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The nuclear envelope (NE) consists of an inner and an outer membrane, nuclear 
pore complexes, and the underlying nuclear lamina, a filamentous scaffold 
structure formed by lamins. The inner membrane is linked to the lamina and 
chromatin by its integral membrane proteins, such as lamin B receptor (LBR), 
emerin, and various isoforms of lamina-associated polypeptides (LAP) 1 and 2, 
which bind lamins and/or chromatin. During mitosis, the NE is disassembled upon 
phosphorylation of its core components, and the NE is torn apart by a dynein-
driven microtubule-dependent mechanism. Nuclear reassembly after sister 
chromatid separation requires a timely coordinated and dephosphorylation-
dependent association of lamin-binding proteins and lamins with chromosomal 
proteins and targeting of membranes to specific sites on chromosomes. Various 
chromatin-binding domains in lamina proteins, such as the LEM domain, present 
in all LAP2 isoforms and in emerin, as well as unique regions in lamina proteins 
and in specific LAP2 isoforms have been implicated in defined steps of NE 
reformation. Furthermore, novel mechanisms of membrane fusion involving Ran 
GTPase are just beginning to emerge. 
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COMPONENTS AND POTENTIAL FUNCTIONS OF THE NUCLEAR 
ENVELOPE  

The eukaryotic nucleus is a complex organelle that contains the chromosomes and is the site of 
DNA replication, RNA transcription and processing, and ribosome assembly. Nuclear functions 
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largely depend on the structural organization of the nucleus and on the formation of a 
membranous structure, the nuclear envelope (NE), which separates nuclear and cytoplasmic 
cellular activities. The NE is a double membrane layer composed of two concentric bilayers, the 
outer nuclear membrane, which is continuous with the endoplasmic reticulum (ER), and the inner 
nuclear membrane (INM). Outer and inner membranes are separated by a luminal space and are 
joined at sites, where nuclear pore complexes (NPCs) are inserted into the double membrane 
system. While the outer membrane is biochemically and functionally similar to the ER and can be 
considered as a subcompartment of the ER, the inner membrane is clearly distinct in that it 
contains a specific set of integral membrane proteins[1,2]. The unique protein composition of the 
INM is thought to be achieved mainly by free diffusion of newly synthesized membrane proteins 
from the ER through the plane of the outer membrane and the “pore membrane”, which connects 
inner and outer membranes in lateral channels of NPCs, to the inner membrane, where they are 
retained and stably anchored by specific interactions with intranuclear structures[3,4], such as the 
lamina and chromatin (reviewed in [5]).    

Underneath the inner membrane is a meshwork of nuclear-specific intermediate filaments, 
termed the nuclear lamina, which provides structural support for chromosomes and maintains 
nuclear shape and mechanical stability (for review see [6]), spaces NPCs, and is required for key 
nuclear functions, including DNA replication[7,8.9], and RNA polymerase II-dependent 
transcription[10]. The core structure of the nuclear lamina is formed by type V intermediate 
filament proteins, the lamins, which assemble to a meshwork of tetragonally organized 10-nm 
filaments underneath the INM (so far only shown in Xenopus oocyte nuclei)[6,11]. In addition to 
the lamins, a growing number of lamin-binding proteins, mostly integral membrane proteins of 
the INM[1] are also considered as genuine components of the nuclear lamina. Interestingly, there 
is strong evidence, that lamins[12,13] and lamin-binding proteins[14,15] are not restricted to the 
nuclear periphery but exist throughout the nuclear interior. Their molecular structure and 
functions are, however, still poorly defined[5,6].     

The number and complexity of lamins and lamin-binding proteins has increased during 
metazoan evolution. While Caenorhabditis elegans has only one lamin gene and protein, 
vertebrates have three lamin genes (LMNA, LMNB1, LMNB2) encoding at least seven distinct 
isoforms (for review see [16]). Among those, B-type lamins are constitutively expressed in cells 
throughout development and every cell expresses at least one form of B-type lamins. A-type 
lamins, comprising lamin A and its smaller splice variant lamin C are only expressed in later 
stages of development and in differentiated cells. Only B-type lamins contain a stable C-terminal 
farnesyl modification, which is important but not sufficient for targeting and anchoring the 
protein to the nuclear membrane[17,18,19,20].  

