizu, Fukushima 965-8580, Japan;

pengli@u-aizu.ac.jp
* Correspondence: jianjiawang@shu.edu.cn

Received: 30 May 2020; Accepted: 3 July 2020; Published: 8 July 2020
����������
�������

Abstract: With the advent of the Internet of things (IoT), intelligent transportation has evolved
over time to improve traffic safety and efficiency as well as to reduce congestion and environmental
pollution. However, there are some challenging issues to be addressed so that it can be implemented
to its full potential. The major challenge in intelligent transportation is that vehicles and pedestrians,
as the main types of edge nodes in IoT infrastructure, are on the constant move. Hence, the topology of
the large scale network is changing rapidly over time and the service chain may need reestablishment
frequently. Existing Virtual Network Function (VNF) chain placement methods are mostly good at
static network topology and any evolvement of the network requires global computation, which leads
to the inefficiency in computing and the waste of resources. Mapping the network topology to a
graph, we propose a novel VNF placement method called BVCP (Border VNF Chain Placement) to
address this problem by elaborately dividing the graph into multiple subgraphs and fully exploiting
border hypervisors. Experimental results show that BVCP outperforms the state-of-the-art method in
VNF chain placement, which is highly efficient in large scale IoT of intelligent transportation.

Keywords: virtual network function; placement; border node; subgraph; intelligent transportation

1. Introduction

Network Function Virtualization (NFV), fog computing and Internet of Things (IoT) constitute
key enablers [1] of intelligent transportation ecosystems. Only the symbiotic orchestration among
these enablers would allow the intelligent transportation to be flexible, agile and efficient in
deploying multiple services. NFV facilitates the implementation of network functions as a software
application running on a non-dedicated hardware in the form of Virtual Network Functions (VNFs) [2].
However, the VNF placement [3,4] in the Edge–Fog–Cloud interplay [5] enabled large scale IoT of
intelligent transportation is a challenging problem because edge devices are dynamic and low latency
is required by intelligent transportation applications. To face the challenge, a VNF chain placement
is proposed for large scale IoT of intelligent transportation meeting resource and time constraint
requirements.

Intelligent transportation, playing an important role in smart cities [6], can be defined as the
integration of modern technologies, innovations and management strategies in transportation systems
to provide enhanced services associated with different modes of transport and traffic management [7].
The IoT of intelligent transportation integrates data collection, communication and processing across
transportation systems, allowing for dynamic real-time interaction. Sensors and actuators embedded

Sensors 2020, 20, 3819; doi:10.3390/s20143819 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-5331-022X
https://orcid.org/0000-0003-0065-5747
http://dx.doi.org/10.3390/s20143819
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/20/14/3819?type=check_update&version=3

Sensors 2020, 20, 3819 2 of 18

in vehicles and pedestrians are linked through networks with evolving topology according to their
dynamic movements.

Cloud computing infrastructure is indispensable for intelligent transportation systems that
sense the environment and transmit a large amount of data to the cloud for processing to achieve
service reliability, whereas fog computing extends the cloud computing to the edge of the network to
provide low-latency and location-aware services, which moves the execution of real-time applications
on devices in proximity of the physical systems with wide-spread geographical distributions.
For intelligent transportation, there are various requirements for computing and network resources.
On the one hand, some traffic applications need the aggregated and analyzed data in the shape of
actionable intelligence to enable some devices to take fast actions. On the other hand, some traffic
applications need all data to be stored and analyzed in the cloud but the operating personnel only
want that bit of data traveling across networks to ensure security. According to the different amount
of data generated by edge devices and the different types of network services that are required to be
applied, Service Chains (SCs) must be appropriately deployed in the Edge–Fog–Cloud infrastructures.
There have been SDN-assisted frameworks for Edge-Cloud interplay [8,9] and service chain placements
with bottleneck removal for Edge–Fog–Cloud interplay [10]. Figure 1 demonstrates a holistic view of
proposed Edge–Fog–Cloud interplay framework, which can be implemented as a hierarchical structure
with three layers: Edge layer, fog layer and cloud layer. Edge devices, fog nodes and cloud servers
should follow NVF management. The proposed Edge–Fog–Cloud interplay framework could be
mapped to a graph as demonstrated in Figure 2, which is a flat illustration of the smart transportation
networks requiring VNF chain deployment.

DatacenterCloud

Fog

Edge

Zigbee Bluetooth 4GWiFi LoraWAN

Connectivity Network switch Router Access point

Fog node

Datacenter

Fog nodes

Vehicles and sensors

Cloud servers

Fog node

Figure 1. Holistic view of Edge–Fog–Cloud interplay framework for intelligent transportation.

Sensors 2020, 20, 3819 3 of 18

Cloud Cloud

Cloud

Cloud

Fog Node

Fog Node

In-vehicle
sensors

Sensors-to-Fog-to-Sensors
via Getway VM

Onboard devices
connect via AP

Fog Node Cameras

Sensors: speed,
volume, weather etc.

Fog Node

Subgraph
shifting

Figure 2. The intelligent transportation networks requiring VNF chain deployment.

The service chain placement in intelligent transportation has its unique requirements because
many edge devices in transportation are characterized as distributed in locations and dynamic in
mobility, such as vehicles, cyclists, pedestrians, as well as sensors and actuators attached to them.
Accordingly, there is a high demand for low-latency and context-aware network services in a flexible
and efficient manner. NFV has been emerging as a networking technology to provide flexibility and
agility in the deployment of network services, which is agile and flexible in the face of dramatically
changing requirements for various services. However, placing VNF chains in Edge–Fog–Cloud
interplay is a challenge aiming at reducing time-to-response, end-to-end latency and unnecessary traffic
of the backbone network. To meet the challenge, we propose a novel VNF placement algorithm called
BVCP (Border VNF Chain Placement) for the Edge–Fog–Cloud interplay in intelligent transportation,
which is ideal for dynamic service chain deployments to ensure communications and data processing
between vehicles, access points, and traffic lights efficiently. After mapping the dynamic network
topology to a graph, the proposed BVCP can divide the graph into multiple subgraphs, so that local
network topology changes will not affect the whole topology. In terms of VNF chain placement,
BVCP makes full use of border hypervisors in order to complete the VNF placement task efficiently in
large scale IoT of intelligent transportation.

