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Abstract

The current strategy for identifying the carcinogenicity of drugs involves the 2-year bioassay in male and female rats and
mice. As this assay is cost-intensive and time-consuming there is a high interest in developing approaches for the screening
and prioritization of drug candidates in preclinical safety evaluations. Predictive models based on toxicogenomics
investigations after short-term exposure have shown their potential for assessing the carcinogenic risk. In this study, we
investigated a novel method for the evaluation of toxicogenomics data based on ensemble feature selection in conjunction
with bootstrapping for the purpose to derive reproducible and characteristic multi-gene signatures. This method was
evaluated on a microarray dataset containing global gene expression data from liver samples of both male and female mice.
The dataset was generated by the IMI MARCAR consortium and included gene expression profiles of genotoxic and
nongenotoxic hepatocarcinogens obtained after treatment of CD-1 mice for 3 or 14 days. We developed predictive models
based on gene expression data of both sexes and the models were employed for predicting the carcinogenic class of
diverse compounds. Comparing the predictivity of our multi-gene signatures against signatures from literature, we
demonstrated that by incorporating our gene sets as features slightly higher accuracy is on average achieved by a
representative set of state-of-the art supervised learning methods. The constructed models were also used for the
classification of Cyproterone acetate (CPA), Wy-14643 (WY) and Thioacetamid (TAA), whose primary mechanism of
carcinogenicity is controversially discussed. Based on the extracted mouse liver gene expression patterns, CPA would be
predicted as a nongenotoxic compound. In contrast, both WY and TAA would be classified as genotoxic mouse
hepatocarcinogens.
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Introduction

A crucial part of the drug development pipeline is the

assessment of the carcinogenic potential of compounds, which is

currently performed on the basis of the 2-year rodent bioassay.

However, as these assays are associated with high costs as well as

long study times, and require a high number of animals (more than

800 mice and rats) [1], there is a strong interest to develop

supplementary approaches which facilitate drawing hypotheses

about the carcinogenic risk of a compound at an earlier stage of

the development process. Reliable predictive models of hepato-

carcinogenesis could then be employed to increase the efficiency of

the screening process by prioritization of drug candidates in the

preclinical phase [2].

In general, carcinogens (C) can be subdivided into two groups

depending on their mechanism. Genotoxic carcinogens (GC) are

characterized by reactivity with DNA or by the formation of

DNA-reactive metabolites which may lead to tumor initiation.

Nongenotoxic carcinogens (NGC) do not directly cause DNA

modifications, but mediate tumor initiation or promotion by

secondary mechanisms, which are not completely discovered so

far. In recent years, a wide variety of mechanisms causing

nongenotoxic carcinogenesis in liver were proposed, such as

oxidative stress, chronic cell injury, immunosuppression, induction

of peroxisome proliferation, modulation of specific cytochrome

P450 enzymes, increased secretion of growth-stimulating hor-

mones, or the perturbance of specific signaling pathways [3,4].

Ultimately, these mechanisms cause increased induction of mitosis,

which is typically accompanied by decreased susceptibility to

cellular mechanisms triggering apoptosis in degenerated cells [3,4].

For the detection of GCs a battery of three in vitro genotoxicity

tests (Ames test, mouse lymphoma assay, in vitro micronucleus or

chromosomal aberrations test) is routinely applied during the early

phase of drug development [5]. However, these short-term

bioassays are insufficient in terms of specificity for the detection

of NGCs, which are characterized by more complex mechanisms

and thus require the performance of long-term tests.
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Compounds such as TAA and WY which show a negative Ames

test but a positive mouse lymphoma test are controversially

classified by different authors as nongenotoxic or genotoxic

carcinogens (reviewed by Waters et al.) [1]. Thus, it was suggested

to classify these compounds as Ames-negative genotoxic com-

pounds [1]. Especially for such compounds, which cannot

definitely be assigned to either GCs or NGCs, approaches

providing additional mechanistic insights would be beneficial

during cancer risk assessment.

In more recently developed toxicogenomics approaches molec-

ular events preceding neoplasia are considered to allow for the

prediction of carcinogenicity based on characteristic gene expres-

sion patterns emerging after short-term exposure. These ap-

proaches typically employ microarray technology in conjunction

with machine learning techniques for the early prediction of drug-

induced carcinogenesis based on characteristic gene expression

profiles [6–8]. A microarray-based approach also allows for

drawing hypotheses about the mechanisms of genotoxic (GC) and

nongenotoxic carcinogens (NGC) [9,10]. However, in contrast to

animal studies, toxicogenomics-based examinations of cancer risk

are typically focused to specific target organs, such as, most

notably, the liver.

In a pioneering study Nie et al. employed cDNA microarrays to

profile mRNA expression in rat livers treated with 24 NGCs and

28 non-carcinogens (NCs) [11]. Combining the outcomes of

diverse statistical and heuristic feature selection methods (e.g., t-

test, genetic algorithms, etc.), a pooled gene list was generated,

from which a short-list of 6 signature genes was extracted using an

exhaustive enumeration method. More recently, Uehara et al.

published a rat liver signature comprising 112 genes which was

inferred using prediction analysis for microarrays (PAM) [12]. The

signature was shown to facilitate the highly sensitive detection of

carcinogenesis after single exposure, owing to a relatively high false

positive rate. Inspired by the work of Auerbach et al., who

recommended longer exposure periods, another signature com-

prising 82 probesets was published by Uehara et al. [8]. Using this

signature, a considerably lower fraction of false positives was

observed at comparable sensitivity when performing Support

Vector Machines-based NGC/NC classification of expression

profiles resulting from 28 days of repeated dosing. As an aside, the

informative probesets have also proven useful for the detection of

GCs. For more detailed information about the designs of

preceding studies, the profiled compounds and the estimated

classification accuracies, the reader is referred to a comprehensive

review by Waters et al. [1].

In contrast to the majority of recent toxicogenomics studies,

which focused on elucidating NGC mechanisms in rat liver,

Jonker et al. investigated the presence of characteristic, reproduc-

ible transcript expression patterns in diverse murine target organs

[13]. The authors inferred organ-specific multi-gene biomarkers

using supervised machine learning methods (e.g., Nearest

Shrunken Centroids, Recursive Feature Elimination), which were

also employed for the discrimination between GC, NGC and NC,

either by solving one 3-class or two 2-class problems [13].

