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In vivo fluid transport in human intervertebral discs varies
by spinal level and disc region
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Abstract

Background: The lumbar discs are large, dense tissues that are primarily avascular,

and cells residing in the central region of the disc are up to 6–8 mm from the nearest

blood vessel in adults. To maintain homeostasis, disc cells rely on nutrient transport

between the discs and adjacent vertebrae. Thus, diminished transport has been

proposed as a factor in age-related disc degeneration.

Methods: In this study, we used magnetic resonance imaging (MRI) to quantify

diurnal changes in T2 relaxation time, an MRI biomarker related to disc hydration, to

generate 3D models of disc fluid distribution and determine how diurnal changes in

fluid varied by spinal level. We recruited 10 participants (five males/five females; age:

21–30 years; BMI: 19.1–29.0 kg/m2) and evaluated the T2 relaxation time of each

disc at 8:00 AM and 7:00 PM, as well as degeneration grade (Pfirrmann). We also

measured disc height, volume, and perimeter in a subset of individuals as a prelimi-

nary comparison of geometry and transport properties.

Results: We found that the baseline (AM) T2 relaxation time and the diurnal change

in T2 relaxation time were greatest in the cranial lumbar discs, decreasing along the

lumbar spine from cranial to caudal. In cranial discs, T2 relaxation times decreased

in each disc region (nucleus pulposus [NP], inner annulus fibrosus [IAF], and outer

annulus fibrosus [OAF]), whereas in caudal discs, T2 relaxation times decreased in

the NP but increased in the AF.

Conclusions: Fluid transport varied by spinal level, where transport was greatest in

the most cranial lumbar discs and decreased from cranial to caudal along the lumbar

spine. Future work should evaluate what level-dependent factors affect transport.
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1 | INTRODUCTION

The lumbar discs are large, dense tissues that are primarily avascular,

and cells residing in the central region of the disc are up to 6–8 mm

from the nearest blood vessel in adults.1 To maintain homeostasis,

disc cells rely on nutrient exchange between the discs and adjacent

vertebrae.2–4 In this process, nutrients, such as glucose and oxygen,

are transported into the vertebrae from the vascular supply and then
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into the disc through two mechanisms: the diffusion of nutrients from

the vertebral vascular supply that terminates at the vertebral endplate5–7

and load-induced fluid convection and consequently nutrient influx.3,8,9

Because of the important role glucose, oxygen, and lactic acid play in disc

cell metabolism,10–12 diminished transport of these nutrients is often

proposed as a factor in age-related disc degeneration.13

Many age-related spine pathologies develop in consistent patterns

that depend on spinal level. For example, disc degeneration, nucleus

pulposus (NP) herniations, annulus fibrosus (AF) tears, Modic lesions,

disc high-intensity zones, and facet arthritis are all more prevalent in the

most caudal lumbar discs.14–19 Several mechanisms have been proposed

to explain differences between upper and lower lumbar pathologies

(e.g., spinopelvic alignment,20 mechanical demands,21–23 impaired

development,24 sex,14 and trauma25). Level-dependent fluid and nutrient

transport into the intervertebral disc may also drive level-dependent

patterns in age-related disc disease.

T2 relaxation times measured using magnetic resonance imaging

(MRI) are related to the concentration of water in the NP and AF.26–28

Previous work has demonstrated that the T2 relaxation time of the

NP is greatest in the cranial lumbar discs,29,30 suggesting that these

discs are more hydrated and may have different fluid transport prop-

erties than the caudal discs. Natural diurnal loading is one way to

induce fluid transport; diurnal changes in disc T2 relaxation times may

indicate that fluid is transported from the NP from AM to PM.31,32

The goal of this study was to quantify changes in T2 relaxation time

in 3D using volumetric MRI data to determine disc fluid transport

patterns in response to diurnal activity.