1. An Edge–Fog–Cloud interplay paradigm is proposed for the evolving topology of networks in
intelligent transportation and it is mapped to a graph.

2. A novel VNF chain placement algorithm called BVCP is designed, which fully utilizes the salient
features of subgraphs and border hypervisors to enable flexible deployments of service chains on
dynamically evolving IoT networks.

3. The proposed BVCP completes in O(|V |) time, which exactly fits in large scale IoT of intelligent
transportation to empower quick intelligent transportation applications and services.

2. Related Works

From the perspective of Internet of Things, the intelligent transportation system should be capable
of collecting a large amount of data with IoT infrastructure and producing real-time useful information
to travelers to guide them to destinations in the most efficient way possible. IoT can be used with the
existing intelligent transportation infrastructure for the design of an efficient public transportation

Sensors 2020, 20, 3819 4 of 18

system to facilitate the relief of traffic congestion [11]. Sensor technology, an indispensable part of
IoT, can be integrated with the transportation infrastructure to collect related data, in which safety,
traffic control, and infotainment applications can benefit from multiple sensors deployed for different
transportation services [12]. Because of the growing volume of connected sensors and IoT devices
in intelligent transportation systems, there is an emergent need for flexible communication and
computing resources allocation to remove the bottlenecks in terms of data transmission overhead
and data processing latency. Fog computing [5] enables an efficient solution to the problem of
transmission overhead and processing latency in IoT, which depends on devices on the edge of the
network that have more processing power than the end devices, and are nearer to these devices
than the more powerful cloud resources. In the dynamic Internet of Vehicles (IoV) environment, a
cloud and fog architecture [13] for real-time intelligent transportation big data analytics was proposed,
which merges three dimensions including intelligent computing dimension, real-time big data analytics
dimension, and IoV dimension. Another context-aware fog computing framework [14] for intelligent
transportation was presented, which consists of multiple intelligent tiers: Internet of Things tier,
fog service tier, and global cloud service tier supporting edge analytics for ITS services in a connected
car environment. For smart traffic control, the traffic data could be processed right at the edge devices
rather than at a centralized facility [15]. However, there are few effective Edge–Fog–Cloud interplay
paradigms for the evolving networks in intelligent transportation.

IoT and network softwarization are becoming core enabling technologies of information systems
and network management for intelligent transportation. Software-Defined Networking and Network
Function Virtualization are expected to support different types of services, including intelligent
transportation. Soua et al. discussed the features of multi-access edge computing for vehicular
networks and the need of SDN and NFV, to fulfill the requirements in terms of reliability, responsiveness
and resiliency [16]. Malandrino et al. built and emulated a vehicular collision detection system,
using the Mininet and Docker tools to verify the compatibility of strict delay requirements with SDN
and NFV [17]. Copeland et al. proposed an automotive virtual edge communicator with vehicular
inter-agent service orchestration and resourcing, which allowed emergency and essential services
to pool together resources for vehicles and to provide temporary access nodes and virtualization
capacity [18]. Nobre et al. investigated a fog-enabled vehicular SDN focusing on the systems,
networking, and services, and they evaluated these design principles for fast traffic accident rescue in
emergency vehicles use cases [19]. Based on a distributed Multi-Access Edge Computing architecture,
a dynamic placement of the VNFs was provided to manage network traffic, which integrated
heterogeneous radio technologies with the vehicular sector to create isolated network slices without
risking the core network scalability [20].

Intelligent transportation services are usually composed of various VNFs (e.g., firewall,
WAN optimizer, network translation service) based on application demands. The ordered sequence of
VNFs forms a service function chain also known as VNF chain. There have been several researches
concerning VNF chain placement. In NFV-based Vehicle-to-everything (V2X) networks, a clustered
VNF chaining scheme is proposed, which deployed VNFs in clusters according to the cluster head
of each vehicle clusters with the expression of the average service time [21]. Chen et al. proved that
the problem of NFV chain placement in edge computing environments is NP-complete, and they
proposed a metric that can better measure the balance condition of the physical resources [22]. Sun et al.
proved NFV service chain deployment is NP-hard with an integer linear programming model to
minimize the total service chain deployment cost, and they proposed a time-efficient heuristic based
on affiliation-aware VNF placement [23]. Zou et al. proposed a mathematical model to virtualize
resource mapping [24]. A deployment algorithm was proposed for NFV chains that optimized
performance by minimizing the actual cost of virtual switching [25]. Xu et al. formulated the overall
cost of network service chain placement as the combination of setup cost and operation cost and the
service chain placement was further formulated as an integer linear programming model with the
objective of minimizing the overall cost of setup and operation. Accordingly, they proposed a delay

Sensors 2020, 20, 3819 5 of 18

aware dynamic programming based network service chain placement scheme for large networks [26].
However, effective placement of VNF chains is a complex, yet the important challenge to overcome in
intelligent transportation in which vehicles and pedestrians, as the main types of edge nodes in IoT
infrastructure, are on the constant move.

Enlightened by the network topology extraction and decomposition with graph theory [27,28],
an Edge–Fog–Cloud interplay paradigm is proposed for the evolving topology of networks in
intelligent transportation and it is mapped to a graph. Furthermore, we present a VNF chain placement
algorithm called BVCP to empower flexible deployments of service chains on dynamically evolving
IoT networks of intelligent transportation.