Here, we propose a new methodology, which employs ensemble

feature selection in conjunction with bootstrapping for the

extraction of mRNA signatures from transcriptomic profiles of

GC-, NGC-, or NC-treated mice. Besides evaluating the average

classification performance achieved by different algorithms for

probeset selection, we also assess their robustness against small

variations of the training data. When compared to recently

published signatures for the prediction of hepatocarcinogenicity in

mice, we found that our signatures are equally good or slightly

better, depending on the employed classifier and evaluated

prediction task.

In contrast to previous toxicogenomics studies, we profiled

global gene expression in both male and female mice, which is also

done on a routinely basis in chronic toxicity and carcinogenicity

studies. As some of the general pathways and biological processes

leading to cancer (e.g., cell proliferation) may be influenced by

androgens and estrogens, we consider it relevant to include both

sexes in the development of biomarkers for hepatocarcinogenesis.

Ultimately, this study design facilitated capturing characteristic

changes in gene expression, which are present in both sexes upon

treatment with GCs and NGCs, respectively.

Methods

Ethics Statement
The animal experimental work under this study was subject to

the Danish Executive Order No. 1306 of 23 November 2007. The

protocol was reviewed by the veterinarians responsible for animal

welfare in the testing facility and conducted under animal license

number 2009.561.1593 issued by the Danish Animal Inspectorate.

For necropsy the animals were anaesthetized in isoflurane and

exsanguinated from the heart. All animals were checked for

mortality/ill health twice daily and animals in extremis were

sacrificed after consultation with the veterinarian in charge of

animal health and welfare. All animal procedures described in the

present paper have been approved by the ethical committee for

animal experimentation of UCB Pharma S.A. and were in

accordance with the most recent European and Belgian legislation

on the use of laboratory animals (Directive 2010/63/EU, Belgian

Royal Decree of 29 May 2013) as well as with the Guide for the

Care and Use of Laboratory Animals (NRC, 2010).

Animal Study
In this study, we employed the Affymetrix GeneChip Mouse

Genome 430 2.0 Array to monitor the changes in the gene

expression pattern induced by diverse compounds in mouse liver

samples. The generated microarray data were deposited at Gene

Expression Omnibus (GEO accession: GSE44783). Treatment

groups of 6 male and female CD-1H mice, respectively, were dosed

by oral gavage with a heterogeneous set of compounds over a time

period of 3 or 14 days. Time matched control groups were treated

with the corresponding vehicles, carboxymethyl cellulose or corn

oil. The compounds, their CAS numbers, vehicles, doses and the

group ID are all listed in Table 1. Dose levels were chosen on the

basis of literature data, toxicological databases (CPDB database:

http://potency.berkeley.edu/) [14], or dose range-finding studies.

For the non-carcinogenic compounds a high pharmacological dose

was selected. 24 hours after the last dose, the mice were

anaesthetized in isoflurane, exsanguinated from the heart and

subjected to necropsy. The left lateral liver lobe was cut in cubes

with about 4–5 mm side length, placed in Wheaton Cryovials,

snap frozen in liquid nitrogen and kept at 280uC until extraction.

A histopathological examination was conducted for all liver

samples from this study (data not shown).

Tissue Sampling and Microarray Hybridization
Samples from 5–6 animals per treatment group were subjected

to mRNA expression analysis. The snap-frozen liver samples were

homogenized with Qiazol (Qiagen, Hilden, Germany). The cRNA

synthesis, target hybridization, probe array washing, staining and

subsequent probe array scanning were done according to the

standard protocol 39IVT Express Kit User Manual (Affymetrix).

Ensemble Feature Selection for Toxicogenomics
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Microarray analysis was performed by using GeneChip Mouse

Genome 430 2.0 Arrays from Affymetrix.

Preprocessing of Microarray Data
After importing the Affymetrix raw data (i.e., CEL files) into the

R programming language and environment for statistical com-

puting, different metrics and statistics implemented in the package

arrayQualityMetrics were used to assess the quality of the raw data

[15]. As no major experimental problems could be detected, all

arrays were included in further analysis steps. The raw data were

then normalized using the RMA method and probesets were

mapped to gene symbols and Entrez IDs using the appropriate

metadata packages deposited at Bioconductor [16,17].

Analysis Pipeline for Signature Inference and Compound
Classification

One of the main research objectives of this study was the

selection of mRNA signatures, i.e., sets of informative marker

Table 1. Overview of compounds used for training and evaluation of classifiers.

Class
Compound (Short
name) CAS Number Vehicle

Dose
[mg/kg/d]

Group ID (Dosing
period of 3 days)

Group ID (Dosing
period of 14 days)

Genotoxic
carcinogens (GC)

C.I Direct Black (CIDB) 1937-37-7 CO 2500 CIDB_G67F_D4 CIDB_G69F_D15

CIDB_G67M_D4 CIDBG69M_D15

Dimethylnitro-samine
(DMN)

62-75-9 CO 2 DMN_G70F_D4 DMN_G72F_D15

DMN_G70M_D4 DMN_G72M_D15

Methylen-dianiline
(MDA)

101-77-9 CO 50 MDA_G86F_D4 MDA_G88F_D15

MDA_G86M_D4 MDA_G88M_D15

75 MDA_G87F_D4 MDA_G89F_D15

MDA_G87M_D4 MDA_G89M_D15

Undefined
compounds

Cyproterone acetate
(CPA)

427-51-0 CO 160 CPA_G78F_D4 CPA_G80F_D15

CPA_G78M_D4 CPA_G80M_D15

Thioacetamid (TAA) 62-55-5 CMC 20 TAA_G57F_D4 TAA_G59F_D15

TAA_G57M_D4 TAA_G59M_D15

Wy-14643 (WY) 50892-23-4 CMC 200 WY_G52F_D4 WY_G54F_D15

WY_G52M_D4 WY_G54M_D15

Nongenotoxic
carcinogens (NGC)

1,4-Dichloro-benzene
(DCB)

106-46-7 CO 600 DCB_G83F_D4 DCB_G85F_D15

DCB_G83M_D4 DCB_G85M_G15

Phenobarbital sodium
(PB)