We quantified diurnal changes in T2 relaxation time in each

lumbar disc in young, asymptomatic volunteers. We evaluated total

disc fluid transport by calculating AM to PM changes in average disc

T2 relaxation time. We inferred the directionality of fluid transport

from changes in the T2 relaxation times of the NP, inner AF (IAF),

and outer AF (OAF). In a previous cohort of asymptomatic partici-

pants between 18 and 30 years of age, approximately 20% of lumbar

discs were degenerated (as evaluated by Pfirrmann grade33). There-

fore, a secondary objective of this study was to quantify the effect

of disc degeneration on diurnal fluid transport. Finally, because disc

size may be related to fluid transport,7,34,35 in a subset of individuals,

we measured disc height, volume, and perimeter using MRI and 3D

modeling29,36 and performed a preliminary analysis of the relation-

ship between fluid transport and disc geometry. We hypothesized

that diurnal changes in disc fluid vary by disc region, spinal level,

degeneration grade, and disc geometry.

2 | METHODS

2.1 | Imaging protocol

With approval from the Duke Health Institutional Review Board, 10 par-

ticipants (five males/five females; age: mean 25, range 21–30 years;

BMI: mean 23.1, range 19.1–29.0 kg/m2) with no history of

spine disease or low back pain (NIH Research Task Force score37:

mean 9.2, range 9–10 [minimum score of 9, healthy; maximum

score of 50, severely diseased]) were recruited and diurnal changes

in the T2 relaxation time of each lumbar disc (T12-L1 through

L5-S1) were measured (Table 1). Participants arrived at the MRI

facility at 7:15 AM, rested supine for 45 min, and were scanned on

a 3T MRI system (Trio Tim; Siemens Medical Systems, Erlangen,

Germany). To quantify T2 relaxation time, participants were

scanned using a sagittal T2 mapping sequence (repetition time,

3630 ms; echo times, 20, 40, 60, 80, 100, 120, 140, 160 ms;

acquisition matrix, 256 � 256; field of view, 260 � 260 mm2; slice

spacing, 3.0 mm, acquisition time: 5 min, 39 s). Disc health

was evaluated using a T2-weighted image from this sequence

(TE = 100 ms) and Pfirrmann grades33 of I (healthy) to V (severely

degenerated) were assigned by a postdoctoral fellow with 10 years of

spine research experience (JTM). Following these scans, participants went

about their normal workday and returned at 7:00 PM for a second

T2 mapping scan. In a subset of subjects (n = 7), we performed a

preliminary analysis of the relationship between disc geometry and

fluid transport, calculating disc height, volume, and perimeter using a

3D T2-weighted sequence (SPACE; repetition time, 1500 ms; echo

time, 223 ms; turbo factor, 145; flip angle, 100�; acquisition matrix,

320 � 320; field of view, 280 � 280 mm2; slice spacing, 0.90 mm,

acquisition time: 5 min, 2 s). Participants were instructed to refrain from

strenuous exercise the evening before and the day of their MRI scans.

Image data for this study were acquired during the same imaging

session as a concurrent study on the diurnal change in facet joint

thickness.38

TABLE 1 Participant demographics

N 10

Age (years; mean, range) 25 (21–30)

BMI (kg/m2; mean, range) 23.1 (19.1–29.0)

NIH RTF score (mean, range) 9.2 (9–10)

Gender, female, n (%) 5 (50)

Employment status, n (%)

Student 6 (60)

Working now 4 (40)

Education level, n (%)

Master's degree 1 (10)

Bachelor's degree 8 (80)

High school graduate or GED 1 (10)

Race, n (%)

White 7 (70)

Black or African American 2 (20)

Unknown 1 (10)

Ethnicity, n (%)

Not Hispanic or Latino 8 (80)

Hispanic or Latino 2 (20)

Current smoker, n (%) 0 (0)

Low-back operation, n (%) 0 (0)
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2.2 | Image analysis

AM and PM T2 relaxation times were evaluated in 3D for each lumbar

disc (Figure 1). Contours were drawn at the boundaries of the T12-L1

through L5-S1 discs on each slice of the sagittal T2 scan using custom

software written in MATLAB (Mathworks, Natick, Massachusetts).

Contours were drawn on T2-weighted images from the T2 mapping

sequence (TE = 80 or 100 ms) and anterior, posterior, and lateral

apices were manually identified to define primary disc axes for rota-

tion and registration to a rectangular coordinate system. T2 relaxation

time was calculated at pixels within these contours using a mono-

exponential decay.39 To determine the T2 relaxation time in each

disc region, segmented discs were manually rotated, registered to a

rectangular coordinate system, and then divided into three regions:

NP (0%–50% of outer boundary), IAF (50%–75% of outer boundary),

and OAF (75%–100% of outer boundary).