3. BVCP Method

3.1. Problem Formulation

Fog computing has emerged as a promising infrastructure to support intelligent transportation
applications. As illustrated in Figure 1, three types of layers, namely edge layer, fog layer and cloud
layer are in the considered holistic view of Edge–Fog–Cloud interplay framework. NVF management
are to carefully orchestrate function placement on Edge devices, fog nodes and cloud servers.

Edge layer is composed of vehicles, cyclists, pedestrians, as well as sensors and actuators attached
to them, etc., which are dispersed widely but in the nearest proximity to the physical world. Fog layer
is located between the Edge layer and the Cloud layer to play the same or part of the roles of cloud
computing. Data collection and sharing from the Edge layer to the Fog layer could be short-range
and long-range communication technologies such as low power Wi-Fi, LoWPAN, RFID, NFC, Sigfox,
LoraWAN, etc. Each fog node is an autonomous system managing a given set of computational
resources. Cloud layer consists of high-geared servers and data centers that are responsible for
complicated data analytics and long term data storage. Three layers are integrated together for the
proposed Edge–Fog–Cloud interplay to support various intelligent transportation applications. For the
pedestrians, vehicles and other entities in the flat illustration of the smart transportation networks
requiring VNF chain deployment (Figure 2), they can be abstracted into nodes in the graph as shown in
Figure 3. Nodes of different colors represent their position in the Cloud-Fog-Edge hierarchy, yellow for
edge devices, blue for fog nodes, and pink stands for cloud servers.

At any point, for a intelligent transportation system to adjust the traffic flow dynamically,
online service chain placement is needed. A service chain is composed of a series of VNFs (e.g., firewall,
encryption, decryption). Thus, we propose the BVCP to address the VNF chain placement problem.

The major challenge here is that in smart transportation networks, vehicles, as a main type of
edge nodes, are on the constant move. Hence, the topology of the network is changing rapidly over
time and the service chain may need reestablishment frequently. Notice how the vehicle moves from
subgraph G3 to subgraph G5 in Figure 2 (marked with “subgraph shifting”). Existing methods mostly
deal with static graphs, and any changes of the graph typically requires extensive resources.

Formally, we define the following notations. G = 〈V , E〉 is a graph which V is the hypervisor set
and E is the edge set. (u, v) is a pair of entry-exit points. PR = {V NFi} is an online VNF placement
requests. the latency constrain and the computational constrain (CPU, RAM, etc.) are defined as t
and C = {Ci}. The objective is to place the VNF chain on hypervisors in V while not violating the
constrains t and C. The objective must be fulfilled with low latency considering the time sensitive
nature of intelligent transportation, given the fact that the local topology of the network is changing
frequently.

The proposed BVCP addresses this problem by dividing the graph into multiple subgraphs so
that local topology changes can be handled easily. In terms of placement, the BVCP method fully
exploits the border hypervisors in order to complete the VNF chain placement task efficiently.

Sensors 2020, 20, 3819 6 of 18

1 2B

1

11

2

3

B

2

2

B

1
4

2

3

1 2

2

2

B

2

3

B

B
B

B

Figure 3. An example of the BVCP graph. Cloud nodes are marked in pink, fog nodes are marked in
blue and edge nodes are marked in yellow.

3.2. Data Structures

In this subsection, BVCP graph, border hypervisor and BVCP tree are defined in detail, which has
the following advantages:

• The BVCP graph is compatible with local topology changes.
• The BVCP tree is able handle local topology changes efficiently.
• The space complexity of BVCP is only O(|V | log |V | + |E |) where |V | is the vertex number and |E |

is the edge number of the graph.

3.2.1. BVCP Graph

Figure 3 is an example of BVCP graph. All nodes are classified into three categories: Cloud node,
fog node and edge node. In Figure 3, cloud nodes are marked in pink, fog nodes are marked in
blue and edge nodes are marked in yellow. Edge length denotes network latency between vertices.
Vertex, node and hypervisor are used interchangeably during the explanation.

An BVCP graph has local tree-like structures in which the parent node is an upper layer node
and the child node is a lower layer node. Within these local area, there are little edges since trees are
very sparse graphs. Hence, it is efficient to run Dijkstra algorithm. Such pattern is violated by edges
such as (V2, V3). However, logically speaking, tree-like structures would be the main type of structures
following the definition of Edge–Fog–Cloud computing paradigm as demonstrated in Figure 1.

The intelligent transportation network graph G can be divided into a set of subgraphs, i.e.,
G1 = 〈V1, E1〉 , G2 = 〈V2, E2〉 , ..., Gn = 〈Vn, En〉 that satisfied:

• ∪1≤i≤nVi = V ;
• ∀i , j, Vi ∩Vj = ∅;
• ∀u, v ∈ Vi , if (u, v) ∈ E , (u, v) ∈ Ei .

The partition is designed to be compatible with fast-moving edge hypervisors like vehicles and
pedestrians that move from one subgraph to another. It is not required that the subgraph is strictly
a tree as long as each subgraph is sparse. Hence, when a new hypervisor is added into the graph,
the partition does not have to change. The network partition has proved to be a NP-Hard problem.

Sensors 2020, 20, 3819 7 of 18

However, there are a lot of heuristic algorithms aiming to give satisfying result for this problem in
polynomial time, e.g., multilevel graph partitioning [29]. In Figure 3, G is split into four subgraphs
G3, G4, G5, G6. A supergraph is the union of other subgraphs. In Figure 3, G1 is the supergraph of
G3, G4 and G2 is the supergraph of G5, G6.