57-30-7 CMC 80 PB_G60F_D4 PB_G62F_D15

PB_G60M_D4 PB_G62M_D15

Piperonyl-butoxide
(PBO)

51-03-6 CMC 600 PBO_G48F_D4 PBO_G50F_D15

PBO_G48M_D4 PBO_G50M_D15

Non-carcinogens
(NC)

Cefuroxime sodium
(CFX)

56238-63-2 CMC 250 CFX_G25F_D4 CFX_G27F_D15

CFX_G25M_D4 CFX_G27M_D15

Nifedipine (Nif) 21829-25-4 CMC 50 Nif_G29F_D4 Nif_G31F_D15

Nif_G29M_D4 Nif_G31M_D15

Prazosin hydrochloride
(Praz)

19237-84-4 CMC 5 Praz_G37F_D4 Praz_G39F_D15

Praz_G37M_D4 Praz_G39M_D15

Propranolol
hydrocholride (Prop)

318-98-9 CMC 80 Prop_G32F_D4 Prop_G34F_D15

Prop_G32M_D4 Prop_G34M_D15

The table lists all compounds along with their carcinogenicity class and CAS Registry Number. Corn oil (CO) or 0.1% carboxymethyl cellulose (CMC) was used as vehicle.
Doses were selected for each compound based on the tumorigenic dose rate 50 (TD50), long-term animal studies leading to liver cancer known from the literature or
initial dose range-finding studies. After a dosing period of 3 or 14 days the mouse livers were subjected to gene expression analysis using an Affymetrix platform. Two
treatment groups, each comprising 5–6 male and female mice, respectively, were examined for each compound, dose and point of time. Time matched control groups
were included for both vehicles. Each treatment group has a unique group ID which is composed of the compound short name, the group number and the sex (Female
or Male).
doi:10.1371/journal.pone.0073938.t001
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genes, which are consistently differentially expressed between

compound classes, and thus can be utilized to reliably predict the

type of carcinogenicity of a given compound. For this purpose, we

implemented an analysis pipeline for the inference and evaluation

of gene signatures from mRNA expression data. The central

element of this pipeline is a two-stage method, encompassing

statistical and supervised learning methods for marker gene

selection (Stage 1) and expression profile-based compound

classification (Stage 2).

Stage 1: Extraction of gene signatures. In the first stage,

we employed linear Support Vector Machines (SVM), SVM-based

Recursive Feature Elimination (SVM-RFE), Prediction Analysis

for Microarrays (PAM) and a signal-to-noise ratio (Golub-Ratio)

proposed by Golub et al., which measures the correlation between

gene expression states and compound class labels [18–21]. All

probesets represented on the microarray were considered as

candidate markers and no filtering was performed based on

differential gene expression. The marker genes selected should

fulfill two requirements. Firstly, the signature probesets should be

reliable, i.e., facilitate the accurate discrimination of the

compound classes. Secondly, the signature should be robust, i.e.,

be largely independent of the employed selection algorithm and

the set of samples used for training.

For optimization of the classification performance, we used a

grid search approach to tune the individual parameters of the

machine learning methods. For this purpose, we employed a 363

nested cross-validation procedure, which ensures unbiased pa-

rameter tuning, while maintaining independent test sets. The

robustness of the signature was increased by performing ensemble

feature selection with m = 4 methods on n = 25 randomly drawn

bootstraps, each containing 90% of the training samples. For each

bootstrap the remaining 10% of the training samples (out-of-bag

samples) were used to assess the classification performance,

achieved with the selected marker genes, in terms of area under

the Receiver Operating Characteristic (ROC) curve.

In order to determine the optimal number of informative genes,

the ROC scores were computed for k = 10 different probeset

numbers between 2 and 100. Subsequently, the optimal number of

features corresponding to the analytical maximum area under the

ROC was estimated by fitting splines (implementation from

package splines for R).

Next, for each feature selection method the robustness of the

selected signatures, i.e., the correspondence of the informative

gene sets inferred on different bootstraps, was measured based on

the Kuncheva stability index [22]. The Kuncheva index (KI) is a

measure for the consistency between multiple subsets of features,

typically extracted from different bootstraps or by using different

methods. In contrast to other stability indices, the KI also accounts

for common selection of features purely by chance. It monoton-

ically increases with the size of the intersection of the two

compared subsets and is defined on a scale between 21 and 1.

The value 21 is returned for disjoint subsets, each containing 50%

of the features. 0 is expected for independently drawn subsets and

1 for identical subsets. Given a feature set X with |X| = n and two

feature subsets A, B with 0,|A| = |B| = k,n and |A > B| = r the

Kuncheva index is defined as KI(A,B)~ rn{k2

k(n{k)
[22]. KI can also

be generalized to a score for measuring the stability of more than

two selected subsets, simply by computing the mean of the KIs that

have been computed for all pairs of subsets.

On the basis of the signatures inferred on different bootstraps

using different methods, we generated consensus signatures by

computing an average rank for each gene. For this purpose a

consensus ranking was generated by computing the rank sums

across all methods and bootstraps. Subsequently, the genes were

sorted in ascending order by the rank sums.

Stage 2: Prediction of compound classes. In the second

stage, the signatures inferred on the training data were incorpo-

rated as predictive features for compound class prediction by

diverse classifiers, namely SVM, k-Nearest Neighbor (KNN),

PAM, Naı̈ve Bayes, Random Forest, and Weighted Voting

[18,20,21,23]. To this end, a stratified and nested 363 cross-

validation was performed. While the algorithm-specific parameters

were tuned in the inner 3-fold cross-validation, the performance

was assessed based on the area under the ROC curve in the outer

3-fold cross-validation. The fold-changes of the signature genes

obtained from Stage 1 were standardized by computing z-scores

z(x)~ x{m
s and then incorporated as features. In order to ease the

interpretability of the classification outcomes, all prediction scores

were transformed to a scale ranging from 0 to 1. SVM outputs

(ranging between approx. 210 and 10) were rescaled using the

function f (x)~
1

1ze{x
. Weighted Voting scores (originally

between 21 and 1) were transformed using g(x)~ xz1
2

as scaling

function. In order to obtain confidence values for KNN, the

fraction of positively labeled neighbors among all nearest

neighbors was calculated. All other methods inherently produce

prediction scores between 0 and 1. The employed classification

methods were either implemented from scratch in R or imported

from the existing R packages knnflex, pamr, klaR and randomForest

[20,23]. For SVM classifiers we used implementations from the

SHOGUN toolbox [18].