To measure disc height, volume, and perimeter, sagittal slices on

T2 SPACE scans were manually segmented across the lumbar discs.

Geometry measurements were performed as described previously.36

Briefly, mean disc height was calculated as the distance between the

centroids of the superior and inferior disc boundaries. Disc volume

was calculated as the area within each 2D contour spanning the disc

space multiplied by the slice thickness, and disc perimeter was defined

as the disc axial boundary at the disc mid-height. In a similar analysis

of this segmentation method,36 we determined its intra-rater

reliability (mean height: 1.0%, perimeter: 0.6%, volume: 1.9%),

inter-rater reliability (mean height: 1.5%, perimeter: 1.1%, volume:

1.0%), and intra-subject variability (mean height: 2.0%, perimeter:

0.4%, volume: 1.1%).

2.3 | Statistics

Means with ranges and counts with proportions were used to

describe the continuous and categorical variables, respectively. To

examine the assumptions of our models, we visually inspected the

F IGURE 1 Segmentation procedure. (A) Discs were manually
segmented on magnetic resonance imaging (MRI) slices that spanned
the lumbar spine. (B) 2D slices were compiled in 3D to calculate the
average T2 relaxation time of the discs. The nucleus pulposus (NP),
inner annulus fibrosus (IAF), and outer annulus fibrosus (OAF) regions
were defined as the regions between 0% and 50%, 50% and 75%, and
75% and 100% of the outer boundary, respectively. Whole-disc
averages and averages of the NP, IAF, and OAF regions were
calculated. Image: T2-weighted image from T2 mapping sequence
(TE = 100 ms)

F IGURE 2 Baseline (AM) T2 relaxation time and diurnal change in T2 relaxation time of each disc. (Data displayed are observed values with
the mean and 95% confidence interval; difference of least squares means calculated using mixed model: *p < 0.05 vs. T12-L1). (A) Baseline
(AM) mean T2 relaxation time of each disc by spinal level (illustrated on a representative spine). T2 was greatest at T12-L1 and decreased
caudally. (B) Mean diurnal (AM to PM) change in the T2 relaxation time of each disc by spinal level (illustrated on a representative spine). The T2
of each disc decreased from AM to PM, and the magnitude of this change decreased caudally and was greatest at T12-L1. Image: T2-weighted
image from T2 mapping sequence (TE = 100 ms)
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residual diagnostics of each model to confirm normality of the resid-

uals. We used linear mixed-effects models with subject as a random

effect for all model-based analyses to account for correlations within

subjects. Post-hoc analyses were performed by calculating the differ-

ences of least squares means (designated as Δ in the Results section)

and Bonferroni corrections were used to account for multiple compar-

isons. First, we evaluated the association between spinal level, disc

region, and T2 relaxation time. Spinal levels with discs with Pfirrmann

grades I and II were considered non-degenerated and included in this

analysis (n = 52 discs included, n = 8 excluded). In each model, subject

was treated as a random effect while spinal level and disc region were

treated as fixed effects. Next, discs from caudal levels (L3-L4, L4-L5,

and L5-S1) were separated into Healthy (Pfirrmann grades I and II,

n = 23 discs) and Degenerated (Pfirrmann grades III and IV, n = 7

discs from five subjects) groups to evaluate how whole-disc and

regional disc measurements were associated with Pfirrmann grade

(cranial levels excluded as there was only one degenerated disc). Sub-

ject was treated as a random effect while degeneration state (Healthy

vs. Degenerated) and disc region were treated as fixed effects. Finally,

we performed a preliminary analysis to determine whether geometric

measurements (height, perimeter, and volume) influenced the diurnal

change in whole-disc T2 relaxation. Here, subject was also treated as

a random effect while height, perimeter, and volume were treated as

fixed effects. Discs with Pfirrmann grades I and II were included in this

analysis (n = 7 subjects; n = 35 discs included, and n = 7 excluded).

Data on figures are displayed as observed values (as opposed to

model predicted values) with the mean and 95% confidence interval.