3.2.2. Border Hypervisor

A border hypervisor is an endpoint of a bridge edge that connects two subgraphs. Given a
subgraph Gi = 〈Vi , Ei〉, a pair of hypervisors u, v, if (u, v) ∈ E , u ∈ Vi , v < Vi , u is a border hypervisor of
Vi . In Figure 3, border hypervisors are marked with capital letter B. Fast-moving edge nodes are not
considered as border hypervisors.

Border hypervisors have salient features for the VNF chain placement. On the one hand, for those
border hypervisors that are not cloud nodes, they represent shortcuts between subgraphs. Intuitively,
it would be efficient to put VNFs on them because such placement avoids going all the way up to the
cloud layer. On the other hand, to leave one subgraph and enter another subgraph, the path must
include one border hypervisor. Hence, it is possible to use dynamic programming to find the shortest
path efficiently. We will discuss how to utilize border hypervisors in detail in Section 3.3.

In this paper, B(G) indicates the border hypervisor set of graph G.

3.2.3. BVCP Tree

To avoid ambiguity, nodes in BVCP tree are always referred as tree nodes, leaf nodes or non-leaf
nodes, hypervisors are referred as vertex or nodes. Figure 4 illustrates the corresponding BVCP tree of
the BVCP graph in Figure 3. A BVCP tree has the following characteristics:

• The tree is balanced.
• Each tree node is a subgraph. The parent of one subgraph is its supergraph.
• Each non-leaf node has most a child tree nodes and each leaf node has most b hypervisor nodes.
• Non-leaf nodes maintain a square shortest distance matrix in which the rows and the columns are

the border hypervisors while leaf node maintain a non-square matrix where the row is border
hypervisors and the column is every hypervisor in that subgraph.

• All leaf tree nodes are at the same level.

In Figure 4, a = 2 and b = 5, the graph G0 is partitioned into two subgraphs G1 and G2.
Furthermore, G1 is partitioned into G3 and G4 while G2 is partitioned into G5 and G6.

 1 8 9 16 17
1 0 2 1 4 2
8 2 0 3 2 4
9 1 3 0 5 1

 2 10 11 18

2 0 2 3 3

18 3 1 2 0

 1 2 8 9 18
1 0 1 2 1 4
2 1 0 3 2 3
8 2 3 0 3 6
9 1 2 3 0 4
18 3 3 6 4 0

 3 5 7
3 0 4 8
5 4 0 8
7 8 8 0

 6 7 14 15
7 2 0 4 5

 3 4 5 12 13
3 0 2 4 4 3
5 4 2 0 4 3

 1 2 8 3 5 7
1 0 1 2 3 3 5
2 1 0 3 2 4 6
8 2 3 0 5 5 3
3 3 2 5 0 4 8
5 3 4 5 4 0 8
7 5 6 3 8 8 0

1 8 9 16 17 2 10 11 18 6 7 14 15 3 4 13125

1 8 9 2 18

1 2 8

7 3 5

3 5 7

Figure 4. An example of BVCP tree.

Sensors 2020, 20, 3819 8 of 18

From the definitions above, it is easy to conclude that “sub- graph shifting” phenomena only
affect leaf nodes. Therefore, when a vehicle moves from one subgraph to another, only the topology of
leaf nodes will change. Hence, it is not necessary to update the entire topology, instead, only the leaf
node has to be updated. As analyzed in Section 3.2.1, it is easy to deal with subgraphs with Dijkstra’s
algorithm, and the time complexity is O(b2logb)which is considered as a small constant. As a result,
The BVCP tree is able to handle local topology changes efficiently.

3.2.4. Space and Time Complexity

The space overhead needed for BVCP graph and tree is discussed in this subsection. The overall
space overhead needed is SP(EFCgraph) + SP(EFCtree)where SP denotes space needed.

For BVCP graph, the space needed is SP(EFCgraph) = O(|V | + |E |).

The number of tree nodes is O(
|V |
b
), and the height of the BVCP tree would be loga

|V |
b + 1.

The a-partition of a graph containing N vertices contains totally O(log2a ·
√

N) borders. Each of

a children share these borders. The average vertex number at level i is
|V |
ai

. Consider a tree node

at level i − 1: It has
|V |
ai−1

vertices and O(log2a ·

√
|V |
ai−1
) borders; for each child at layer i, the border

number would be O(log2a ·

√
|V |
ai
/a) = O(log2a ·

√
|V |
ai+1
) since they share all border vertices. Hence, at a

non-leaf node, the space needed for the distance matrix is its square, that is O(log2
2a ·
|V |
ai+1
). There are

ai tree nodes each layer and loga
|V |
b + 1 layers, so the space overhead needed for non-leaf nodes is

O(log2
2a ·
|V |
a
· loga

|V |
b).

In particular, for leaf node in a BVCP tree, O(log2a ·

√
|V |
ai+1
) = O(log2a ·

√
b
a
). Thus, the distance

matrix space needed for one leaf node is:

O(log2a ·

√
b
a
·b)

For all leaf nodes it would be:

O(log2a ·

√
b
a
·b ·
|V |
b
) = O(log2a ·

√
b
a
·|V |)

For the BVCP tree:

SP(EFCtree) = O(log2
2 a ·

1
a
· loga

|V |
b |V | + log2 a ·

√
b
a
|V |)

whereas log2a,
b
a

and log2
2a ·

1
a

can be ignored since they are considered as small constants.
To conclude, the over space overhead of BVCP is

SP(BVCP)
= SP(EFCgraph) + SP(EFCtree)
= O(|V | log(|V |) + |E |)

(1)

BVCP accepts online requests and efficiently places the VNF chain in the intelligent transportation
network. BVCP first checks whether the latency constraint can be met. If not, BVCP raises an error and
informs the higher code logic. Concretely, BVCP transfers the latency check problem as the shortest
path length finding problem.