Results

Inference of Signatures for Early Prediction of
Hepatocarcinogenesis in Mouse

Using an ensemble of statistical and machine learning-based

feature selection techniques in conjunction with state-of-the-art

methods for supervised classification, we constructed accurate and

robust models for carcinogenic compound class prediction based

on characteristic gene expression profiles. Our analysis workflow

(Figure 1) was employed for the identification of multi-gene

mRNA signatures for the discrimination of different compound

classes (C: GC+NGC vs. NC, GC vs. NGC, GC vs. NC, and NGC

vs. NC), which were profiled in CD-1 mice at two dosing times (3

days and 14 days) using an Affymetrix platform. The correspond-

ing gene lists which were used to predict the carcinogenic outcome

in both sexes are attached in Table S1.

The ROC scores plotted for varying signature sizes in Figure 2A

demonstrate that all tested feature selection methods are well

suited to produce signatures for the early discrimination of C from

NC, which are both accurate (ROC scores .0.81) and stable

(max. KI < 0.7), when compared to a random guesser (ROC = 0.5

and KI = 0). In comparison to the 3-day signature (Figure 2A), a

slightly higher mean classification accuracy (ROC scores .0.84)

and comparable stability was achieved by using the 14-day

signatures (Figure 2B). This gain on performance is even more

striking when comparing 3-day signatures and 14-day signatures

for GC vs. NGC classification (Figure 2E–F). In summary, the

performance of the individual methods heavily depends on the

classification task, but only the SVM and SVM-RFE method

consistently achieved classification accuracies .0.8 on all four

datasets (Figure 2A,B,E,F). Furthermore, the two SVM-based

methods were found to provide by far the most robust signatures,

when assessing the correspondence of informative gene lists

selected on different bootstraps, based on the stability index

proposed by Kuncheva et al. (Figure 2C,D,G,H) [22].

Ensemble Feature Selection for Toxicogenomics
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The corresponding ROC and KI plots which resulted from the

evaluation of signatures for GC vs. NC and NGC vs. NC

classification, respectively, are shown in Figure S1.

On the basis of the signatures inferred from multiple bootstraps

using different methods, we generated a consensus signature for

each classification task as described in more detail in the methods

section (Figure 1). For each classification task we trained six

different classifiers (SVM, KNN, PAM, Random Forest, Weighted

Voting, and Naı̈ve Bayes) and evaluated their classification

accuracy based on cross-validation. In order to ease the

interpretation of the classification results, the outputs were

transformed into confidence scores between 0 and 1, which serve

as an estimate of the probability of the positive class. These

confidence scores are illustrated as heatmaps in Figure 3. For most

classifiers a high agreement was found between the prediction

scores and the true class labels. This observation is consistent with

the outcomes of ROC evaluation, where the average AUC ranged

between 0.92 and 1.0 for C vs. NC classification and between 0.83

and 1.0 for GC vs. NGC classification. From Figure 3 it becomes

apparent that almost perfect compound classification could have

been achieved by a majority vote across all methods. Only for 1,4-

dichlorobenzene (DCB) a reliable classification as either GC or

NGC was not possible after 3 days of repeated dosing. However,

after 14 days the compound was correctly classified as NGC by the

majority of classifiers. The heatmaps showing the correspondence

between the predicted and true classes obtained for GC vs. NC

and NGC vs. NC classification are depicted in Figure S2.

We also evaluated the performance of two variants of our

methodology for signature extraction. The first one exclusively

adopts the two feature selection methods SVM and SVM-RFE, as

for the corresponding signatures a consistently high performance

and increased robustness across bootstraps was observed (Figure 2).

Since a good separation of the compound classes could also be

achieved by Principal Component Analysis (PCA), we employed

PCA and the algorithmically related Partial Least Squares

Discriminant Analysis (PLS-DA) for feature selection in a second

approach. The gene rankings were derived from the absolute

values of the loadings of the first principal and PLS component,

respectively. Consistent with our expectations the SVM- and

SVM-RFE-based signatures performed particularly well in con-

junction with SVM classifiers in all four evaluated settings, i.e., C

vs. NC and GC vs. NGC classification after 3 or 14 days (Figure

S3). For the informative gene sets derived from PCA and PLS-DA

slightly weaker performance was observed for C vs. NC

classification, while GCs could be discriminated from NGCs with

comparable accuracy. A comparison of the informative gene sets

obtained from the different approaches showed that many genes

were selected in common, which was especially the case for

mRNA signatures used to discriminate GCs from NGCs (Figure

S3). The mRNA signatures, which were compiled based on the

two variants of our methodology, are available from Table S2 and

S3.

Classification of Compounds with Undefined Class
Assignment

The classification of the test compounds TAA, WY and CPA

with respect to their mechanism of rat liver cancer induction are

Figure 1. Overview of analysis workflow used for signature extraction and class prediction. The methodology used for the extraction of
gene expression signatures is illustrated using our analysis of the CD-1 mouse dataset as example. This dataset contains mRNA expression data from
male and female mice treated with GC, NGC, and NC. In the example a signature for the discrimination of C from NC is predicted using the analysis
workflow shown above. (1) A stratified cross-validation is performed on the whole dataset. In each cross-validation fold the dataset is split into a
training set and a test set. (2) n = 25 bootstraps, each containing 90% of the training samples, are randomly chosen from the training data. (3) A
signature, i.e., a subset of informative genes for compound class discrimination is selected on each bootstrap by using m = 4 different methods. (4)
The mean classification performance achieved by each gene selection method is computed on the 10% out-of-bag samples, which are left out for
each bootstrap. The stability of the consensus signature is assessed by computing the Kuncheva index from the list of signatures extracted from
different bootstraps. (5) The n6m signatures selected by m methods on n bootstraps are merged, based on a joint ranking computed from the sums
of the ranks calculated for individual signatures. (6) Various machine learning algorithms are employed to predict the carcinogenic compound class,
based on the inferred consensus signature. The performance is evaluated on the independent test set and assessed in terms of area under the ROC
curve.
doi:10.1371/journal.pone.0073938.g001

Ensemble Feature Selection for Toxicogenomics
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controversially discussed [1]. In this study, these compounds were

regarded as undefined chemicals, due to ambiguous results in

genotoxicity testing. Consequently, these compounds were not

used in the training set. Aiming at a classification of these

compounds based on their gene expression profiles, we adopted

different supervised classification methods, incorporating the

informative genes from the analysis of the other compounds as

features (see Figure 4D–E). Furthermore, we performed principal

component analyses in order to visually inspect if the undefined

compounds cluster in the vicinity of confidently annotated GCs or

NGCs. For this purpose, each treatment group was represented by

a vector containing the fold-changes of a certain multi-gene

signature and then transformed to a two-dimensional space

spanned by the two principal components explaining the highest

fraction of the variance in the data.