All analyses were performed with SAS (SAS 9.4; SAS Institute

Inc., Cary, North Carolina). A value of p < 0.05 was used to indicate

statistical significance.

3 | RESULTS

3.1 | Baseline (AM) and diurnal change in
T2 relaxation time by spinal level and disc
region (healthy discs)

Baseline (AM) T2 relaxation time and the diurnal change in T2 relaxa-

tion time were dependent on spinal level, decreasing along the

spine from cranial to caudal. Spinal level was significantly associated

with baseline T2 (p < 0.001), where T2 relaxation times were greatest

at T12-L1 and lowest at L5-S1 (T12-L1 vs. L5-S1, Δ = 33.69 ms [22.21,

45.17]) (Figure 2A). Spinal level was also significantly associated with

diurnal change in whole-disc T2 relaxation times (p = 0.003), where the

greatest change in T2 relaxation times occurred at T12-L1 and the

smallest change in T2 relaxation times occurred at L4-L5 (T12-L1

vs. L4-L5, Δ = 21.90 ms [10.57, 33.24]) (Figure 2B).

Spinal level (p < 0.001) and disc region (p < 0.001) were both sig-

nificantly associated with baseline regional T2 relaxation time

(Figure 3A). At each level, T2 relaxation times were greatest in the NP

and lowest in the OAF (e.g., T12-L1: NP vs. OAF, Δ = 78.20 ms

[31.10, 62.76]). Across spinal levels, the T12-L1 disc had the greatest

NP and IAF T2 relaxation times, whereas the NP and IAF of the caudal

levels had the lowest T2 relaxation times (significant differences at

L2-L3 through L5-S1) (e.g., T12-L1 NP vs. L5-S1 NP: Δ = 35.12 ms

[17.70, 52.55]; IAF, Δ = 30.88 ms [14.45, 47.31]; OAF, Δ = 27.12 ms

[10.03, 44.21]). Spinal level (p < 0.001) and disc region (p < 0.001)

were also significantly associated with diurnal change in regional disc

T2 relaxation times (Figure 3B). Similar to the diurnal change in

F IGURE 3 Baseline (AM) T2 relaxation time and diurnal change in
T2 relaxation time in each disc region. (Data displayed are observed
values with the mean and 95% confidence interval; difference of least
squares means calculated using mixed model: *p < 0.05 vs. same
region in T12-L1 disc, +p < 0.05 vs. region within level). (A) Baseline
(AM) mean T2 relaxation time of the NP, IAF, and OAF regions at
each spinal level. The NP region had the highest T2 relaxation time at
each level, followed by the IAF, and then the OAF. A significant effect
was found for spinal level, where the T2 relaxation time of the NP,
IAF, and OAF was greatest at T12-L1 and decreased caudally.

(B) Mean diurnal (AM to PM) change in T2 relaxation time of the NP,
IAF, and OAF regions at each spinal level. In the NP and IAF regions,
a loss of T2 relaxation times occurred at each spinal level, the
magnitude of which was greatest at T12-L1 and decreased caudally.
At the T12-L1 and L1-L2, a modest decrease in T2 relaxation times
was observed in the OAF. While from L2-L3 to L5-S1, a modest
increase in T2 relaxation times was detected in the OAF
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whole-disc T2 relaxation times, the greatest magnitude change in T2

occurred at T12-L1, and the smallest change in T2 relaxation times

occurred at the caudal levels (significant differences at L2-L3 through

L4-L5) (e.g., T12-L1 vs. L4-L5: NP, Δ = 26.81 ms [12.23, 41.39]; IAF,

Δ = 28.44 ms [13.86, 43.02]). At each level, the greatest change in T2

relaxation times occurred in the NP region, whereas the smallest

change in T2 relaxation times occurred in the OAF region (NP vs. AF,

Δ = 32.32 ms [22.62, 42.02]). Interestingly, T2 relaxation times

increased in the OAF region of discs L2-L3 through L5-S1 (e.g., L3-L4,

change in T2 relaxation times, μ = 7.99 ms [2.28, 13.70]).