Sensors 2020, 20, 3819 9 of 18

For cases of the constraints can be satisfied, BVCP performs a linear search in the border set of
the shortest path between two endpoints. The placement of VNFs on the Edge and Fog layer s would
reduce the workload of the upper layers. It would also shorten the communication latency, which is of
significant importance for transportation-related applications. Hence, BVCP gives low level-layers
higher priority.

Algorithm 1 shows the pseudo-code of the BVCP algorithm. We will show that the time complexity
of the BVCP algorithm is O(|V |). The relationship of these algorithms and their input and output are
shown in Figure 5.

Figure 5. The flowchart of the BVCP algorithm.

Algorithm 1: BVCP algorithm
Input :entry-exit point u, v, placement request PR, time constrain t, computational constrain

C

borderSet = border set identification(u, v);
if Latency check(u, v, t, borderSet) = True then

VNF chain placement(borderSet, PR, C);
end
else

impossible to place, report
end

3.2.5. Border Set Identification

To identify b1, b2, . . . , bm, dynamic programming is used. Let SD(x, G, y) be the shortest path
distance from a node x, to a hypervisor y of graph G. Since lea f (u) = SB(b1), f or b ∈ B(SB(b1))

we have:

SD(u, SB(b1), b) = Dist(u, b) (2)

where Dist(u, b) can be directly obtained from the distance matrix in the leaf node.
Now we move forward, for b̂ ∈ B(SB(bi+1)):

SD(u, SB(bi+1), b̂) = min(SD(u, SB(bi), b) + Dist(b, b̂))
f or b ∈ B(SB(bi))

(3)

where Dist(b, b̂) can be directly obtained from the distance matrix in the non-leaf node and
SD(u, SB(bi), b) is already computed in the last step.

After SD is computed, we can easily go backward from v to trace back b1, b2, . . . , bm. Figure 6
illustrates a simple border identification example. The black lines indicate the SD computation
described above, and the red arrows show how to identify b1, b2, . . . , bm starting from v.

Algorithm 2 shows the pseudo-code of border set identification.

Sensors 2020, 20, 3819 10 of 18

Algorithm 2: Border set identification
Input : entry-exit point u, v
Output : b1, b2, . . . , bm
1. Find SGList = SG(b1), SG(b2), ..., SG(bm);
begin

pointer1 = lea f (u);
pointer2 = lea f (v);
SGList = Φ;
while pointer1 != pointer2 do

add pointer1 and pointer2 into SGList;
pointer1 = pointer1.parent;
pointer2 = pointer2.parent;

end
LCA(u, v) = pointer1;

end

2. compute SD
begin

for b ∈ B(SB(b1)) do
SD(u, SB(b1), b) = Dist(u, b)

end
for b̂ ∈ B(SB(bi+1)) do

tmp = Φ;
for b ∈ B(SB(bi)) do

tmp.add(SD(u, SB(bi), b) + Dist(b, b̂))
end
SD(u, SB(bi+1), b̂) = min(tmp)

end
end

3. Identify b1, b2, · · · , bm by back-tracing
return b1, b2, · · · , bm

Figure 6. An example of border identification.

Sensors 2020, 20, 3819 11 of 18

3.2.6. Latency Check

The latency check problem can be modeled as the shortest path finding problem. Let function
LC(u, v, t) be the latency check function which returns a Boolean value, L(u, v) be the shortest path
function that returns the network latency, we have:

LC(u, v, t) =

{
True i f L(u, v) ≤ t
False i f L(u, v) > t

(4)

To implement L(u, v) efficiently, the algorithm utilizes the border hypervisors. It is clear that for
(u, v) in different leaf nodes of a BVCP tree, the shortest path must at least contain two border nodes,
one from the subgraph of u and another from the subgraph of v.

Formally, if v ∈ G1, u ∈ G2, ∃b1, bm such that b1 ∈ G1, bm ∈ G2, b1 ∈ SP(u, v), bm ∈ SP(u, v)where
SP(u, v) is the shortest path between (u, v).

Hence, SP(u, v) can be decomposed into three parts:

• u→ b1: From u to the border of G1.
• b1 → b2 → · · · → bm: From the border of G1 to the border of G2 through multiple intermediate

subgraphs. b1, b2, . . . , bm is called the border set of the shortest path.
• bm → v: From the border of G2 to v.

Formally, let lea f (u) be the leaf node that contains hypervisor u, the shortest path SP(u, v) between
u and v must jump through a list of BVCP tree nodes, SG(b1) = lea f (u), SG(b2), ..., SG(bm) = lea f (v).

Figure 7 is an illustration of the shortest path finding in the BVCP algorithm.

…

Border Node Target NodeSource Node

…

…

…

…

…

Figure 7. An illustration of the shortest path finding in the BVCP algorithm.

Sensors 2020, 20, 3819 12 of 18

3.3. Algorithm Procedure

Algorithm 3 shows the pseudo-code of latency check. Dist(x, y) is a matrix lookup function,
it returns the shortest path distance between node x and y, given the condition that x and y is in the
same subgraph(i.e. BVCP tree node) and can be found in the corresponding distance matrix.

b1, b2, . . . , bm are previously identified by the border set identification function BSI and passed
to latency check as a parameter. The border set identification function BSI is discussed in the next
subsection. BSI returns the border set of the shortest path between two nodes.

Algorithm 3: Latency check
Input : entry-exit point u, v, time constrain t, boaderSet = b1, b2, · · · , bm
Output : latency check result (True / False)

1 begin
2 L = Dist(u, b1);
3 for bi , bi+1 in boaderSet do
4 L = L + Dist(bi , bi+1);
5 end
6 L = L + Dist(bm, v) ;
7 if L ≤ t then return True ;
8 else return False ;
9 end

3.3.1. VNF Chain Placement

Notice that the BVCP algorithms searches border hypervisors on the shortest path, b1, b2, . . . , bm
is exactly the targets on which the computational constrain C is checked. Any border hypervisor that
satisfies the constrain (denote as S(b, Ci) = True) can be selected to place the VNF.