It becomes obvious from the PCA plot of the 3-day GC vs.

NGC signature that CPA clusters near the NGC compounds,

whereas the points corresponding to TAA and WY are located in

the vicinity of the GC cluster (Figure 4A). Strikingly, a clear

separation of the compounds can be observed for both treatment

durations and both sexes in the PCA plot of the 3-day as well as of

the 14-day signature (Figure 4A–B). The differences in the gene

expression patterns resulting from CPA vs. TAA or WY treatment

also become apparent from the heatmap plot shown in Figure 4C.

These findings are also consistent with the classification results

obtained from diverse supervised learning algorithms (Figure 4D–

E). Specifically, we found that the carcinogenic potential of the

three ‘‘undefined’’ compounds was recognized by all six classifiers

and except for Naı̈ve Bayes, all methods classified TAA and WY as

a GC and CPA as an NGC.

Furthermore, it is remarkable that the treatment-specific

differences in the gene expression patterns observed between

GC and NGC are considerably higher than the sex-specific

differences observed between male and female mice (Figure 4A–

C). This finding indicates that the selected informative genes are

more strongly related to different mechanisms of hepatocarcino-

genesis than to sex-specific physiological differences.

Comparison with Signatures from Related Studies
In order to compare our signatures to those reported from

previous studies, we assessed the prediction accuracy of diverse

classifiers, incorporating either our novel signatures or known

ones, based on ROC evaluation. To this end, we extracted three

signatures for the early detection of hepatocarcinogenicity in mice

from the literature (Table S4). Two of them were reported by

Jonker et al., who inferred one signature for separating C and NC

and one for discriminating GC from NGC using a two-step

strategy similar to our approach [13]. Another hepatocarcinogen-

specific signature was more recently reported by Park et al., who

employed the Ingenuity Pathway Analysis software and demon-

strated by hierarchical clustering analysis that their informative

genes differ between GC and NGC [24].

The results shown in Figure 5 indicate that all signatures

achieve a considerably higher performance than a random

guessing approach. However, only for our signatures, we found

that the error-free prediction of compound classes (ROC score = 1)

can be achieved in all classification tasks if either Random Forest

or Weighted Voting is used. Except for the GC vs. NGC

classification after 3 days of exposure, which appears to be the

most challenging classification task, an error-free classification

outcome could also be obtained from the SVM or PAM approach.

Independent of the classification task a comparatively low average

accuracy was observed for the Naı̈ve Bayes method. In summary,

the evaluation results suggest that our proposed mRNA signatures

provide a valuable alternative to previously published gene sets, as

in all four different settings equal or higher classification

performance could be achieved (Figure 5A–D).

Figure 2. Accuracy and stability of signatures for compound
classification. (A) The line plots depict the mean performance of C vs.
NC classification after 3 days of repeated dosing, which was achieved
based on gene sets extracted with different feature selection methods.
Each curve corresponds to a feature selection method and the
performance was assessed depending on the number of genes selected
as informative features. The prediction accuracy was assessed on the
samples left out from 25 random subsamplings of the dataset
(bootstraps), each containing 90% of the data, and measured in terms
of area under the ROC curve. The inset bar plot depicts the ROC scores
averaged across bootstraps and signature sizes. (B) Performance of C vs.
NC classification after 14 days of treatment illustrated as in (A). (C) The
correspondence of the extracted C vs. NC gene sets across 25
bootstraps was assessed based on the Kuncheva stability index (KI)
for each of the 4 employed feature selection methods. The KI was then
for each method plotted against the number of selected signature
genes. (D) Robustness of signatures for C vs. NC classification after 14
days of treatment illustrated as in (C). (E, F) Prediction accuracy
achieved with signatures for GC vs. NGC classification after (E) 3 days
and (F) 14 days of repeated dosing, respectively, depicted as in (A). (G,
H) Similar illustration as in (C) showing robustness of signatures for GC
vs. NGC classification after (G) 3 days and (H) 14 days of administration,
respectively.
doi:10.1371/journal.pone.0073938.g002
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Comparing our sets of informative genes to previously compiled

sets of potential marker genes, we found small overlaps between

our signatures and those proposed by Park et al. (see Venn

diagrams in Figure 5). The two signatures selected by Jonker et al.

were disjoint with both our gene sets and the one by Park et al.

[24]. The complementarity of the signatures proposed by Jonker

et al. can in part be explained by the fact that the authors used a

custom oligonucleotide array limited to 8205 probes, while a

standard Affymetrix platform was used in both our study and the

one conducted by Park et al. [24].

Discussion

In this study we conceived, implemented and applied a novel

ensemble feature selection approach for the extraction of robust

multi-gene signatures from mRNA transcript expression data,

which facilitates reliable compound classification for hepatocar-

cinogens. We analyzed an Affymetrix dataset obtained from male

and female CD-1 mouse liver samples taken after treatment of

mice for 3 or 14 days with diverse compounds (3 GC, 3 NGC and

4 NC).

In Figure 4C our most informative genes showing characteristic

profiles upon treatment with genotoxic or nongenotoxic com-

pounds are depicted. Within the European IMI MARCAR project

(www.imi-marcar.eu), we are currently assessing the mechanistic

relevance of such genes, which are specifically deregulated upon

treatment with GCs and NGCs in order to gain a more profound

understanding of the induced cancer types. Among the probesets

which were specifically deregulated upon treatment with GCs and

showed either inverse or unaltered patterns for NGCs were, for

instance, Vim, Armcx4, Raet1e, Marco, SerpinA7, Egr1 and Gpr98. In

response to nongenotoxic carcinogenic exposure an upregulation

of Dio1, Ces2a, Akr1b7, S100a8, Orm3, Cyp2b10 and Cyp2c55 was

measured (Figure 4C).