3.2 | Degeneration-related differences in disc T2
relaxation time and the diurnal change in T2 relaxation
time (healthy vs. degenerated discs)

We compared 23 healthy discs and seven degenerated discs that

were distributed across the L3-L4, L4-L5, and L5-S1 caudal levels

(Figure 4A). Baseline whole-disc T2 relaxation times decreased with

degeneration (Healthy vs. Degenerated, Δ = 48.26 ms [38.97, 57.54])

(Figure 4B) with diminished T2 relaxation times in the NP and IAF

regions (Healthy vs. Degenerated, NP, Δ = 73.31 ms [59.56, 87.06])

(Figure 4C). No significant differences were detected in the diurnal

change in whole-disc T2 relaxation times between healthy and

degenerated discs (Figure 4D). Disc region was significantly associated

with diurnal change in regional T2 relaxation times (p < 0.001),

whereas degeneration state was not. However, a significant interac-

tion was observed between disc region and degeneration state

(p = 0.001) (Figure 4E). Specifically, the NP of degenerated discs had

a smaller change in T2 relaxation times from AM to PM (Healthy

vs. Degenerated, NP, Δ = 8.00 ms [1.78, 14.22]).

3.3 | Preliminary associations between disc
geometry and the diurnal change in whole-disc T2
relaxation time (healthy discs)

To determine how disc geometry affected fluid transport, we first ver-

ified measurable variations in disc size across the lumbar spine. We

found that spinal level was significantly associated with disc height

(p < 0.001), volume (p < 0.001), and perimeter (p < 0.001), where in

each case, the T12-L1 disc was the smallest in size (T12-L1, height,

μ = 5.71 mm [5.02, 6.40]). The size peaked in the mid-lumbar levels

(L3-L4, L4-L5) (e.g., L3-L4, height, μ = 7.58 mm [7.57, 9.43]) and

then decreased from L4-L5 to L5-S1 (L5-S1, height, μ = 7.28 mm

[6.99, 7.57]) (Figure S1). Despite the dependence of disc size on spinal

level, no associations were found between the diurnal change in

whole-disc T2 relaxation time and disc height (β = 1.36 [�8.11,

10.82], p = 0.770), volume (β = �0.003 [�0.012, 0.006], p = 0.482),

or perimeter (β = �0.50 [�0.50, 3.24], p = 0.143).

F IGURE 4 Degeneration-related differences in disc T2 relaxation times at the caudal spinal levels. (Data displayed are observed values with
the mean and 95% confidence interval; difference of least squares means calculated using mixed model: *p < 0.05). (A) Distribution of discs by
Pfirrmann grade. A sufficient number of degenerated caudal discs were obtained; therefore, we performed the subsequent analysis on all healthy
(Pfirrmann grades I and II, n = 21) and degenerated (Pfirrmann grades III and IV, n = 9) discs from the L3-L4, L4-L5, and L5-S1 levels. (B) Baseline

(AM) mean T2 relaxation time of healthy and degenerated discs at the caudal spinal levels. Whole-disc T2 relaxation times decreased with
degeneration. (C) Baseline (AM) mean T2 relaxation time of the NP, IAF, and OAF regions of healthy and degenerated discs at the caudal spinal
levels. Degenerated discs had decreased T2 relaxation times in the NP and IAF regions. (D) Mean diurnal (AM to PM) change in T2 relaxation time
of healthy and degenerated discs at the caudal spinal levels. No significant differences were found between groups. (E) Mean diurnal (AM to PM)
change in T2 relaxation time of the NP, IAF, and OAF regions of healthy and degenerated discs at the caudal spinal levels. Model effects
suggested an interaction between degeneration state and disc region. Image: T2-weighted image from T2 mapping sequence (TE = 100 ms)
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4 | DISCUSSION

Age-related spine disease commonly develops in a pattern that is

dependent on spinal level, where pathologies, such as disc degenera-

tion and disc herniation, are more prevalent in the caudal lumbar

discs. Level-dependent physiological stressors may drive these

pathologies. For example, impaired fluid transport may lead to nutri-

ent deficiency that may influence the health of the disc. Here, we

found that the magnitude of fluid transport (based on the diurnal

change in T2 relaxation time) is greatest in the cranial lumbar discs

and decreases along the lumbar spine from cranial to caudal. We

did not detect an effect of disc size on transport as previously

postulated7,34,35 but did detect an effect of disc degeneration on

transport,3,4 particularly in the NP region. We hypothesize that

level-dependent nutrient transport is a factor in the development

of the caudal pattern of degeneration and that degeneration itself

further exacerbates these conditions.