Algorithm 4 shows the pseudo-code of the VNF chain placement of BVCP.

3.3.2. Time Complexity

BVCP is an efficient VNF chain placement method and its time complexity is:

T(BVCP) =
T(algorithm2) +T(algorithm3) +T(algorithm4)

(5)

where T is the time complexity. The time complexity of Algorithms 2–4 are discussed as follows:

Algorithm 2

Since all the leaf nodes are at the same level, LCA(u, v) and SG(b1), SG(b2), ..., SG(bm) can be found
by alternately relocate two pointers initialized with u and v to its parent tree node until they point to
the same node. This is linear to the height of the tree, hence is O(loga

|V |
b).

The average border number of a tree node at level i isO(log2a ·
√
|V |

ai+1). To locate a border

hypervisor, the time complexity is square to it hence is O(log2
2a · |V |

ai+1). The worst case is that the
path goes through the root tree node and two tree nodes are checked each layer. Thus, the time
complexity of Algorithm 2 is:

T(algorithm2)
=
∑

i O(log2
2a · |V |

ai+1) + O(loga
|V |
b)

= O(|V |)
(6)

Sensors 2020, 20, 3819 13 of 18

Algorithm 4: VNF chain placement
Input : B = b1, b2, · · · , bm, VNF Chain PR = {NVFi}, computational constrain C = {Ci}

1. Find Non-Cloud nodes in B
begin

nonCloudNodes = B.removeAllCloudNodes();
CloudNondes = B.cloudNodes();

end

2. Place on the edge or the fog if possible
begin

for bi in nonCloudNodes do
if ∃S(bi , Ci) then

Place(V NFi , bi);
C.remove(Ci);
PR.remove(V NFi);

end
end

end

3. Place the else on the cloud
begin

if PR! = Φ then
for V NFi in PR do

Place(V NFi , CloudNondes);
end

end
end

Algorithm 3

There is only one for-loop in Algorithm 3 and the time complexity of it is linear to the size of the
border set which is |V | in the worst case.

Thus, the time complexity of Algorithm 3 is:

T(algorithm3) = O(|V |) (7)

Algorithm 4

The time complexity of scanning the border set is linear to the size of the border set which in the
worst case is |V |.

Hence, the time complexity of Algorithm 4 is:

T(algorithm4) = O(|V |) (8)

Since latency check, boader set identification and VNF placement are executed only once in BVCP,
the time complexity of BVCP is:

T(BVCP)
= T(algorithm2) +T(algorithm3) +T(algorithm4)
= O(|V |) + O(|V |) + O(|V |)
= O(|V |)

(9)

Sensors 2020, 20, 3819 14 of 18

4. Experiment Results

The proposed BVCP method is evaluated in a proof-of-concept emulated system. Each hypervisor
is implemented as a docker container [30]. Docker is an open source, OS level virtualization tool
designed to make application deployment easier. It allows us to implement virtual hypervisors
conveniently.

A wide set of randomly generated networks are used to apply the algorithm. Interconnection
between hypervisors are created by open-source complex network manipulation package
NetworkX [31]. The generated networks are composed by a range of 100 to 5000 hypervisors, and each
hypervisor has a degree ranged from 2 to 5. Placement requests of different VNF chain length range
from 2 to 5 are generated randomly, endpoint edge hypervisors are also randomly select. Time constrain
is set to 15 ms to 100 ms, CPU and memory constrains are set to 0.25 to 1 CPU core and 16 MB to
256 MB per VNF respectively.

The experiment is conducted on an Ubuntu 18.04 Linux machine equipped with 2 x Intel Xeon
E5-2620v4 (16 cores), 128 GB RAM.

The performance evaluation in the experiment consists of two parts:

• the average placement time
• the average topology update time once an edge hypervisor changed from one subgraph to another

subgraph

Figure 8 shows the average placement time of the proposed BVCP algorithm and the baseline
algorithm DNF [10] for different number of nodes in the network. It can be observed from the
illustration that the performance of the proposed algorithm has a significant advantage comparing to
the baseline algorithms for large networks. This result agrees with the theoretical analysis above that
the proposed BVCP algorithm is scalable for large networks. With the growth of nodes in the network,
the average placement time of the proposed BVCP algorithm grows linearly. Such property will make
great difference in real-world applications.

Figure 8. The result of average placement time.

Figure 9 shows the average topology update time of the proposed BVCP algorithm and the
baseline algorithm for different number of nodes in the network. It can be seen that with the scale
of the network grows, the update time of the proposed BVCP algorithm remains a small constant.
However, for the baseline algorithm, it grows exponentially. Considering that subgraph shifting
is common in the smart transportation networks, the results justify the design of BVCP graph and
BVCP tree.

Sensors 2020, 20, 3819 15 of 18

Figure 9. The result of average topology update time.

After the performance evaluation part, a comparative experiment was conducted to estimate the
impact of different factors on VNF chain placement. In order to focus on the practical significance of
VNF chain replacement, the effects of two factors, subgraph size and network connectivity, on VNF
chain replacement are evaluated.

In practical applications, by obtaining the optimal partition size of the subgraph, network
infrastructure administrator can get the optimal division of the cloud-fog layer structure of the VNF,
thereby optimizing the structure of the network. Hence the VNF chain replacement may consumes less
time. Figure 10 shows the average placement time when using different subgraph size. It can be seen
that although the size of the minimal subgraph has an effect on the time of VNF chain replacement,
it is not a decisive factor. For different number of nodes, the minimal subgraph size that minimizes the
replacement time is not constant.

Figure 10. The result of average placement time with different subgraph size.