Among others, the aforementioned probesets were used for the

toxicogenomics-based examination of the carcinogenic class of the

compounds TAA, WY and CPA. We considered these three

substances as ‘‘undefined’’, as it cannot be reliably determined,

based on mutagenicity testing results, whether rodent liver tumors

are induced by these compounds via a genotoxic or nongenotoxic

mechanism. Detailed literature search concerning mutagenic

effects of TAA revealed ambiguous results. While no genotoxicity

was observed in the Ames test, commonly used genotoxicity tests

such as the mouse lymphoma assay and the in vivo micronucleus

test show both positive as well as negative results [25–27]. Another

example for such an undefined compound is WY, which is in

general classified as a peroxisome proliferator belonging to

nongenotoxic carcinogens, whereas a single cell gel electrophoresis

assay indicated induction of DNA damage in WY treated cells

[28–30]. A third compound we classified as an undefined agent is

Figure 3. Classification results obtained for different signatures. (A) The four heatmaps show the predictions resulting from diverse binary
classifiers for the discrimination of C from NC after 3 days (left two heatmaps) or 14 days (right two heatmaps) of repeated dosing. For each dosing
time two heatmaps are depicted which correspond to male and female mice, respectively. The rows correspond to different classifiers and the
columns to different treatment groups. The continuous prediction scores, returned from the classifiers, were transformed to confidence scores
between 0 and 1, which provide an estimate of the probability of class C. The colorbar on top shows the true class annotation. The black vertical lines
separate the test samples from the three folds of cross-validation. (B) Heatmaps illustrating the classification outcome of diverse predictors to
distinguish GC from NGC based on characteristic gene expression profiles observed in male and female mouse liver samples after 3 or 14 days of
administration. KNN, K-Nearest Neighbor; SVM, Support Vector Machine; PAM, Prediction Analysis for Microarrays.
doi:10.1371/journal.pone.0073938.g003
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CPA, which was negative in the Ames test [31], too, but showed

positive results concerning mutagenicity in an in vivo liver

micronucleus test in female rats [32].

A central aim of the here proposed ensemble feature selection

method was the identification of class-specific mRNA signatures

which allow for a proper compound classification. The informative

Figure 4. Reclassification of the compounds CPA, TAA, and WY. (A) Points indicate treatment groups which were originally represented by a
vector containing the fold-changes of all signature genes and then transformed to its two principal components. Here, the informative genes for
discriminating GC vs. NGC after 3 days of repeated dosing were used. Groups of male animals are drawn as squares and female ones as circles. The fill
color of the points indicates the compound class. Polygons indicate the convex hulls of clusters corresponding to either male or female mice treated
with a certain class of compounds. (B) Similar plot as in (A), but the multi-gene signature for GC vs. NGC classification after 14 days was used here. (C)
The heatmap provides a graphical representation of the fold-changes of 15 selected signature genes from the 14-day signature for GC vs. NGC
classification. Rows correspond to genes and columns to treatment groups. Upregulated genes are colored in red and downregulated ones in green.
The colorbar on top indicates the corresponding compound classes. (D) Heatmaps showing confidence of predictions made by diverse C vs. NC
classifiers for male (M) and female (F) mice treated with CPA, TAA and WY for 3 days (left heatmap) or 14 days (right heatmap). (E) Similar illustration
as in (D) showing prediction outcomes of GC vs. NGC classifiers.
doi:10.1371/journal.pone.0073938.g004
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probesets were then used to classify the three ‘‘undefined’’

substances based on their gene expression patterns. Concerning

the signature genes, the expression patterns of TAA and WY

resembled those of GCs, whereas the pattern observed for CPA

was similar to that of NGCs (Figure 4E). Consistent with these

findings, it was also suggested by Waters et al. to classify TAA and

WY as Ames test negative genotoxic compounds [1].

In contrast to previous approaches, we employed ensemble

feature selection which is uncommon in toxicogenomics, but has

already been successfully used for other applications, such as

cancer diagnostics and biomolecular text mining [33,34]. We

chose this emerging method to increase the stability and

generalizability of the extracted mRNA signatures. Ideally, the

extracted signatures should be robust against changes in the

training data and independent of the applied feature selection

method. Thus, we propose to generate a consensus signature

derived from multiple bootstraps and an ensemble of algorithms

for the selection of informative genes. To this end, we employed

statistical filter methods as well as supervised wrapper methods for

feature selection. While the latter ones involve the use of machine

learning-based classifiers to assess the prediction accuracy for a

selected subset of features, the former ones assess the relevance of

features based on intrinsic properties of the data [35]. Especially

wrapper methods which involve learning an abstract model from a

set of training compounds may suffer from overfitting as the

number of features (i.e., all probesets represented on the

microarray) is typically much larger than the number of profiled

compounds in toxicogenomics datasets. However, in this study all

constructed models were found to be well generalizable to the

unknown test compounds which is supported by a high

performance in cross-validation.

Evaluating our predictive multi-gene biomarkers against signa-

tures known from the literature based on cross-validation, we

found that our mRNA signatures facilitate compound classification

with comparable or higher accuracy depending on the classifica-

tion task (Figure 5). Arguably, the literature-based signatures were

not perfectly suited for all evaluated settings, as different mouse

strains, treatment durations, compounds, and doses were used.

Furthermore, while all published informative gene sets were

derived from male mice exclusively, animals of both sexes were

considered in our study for signature inference and evaluation.

However, despite the different study designs, the performance

comparison showed that the previously proposed signatures are

fairly well generalizable.

In this study we demonstrated that despite of the additional

variation in gene expression profiles caused by the inclusion of

both sexes, we were able to extract robust and predictive gene sets

which show characteristic patterns indicative of carcinogenesis

irrespective of the sex of the sample material. We consider this as

an advantage over currently available mRNA signatures for rodent

hepatocarcinogenesis, which were derived solely from male

animals, and hence may have an increased risk to fail in predicting

female-specific carcinogens.