The ability to transport more fluid (and, consequently, more nutri-

ents and waste) likely benefits the cranial discs, which are slower to

degenerate than the caudal discs.14,19,40 We aimed to identify which

level-dependent factors determined this relationship. We did not

detect an effect of disc volume, height, or perimeter on the diurnal

change in T2 relaxation times in a preliminary analysis, contrary to

convention7,34,35 and our original hypothesis. Based on these data,

focused follow-up studies that are powered to detect the relationship

between disc morphology and fluid transport are warranted. How-

ever, other level-dependent factors may influence fluid transport. For

example, the composition and structure of the cartilage endplate

determine solute diffusivity across the disc/vertebra interface41,42

and consequently impact cell viability.11 Thus, level-dependent differ-

ences in the extracellular matrix of the cartilage endplate may deter-

mine transport characteristics. Furthermore, physical loading impacts

strain in the cartilage endplate, solute diffusivity,42 and in vivo fluid

transport (measured by changes in T2).43 Our recent work suggests

that regional disc strains vary by spinal level, but we did not detect an

effect of average whole-disc strains.29 Thus, the role that mechanical

factors play in level-dependent fluid transport is not clear. Previous

work has also identified level-dependent differences in composition

of the vertebral bodies as measured by quantitative MRI, suggesting

that vertebral fluid content43,44 and marrow fat45 vary by spinal level

and may be related to disc degeneration. Evaluating other factors

that affect disc fluid transport and impact disc health is an area for

future work.

We did not detect an effect of disc degeneration on net disc fluid

transport, but did find an effect of degeneration on transport in

the NP region specifically. This finding is consistent with the

changes characteristic of disc degeneration, such as decreased perme-

ability of the NP, AF, and cartilage endplates46–48 and decreased disc

fluid.26,49,50 Changes in disc fluid may impact cell metabolism as disc

cells are sensitive to alterations in osmolarity,51 oxygen and glucose

concentrations,10 and mechanical loading.52 Disc cell gene expression

follows a circadian rhythm53 that may be impacted by cyclic fluid

transport. Still, in this work we were only able to evaluate a limited

number of degenerated discs from the caudal region of the lumbar

spine. Future work should evaluate the full spectrum of degenerated

discs across the lumbar spine. In this way, important relationships

between transport and degeneration can be further dissected along

with the impact of impaired transport on long-term disc health.

In studies using small molecule MRI contrast agents, such as

gadodiamide,4 it is evident that solutes diffuse from the vertebral

body, through the vertebral endplate, and into the disc over the

course of the day. This process can be influenced by mechanical

loading, which affects disc fluid motion and consequently the rate of

solute transport into the disc.3 In this study, we used diurnal loading

to induce fluid motion. We determined that, in healthy discs, fluid

concentration decreased in the NP and increased in the OAF for discs

at the caudal levels. While we can infer that fluid travels from the NP

to the AF and then likely exterior to the disc, we are not able to deter-

mine this empirically by directly tracking flow (i.e., by tracing labeled

particles), only by quantifying the net change in total fluid content.

Also, we make this measurement assuming that the diurnal change in

T2 relaxation is primarily affected by fluid content and not alterations

in fiber alignment. Future work at high MR field strength may eluci-

date diurnal changes in fiber alignment. Finally, we did not evaluate

how specific activities influence fluid transport, as activity levels were

not closely controlled in this study. Determining how specific loading

protocols affect the magnitude and direction of fluid transport is an

area for future work.

5 | CONCLUSION

We determined that disc fluid transport (as measured by the diurnal

change in T2 relaxation time) varies by spinal level, where transport

was greatest in the most cranial lumbar discs and decreased from cra-

nial to caudal along the lumbar spine. Because degeneration was most

prevalent in the caudal lumbar discs where fluid transport was rela-

tively lower compared with the cranial lumbar discs, future

work should aim to determine what level-dependent factors

contribute to fluid transport and disc degeneration. Furthermore,

degeneration affected transport in the NP region. Taken together,

these data suggest that the diurnal change in T2 relaxation times

may be a useful biomarker of disc health.
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