To test the impact of network connectivity on the VNF chain replacement for BVCP method,
we used a k-regular graph as the randomly generated network graph. Keeping the number of nodes
constant, by changing the value of k, the performance data of the algorithm under different connectivity
can be obtained. When the value of k is larger, the more edges of the nodes are connected, the stronger
the connectivity of the network. Figure 11 shows the average placement time with different k value

Sensors 2020, 20, 3819 16 of 18

when minimal subgraph size is 4. It can be seen that BVCP has better performance when the value
of k is small. Considering practical applications, most VNF networks are small-world network,
and each node is only connected to a few nodes in the network. Therefore, in practical applications,
the performance of BVCP will be more prominent.

Figure 11. The result of the average placement time with different k value.

5. Conclusions

The ramifications of the Internet of Things have reshaped the intelligent transportation by
revolutionizing the way edge devices interact with transportation services. Fog computing has been
proven to be an effective solution for large scale transportation networks. Thus, an Edge–Fog–Cloud
interplay paradigm is proposed for the evolving topology of IoT networks in intelligent transportation
and it is mapped to a graph. The graph computing has demonstrated its capabilities in managing
large-scale network topologies. Inspired by the good property of graph theory, a novel VNF chain
placement algorithm called BVCP is designed, utilizing the salient features of subgraphs and border
hypervisors to enable flexible deployments of service chains on dynamically evolving IoT networks.
According to the experimental results, BVCP outperforms the state-of-the-art VNF chain placement
algorithm. It is believed that BVCP fits exactly in large scale IoT of intelligent transportations to
empower quick intelligent transportation applications and services.

Author Contributions: X.W.: Conceptualization, Methodology, Writing; J.D.: Software, Writing—Original Draft,
Editing; M.Z.: Software, Writing-Original Draft, Validation; P.L.: Review, Supervision; J.W.: Writing—Review,
Supervision; All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China under Grant 2019YFE0190500
and by the State Key Program of National Nature Science Foundation of China (Grant No. 61936001).

Acknowledgments: We appreciate the High Performance Computing Center of Shanghai University,
and Shanghai Engineering Research Center of Intelligent Computing System (No. 19DZ2252600) for providing
the computing resources.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Li, J.; Jin, J.; Yuan, D.; Zhang, H. Virtual fog: A virtualization enabled fog computing framework for Internet
of Things. IEEE Internet Things J. 2017, 5, 121–131. [CrossRef]

2. Network Functions Virtualization (NFV): Introductory White Paper, Virtualization Requirements. 2014.
Available online: https://portal.etsi.org/NFV/NFV_White_Paper.pdf (accessed on 8 July 2020).

http://dx.doi.org/10.1109/JIOT.2017.2774286
https://portal.etsi.org/NFV/NFV_White_Paper.pdf

Sensors 2020, 20, 3819 17 of 18

3. Ye, Q.; Zhuang, W.; Li, X.; Rao, J. End-to-end delay modeling for embedded VNF chains in 5G core networks.
IEEE Internet Things J. 2018, 6, 692–704. [CrossRef]

4. Xing, H.; Zhou, X.; Wang, X.; Luo, S.; Dai, P.; Li, K.; Yang, H. An integer encoding grey wolf optimizer for
virtual network function placement. Appl. Soft Comput. 2019, 76, 575–594. [CrossRef]

5. Pan, J.; Mcelhannon, J. Future edge cloud and edge computing for internet of things applications.
IEEE Internet Things J. 2017, 5, 439–449. [CrossRef]

6. Li, P.; Wu, X.; Shen, W.; Tong, W.; Guo, S. Collaboration of Heterogeneous Unmanned Vehicles for Smart
Cities. IEEE Netw. 2019, 33, 133–137. [CrossRef]

7. Lohachab, A. Bootstrapping Urban Planning: Addressing Big Data Issues in Smart Cities. In Security, Privacy,
and Forensics Issues in Big Data; IGI Global: Hershey, PA, USA, 2020; pp. 217–246.

8. Aujla, G.S.; Chaudhary, R.; Kaur, K. SAFE: SDN-Assisted Framework for Edge-Cloud Interplay in Secure
Healthcare Ecosystem. IEEE Trans. Ind. Inf. 2018, 15, 469–480. [CrossRef]

9. Kaur, K.; Garg, S.; Aujla, G.S. Edge computing in the industrial internet of things environment:
Software-defined-networks-based edge-cloud interplay. IEEE Commun. Mag. 2018, 56, 44–51. [CrossRef]

10. Hirwe, A.; Aich, M.; Kataoka, K. Dynamic Network Function (DNF): Service Chain Placement and Bottleneck
Removal for Edge–Fog–Cloud Interplay. In Proceedings of the Asian Internet Engineering Conference,
Bangkok, Thailand, 12–14 November 2018; pp. 46–53.

11. Patel, P.; Narmawala, Z.; Thakkar, A. A Survey on Intelligent Transportation System Using. In Emerging
Research in Computing, Information, Communication and Applications; Springer: Nitte Meenakshi IT, India, 2019;
pp. 231–240.

12. Guerrero-Ibáñez, J.; Zeadally, S.; Contreras-Castillo, J. Sensor technologies for intelligent transportation
systems. Sensors 2018, 18, 1212. [CrossRef] [PubMed]

13. Darwish, T.S.J.; Bakar, K.A. Fog based intelligent transportation big data analytics in the internet of vehicles
environment: motivations, architecture, challenges, and critical issues. IEEE Access 2018, 6, 15679–15701.
[CrossRef]

14. Minh, Q.T.; Kamioka, E.; Yamada, S. CFC-ITS: Context-Aware Fog Computing for Intelligent Transportation
Systems. IT Prof. 2018, 20, 35–45. [CrossRef]

15. Tang, C.; Xia, S.; Zhu, C. Phase Timing Optimization for Smart Traffic Control Based on Fog Computing.
IEEE Access 2019, 7, 84217–84228. [CrossRef]

16. Soua, R.; Turcanu, I.; Adamsky, F. Multi-Access Edge Computing for Vehicular Networks: A Position Paper.
In Proceedings of the IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, UAE, 9–13 December 2018;
pp. 1–6.