The choice of the right dose is crucial for the selection of

signature genes which are specifically deregulated in response to

the application of carcinogenic substances. Overdosing com-

pounds may mask the specific changes in gene expression which

are related to cancer initiation or progression, due to a huge

amount of deregulated genes orchestrating an unspecific stress

response [13]. On the other hand, low doses may be not

tumorigenic, and hence not cause differential expression of

potential biomarker genes. Jonker et al. proposed to use the

maximum tolerated dose (MTD) for dosing, which can be

determined in a subchronic study [13]. As for the compounds

analyzed here chronic mouse studies have already been per-

formed, we considered the cancerogenic dose from published

animal long-term studies and a multiple of the TD50 rate, which

induced tumors in half of the tested animals.

In a recent study, Auerbach et al. reported that the treatment

time is also a critical factor, which may highly impact the success

of a toxicogenomics approach [36]. The authors observed the

lowest error and a considerable increase of SVM margin scores for

their 90-day data, which points to a higher prediction confidence

for long treatment durations [36]. Uehara et al. also reported that

a higher accuracy of the prediction models could be achieved for

longer exposure durations [8,36]. Consistent with these findings

our results indicate that after 14 days of repeated dosing a more

reliable discrimination of GCs from NGCs is possible than after 3

days (Figure 3B). This applies in particular to the compound DCB,

which was not correctly classified by the majority of classifiers after

3 days. The misclassification of DCB may be in part explained by

deviations in its expression profile from the ones observed for other

NGCs (Figure 4C). However, characteristic changes in gene

expression, facilitating accurate detection of carcinogens in general

could already be extracted after 3 days of treatment (Figure 3A).

As the time of emergence of characteristic profiles may vary in a

compound-specific manner, Ellinger-Ziegelbauer et al. proposed to

represent each compound by expression data from multiple time

points, at which a sufficient number of deregulated genes could be

observed [6]. Nevertheless, we chose to focus on single time points,

as the premature determination of the optimal time points may not

be possible in the real use case, which is the classification of

completely unknown compounds. Furthermore, as early cellular

defense response patterns (e.g., enzyme induction) are expected to

become apparent after 3 days of carcinogenic treatment, whereas

adaptive changes in gene expression may be present in response to

oxidative damage, cell death, persistent toxicity or inflammation

after 14 days, we did not combine data from the two time points.

When assessing prediction accuracy depending on the signature

size, we found that predictions with tolerable reliability are

possible, based on the expression status of ten informative genes

(Figure 2A–B, E-F). This finding is also supported by recent work

from Uehara et al., who published a signature consisting of 9

Affymetrix probesets (7 different genes), which was shown to

discriminate NGC from NC in rat liver with reasonable accuracy

[8].

Pathway enrichment analysis of the 66 genes from the 14-day C

vs. NC signature (Table S1) against the KEGG database resulted

in significant enrichments in the PPAR signaling pathway

(p = 0.039) and the TGF-beta signaling pathway (p = 4.27E-4),

which are both involved in known mechanisms of hepatocarcin-

ogenesis [37,38]. For both GC vs. NGC signatures, we observed a

Figure 5. Performance comparison with signatures known from the literature. (A) The grouped bar plots depict the area under the ROC
curves obtained for novel and known signatures for the separation of C and NC after 3 days of treatment. For this purpose, the performance of
diverse classifiers was evaluated by a 3-fold cross-validation. Each bar corresponds to a certain classifier (see legend) and each group of bars refers to
a certain signature. The horizontal dashed line indicates the performance that would have been achieved by random guessing. The adjacent Venn
diagrams illustrate informative genes common between signatures. (B) Same plots as in (A), but for C vs. NC classification after 14 days of repeated
dosing. (C) Mean ROC scores and signature overlaps for GC vs. NGC classification after 3 days of treatment. (D) Same plots as in (C), but for GC vs.
NGC classification after 14 days of repeated dosing.
doi:10.1371/journal.pone.0073938.g005
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significant overrepresentation among genes related to metabolism

of drugs and xenobiotics by cytochrome P450 (p,0.05).

In order to identify informative genes which are relevant for

several classification tasks (C vs. NC, GC vs. NGC, GC vs. NC,

NGC vs. NC) and show class-specific expression patterns at

multiple time points (3 days, 14 days), we determined for each

gene in how many of the 8 evaluated settings it was selected as an

informative gene (Figure S4). The most frequently selected

probesets present in more than 50% of the predicted signatures

were Cyp2c50, Cyp2c55, Cyp2b10, S100a8, Gsta1, and Akr1b7

(Figure S5). However, our results indicate that a more reliable

classification can be achieved, if additional informative genes are

taken into account.

As the susceptibility to carcinogenic compounds as well as the

triggered changes in gene expression may vary between mouse

strains, future analysis should be conducted in order to validate to

what extent the inferred gene expression signatures can be

reproduced in other strains. Especially, the applicability of our

proposed signatures to transgenic mouse strains should be assessed

in future studies, as for instance Xpa/p53+/2 knockout mice were

shown to improve the prediction accuracy of bioassays while at the

same time reducing the required treatment duration [39].

Furthermore, we are currently assessing the correspondence

between signatures inferred for mice and rat, respectively, in a

closely related toxicogenomics study.

Recent toxicogenomics studies are mostly focused on profiling

the RNA expression of rodents after single or repeated exposure to

carcinogens [1]. Besides profiling the transcriptome, future studies

should also investigate compound-induced changes in the DNA

methylome, proteome or phosphoproteome, which could reveal

novel biomarker candidates facilitating reliable classification of

compounds with respect to their carcinogenic potential and

mechanism.

As a wide variety of mechanisms was proposed for NGC, it is

hardly feasible to extract a highly specific and at the same time

universal signature capturing the gene expression changes caused

by NGC treatment [3,4]. However, public toxicogenomics

databases (e.g., TG-GATEs and Drug Matrix), covering a rich

set of compounds and multiple representatives of each NGC

subclass, may facilitate the inference of mechanism-specific

signatures which would firstly allow for a more fine-grained

classification and secondly provide in-depth insights into individual

mechanisms [40].

In conclusion, the here proposed methodology was shown to

facilitate the extraction of robust gene expression signatures which

were incorporated into generalizable models for the prediction of

the carcinogenic class of compounds. These prediction models

may accelerate the screening for promising candidates, and hence

increase the efficiency and cost-effectiveness of preclinical drug

development.

Supporting Information

Figure S1 Accuracy and stability of signatures for
compound classification. (A) The line plots depict the mean

performance of GC vs. NC classification after 3 days of repeated

dosing, which was achieved based on gene sets extracted with

different feature selection methods. Each curve corresponds to a

feature selection method and the performance was assessed

depending on the number of genes selected as informative

features. The prediction accuracy was assessed on the samples

left out from 25 random subsamplings of the dataset (bootstraps),

each containing 90% of the data, and measured in terms of area

under the ROC curve. The inset bar plot depicts the ROC scores

averaged across bootstraps and signature sizes. (B) Performance of

GC vs. NC classification after 14 days of treatment illustrated as in

(A). (C) The correspondence of the extracted GC vs. NC gene sets

across 25 bootstraps was assessed based on the Kuncheva stability

index (KI) for each of the 4 employed feature selection methods.

The KI was then for each method plotted against the number of

selected signature genes. (D) Robustness of signatures for GC vs.

NC classification after 14 days of treatment illustrated as in (C).

(E, F) Prediction accuracy achieved with signatures for NGC vs.

NC classification after (E) 3 days and (F) 14 days of repeated

dosing, respectively, depicted as in (A). (G, H) Similar illustration

as in (C) showing robustness of signatures for NGC vs. NC

classification after (G) 3 days and (H) 14 days of administration,

respectively.

(PDF)

Figure S2 Classification results obtained for different
signatures. (A) The four heatmaps show the predictions

resulting from diverse binary classifiers for the discrimination of

GC from NC after 3 days (left two heatmaps) or 14 days (right two

heatmaps) of repeated dosing. For each dosing time two heatmaps

are depicted which correspond to male and female mice,

respectively. The rows correspond to different classifiers and the

columns to different treatment groups. The continuous prediction

scores, returned from the classifiers, were transformed to

confidence scores between 0 and 1, which provide an estimate

of the probability of class GC. The colorbar on top shows the true

class annotation. The black vertical lines separate the test samples

from the three folds of cross-validation. (B) Heatmaps illustrating

the classification outcome of diverse predictors to distinguish NGC

from NC based on characteristic gene expression profiles observed

in male and female mouse liver samples after 3 or 14 days of

administration. KNN, K-Nearest Neighbor; SVM, Support

Vector Machine; PAM, Prediction Analysis for Microarrays.

(PDF)

Figure S3 Classification results obtained for different
ensembles of feature selection methods. (A) The grouped

bar plots depict the area under the ROC curves achieved with

signatures which were inferred based on three different ensembles

of feature selection methods and applied for the separation of C

and NC after 3 days of treatment. The first ensemble contains the

four methods SVM, SVM-RFE, Golub-Ratio and PAM, the

second one is limited to SVM and SVM-RFE and the third one

comprises PCA and PLS-DA. The performance of the signatures

was determined based on the prediction outcomes obtained from

six different classifiers which were evaluated in a 3-fold cross-

validation. In the plot depicted above each bar corresponds to a

certain classifier (see legend) and each group of bars refers to a

certain ensemble of feature selection methods. The horizontal

dashed line indicates the performance that would have been

achieved by random guessing. The adjacent Venn diagrams

illustrate informative genes common between signatures. (B)
Same plots as in (A), but for C vs. NC classification after 14 days of

repeated dosing. (C) Mean ROC scores and signature overlaps for

GC vs. NGC classification after 3 days of treatment. (D) Same

plots as in (C), but for GC vs. NGC classification after 14 days of

repeated dosing.

(PDF)

Figure S4 Selection frequency of signature genes. The

figure depicts a histogram showing the number of genes selected

twice or more times as informative genes for compound class

prediction. For the generation of this figure, we considered 8

predicted signatures for solving 4 binary classification tasks (C vs.

NC, GC vs. NGC, GC vs. NC, NGC vs. NC) after 3 days and 14
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days of repeated dosing, respectively. The genes selected 4 and 5

times, respectively, are listed next to the histogram.

(PDF)

Figure S5 Expression profiles of most frequently select-
ed signature genes. The heatmap shows the expression profiles

of all candidate biomarker genes which are contained in at least 3

of the 8 predicted signatures. These signatures were proposed for 4

different classification tasks (C vs. NC, GC vs. NGC, GC vs. NC,

NGC vs. NC). For each classification task two treatment durations

(3 days and 14 days) were considered, independently.

(PDF)

Table S1 mRNA signatures extracted with SVM, SVM-RFE,

PAM and Golub-Ratio. The Excel sheets contain the Affymetrix

IDs of the probesets selected by the following ensemble of feature

selection methods: Support Vector Machines (SVM), SVM-based

Recursive Feature Elimination (SVM-RFE), Prediction Analysis

for Microarrays (PAM) and the statistical ratio proposed by Golub

et al. (Golub-Ratio). If possible the corresponding gene symbol,

EntrezGene ID and description are provided for each probeset.

(XLS)

Table S2 mRNA signatures extracted with PCA and PLS-DA.

The Excel sheets contain the Affymetrix IDs of the probesets

selected by the following ensemble of feature selection methods:

Principal Component Analysis (PCA) and Partial Least Squares

Discriminant Analysis (PLS-DA). If possible the corresponding

gene symbol, EntrezGene ID and description are provided for

each probeset.

(XLS)

Table S3 mRNA signatures extracted with SVM and SVM-

RFE. The Excel sheets contain the Affymetrix IDs of the probesets

selected by the following ensemble of feature selection methods:

Support Vector Machines (SVM) and SVM-based Recursive

Feature Elimination (SVM-RFE). If possible the corresponding

gene symbol, EntrezGene ID and description are provided for

each probeset.

(XLS)

Table S4 Published mRNA signatures for the detection of

hepatocarcinogenicity in mice. The Excel sheets contain the

Affymetrix IDs of published signatures for the toxicogenomics-

based detection of carcinogens in mouse liver. If possible the

corresponding gene symbol, EntrezGene ID and description are

provided for each probeset. For signatures which were not derived

from an Affymetrix platform, the original probeset IDs are listed in

an additional column.

(XLS)
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