17. Malandrino, F.; Chiasserini, C.F.; Casetti, C. Virtualization-based Evaluation of Backhaul Performance in
Vehicular Applications. Comput. Netw. 2018, 134, 93–104. [CrossRef]

18. Copeland, R.; Copeland, M.; Ahvar, S. Automotive virtual edge communicator (AVEC) with vehicular
inter-agent service orchestration and resourcing (ViSOR). Ann. Telecommun. 2019, 74, 1–8. [CrossRef]

19. Nobre, J.C.; de Souza, A.M.; Rosario, D.; Both, C.; Villas, L.A.; Cerqueira, E.; Braun, T.; Gerla, M. Vehicular
software-defined networking and fog computing: Integration and design principles. Ad Hoc Netw. 2019,
82, 172–182. [CrossRef]

20. Sanchez-Iborra, R.; Santa, J.; Gallego-Madrid, J. Empowering the Internet of Vehicles with Multi-RAT 5G
Network Slicing. Sensors 2019, 19, 3107. [CrossRef] [PubMed]

21. Han, Y.; Tao, X.; Zhang, X. Average Service Time Analysis of a Clustered VNF Chaining Scheme in NFV-Based
V2X Networks. IEEE Access 2018, 6, 73232–73244. [CrossRef]

22. Chen, Z.; Zhang, S.; Wang, C. A Novel Algorithm for NFV Chain Placement in Edge Computing
Environments. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Abu Dhabi,
UAE, 9–13 December 2018; pp. 1–6.

23. Sun, Q.; Lu, P.; Lu, W. Forecast-assisted NFV service chain deployment based on affiliation-aware vNF
placement. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Washington, DC,
USA , 4–8 December 2016; pp. 1–6.

24. Zou, S.; Tang, Y.; Ni, W.; Liu, R.P.; Wang, L. Resource multi-objective mapping algorithm based on virtualized
network functions: RMMA. Appl. Soft Comput. 2018, 66, 220–231. [CrossRef]

http://dx.doi.org/10.1109/JIOT.2018.2853708
http://dx.doi.org/10.1016/j.asoc.2018.12.037
http://dx.doi.org/10.1109/JIOT.2017.2767608
http://dx.doi.org/10.1109/MNET.2019.1800544
http://dx.doi.org/10.1109/TII.2018.2866917
http://dx.doi.org/10.1109/MCOM.2018.1700622
http://dx.doi.org/10.3390/s18041212
http://www.ncbi.nlm.nih.gov/pubmed/29659524
http://dx.doi.org/10.1109/ACCESS.2018.2815989
http://dx.doi.org/10.1109/MITP.2018.2876978
http://dx.doi.org/10.1109/ACCESS.2019.2925134
http://dx.doi.org/10.1016/j.comnet.2018.01.018
http://dx.doi.org/10.1007/s12243-019-00719-5
http://dx.doi.org/10.1016/j.adhoc.2018.07.016
http://dx.doi.org/10.3390/s19143107
http://www.ncbi.nlm.nih.gov/pubmed/31337087
http://dx.doi.org/10.1109/ACCESS.2018.2882248
http://dx.doi.org/10.1016/j.asoc.2018.01.028

Sensors 2020, 20, 3819 18 of 18

25. Luizelli, M.C.; Raz, D.; Sa’ar, Y. Optimizing NFV chain deployment through minimizing the cost of virtual
switching. In Proceedings of the IEEE Conference on Computer Communications (IEEE INFOCOM 2018),
Honolulu, HI, USA, 15–19 April 2018; pp. 2150–2158.

26. Xu, Y.; Kafle, V.P. A Mathematical Model and Dynamic Programming Based Scheme for Service Function
Chain Placement in NFV. IEICE Trans. Inf. Syst. 2019, 102, 942–951. [CrossRef]

27. Ustun, T.S.; Ayyubi, S. Automated Network Topology Extraction Based on Graph Theory for Distributed
Microgrid Protection in Dynamic Power Systems. Electronics 2019, 8, 655. [CrossRef]

28. Zhong, R.; Li, G.; Tan, K.L. G-tree: An efficient and scalable index for spatial search on road networks.
IEEE Trans. Knowl. Data Eng. 2015, 27, 2175–2189. [CrossRef]

29. Karypis, G.; Kumar, V. A parallel algorithm for multilevel graph partitioning and sparse matrix ordering.
J. Parallel Distrib. Comput. 1998, 48, 71–95. [CrossRef]

30. Merkel, D. Docker: Lightweight Linux containers for consistent development and deployment. Linux J.
2014, 2, 239.

31. AHagberg, A.A.; Schult, D.A.; Swart, P.J. Exploring network structure, dynamics, and function using
NetworkX. In Proceedings of the 7th Python in Science Conference (SciPy2008), Pasadena, CA, USA,
19–24 August 2008; pp. 11–15.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1587/transinf.2018NTP0015
http://dx.doi.org/10.3390/electronics8060655
http://dx.doi.org/10.1109/TKDE.2015.2399306
http://dx.doi.org/10.1006/jpdc.1997.1403
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	BVCP Method
	Problem Formulation
	Data Structures
	BVCP Graph
	Border Hypervisor
	BVCP Tree
	Space and Time Complexity
	Border Set Identification
	Latency Check

	Algorithm Procedure
	VNF Chain Placement
	Time Complexity

	Experiment Results
	Conclusions
	References