To date, the best characterized vertebrate lamin-binding proteins in the INM include: lamin 
B receptor (LBR, p58) that has eight transmembrane domains[21], which share extensive 
homology with sterol reductases[22,23], and interacts with B-type lamins in vivo and in 
vitro[24,25,26]. Lamina-associated-polypeptide 1 (LAP-1) comprises three alternatively spliced 
type II integral nuclear membrane proteins (with a single transmembrane spanning region)[27] 
that interact with A- and B-type lamins[28,29]. Lamina-associated polypeptide 2 (LAP2) 
(formerly also called thymopoietin) is a family of six alternatively spliced proteins, of which four 
(LAP2 β, γ, δ, and ε) are type II membrane proteins[30,31]. LAP2β has been found to bind lamin 
B in vitro[28] and in vivo[32]. LAP2ζ is a truncated version of the LAP2 membrane proteins that 
has no transmembrane domain, but neither its cellular localization nor its functions are known. 
LAP2α is structurally and functionally different from the other isoforms. It shares only the N-
terminal 187 amino acids with all the other LAP2 isoforms, but contains a unique C-terminus 
(506aa) lacking a transmembrane domain[33]. LAP2α is also unique among the LAP2 isoforms 
as it is located throughout the nucleus[14] and binds specifically A-type lamins in the nuclear 
interior[15]. Emerin , a type II inner nuclear membrane protein[34,35], and MAN1, a membrane 
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protein containing two transmembrane regions[36], are related to LAP2, as all proteins share a 
~40-amino-acid-long highly homologous structural motif, the Lamina-associated-polypeptide 
Emerin MAN1-domain (LEM domain,) in their N-termini, which comprises a helical turn and 2 
large parallel α-helices connected by a 11 to 12 residue loop[37,38]. Emerin binds both A- and B-
type lamins in vitro[39,40,41,42] and its retention in the NE requires A-type lamins[43,44]. 

In addition to the lamin-binding proteins other integral proteins of the INM have recently 
been identified in vertebrates, such as nurim containing 5 predicted transmembrane domains and 
only few hydrophilic residues[45], Unc-84 and LUMA with three to four predicted 
transmembrane domains[46,47], a Ring Finger Binding Protein (RFBP), which resembles a type 
IV phospholipid pump[48], and a new family of spectrin repeat containing type II membrane 
proteins, Myne-1 and Nesprins[49,50]. Interestingly, Myne-1 has been described to contain an 
interrupted LEM-like motif and to interact with lamin A[50], but more data are needed to show 
any functional overlap with LEM proteins.   

In addition to the nuclear membrane and the nuclear lamina, NPCs are genuine constituents 
of the NE. NPCs are large and extremely elaborate structures that mediate bidirectional traffic of 
macromolecules across the nuclear membranes. They are made of a massive symmetrical 
framework comprising about 50 different proteins and show an eightfold rotational 
symmetry[51,52]; 50- to 100-nm-long fibers joined at their distal ends by a ~50-nm ring form a 
basket like structure extending from the nuclear surface of the core NPCs into the nuclear interior. 
Nup 153, whose dynamics have been studied fairly well (see below), is a constituent of this 
nucleoplasmic basket[53]. Two integral membrane proteins have been described in the “nuclear 
pore membrane”: gp210[54,55] and POM 121[56], which may anchor NPCs in the membrane.   

The importance of lamina proteins for cell and tissue function has been underlined by 
several recent findings: functional disruption approaches in Drosophila[57], C. elegans[58], and 
cultured mammalian cells[59] revealed that B-type lamins are essential for viability. Targeted 
disruption of A-type lamins in mice caused muscular dystrophy, loss of adipose tissue, and early 
death[43]. Furthermore, mutations in the LMNA gene or in the gene encoding emerin were linked 
to heritable human diseases (laminopathies)[60,61,62,63,64]. Emerin mutations cause X-linked 
Emery Dreifuss Muscular Dystrophy (XL-EDMD)[65], mutations in LMNA — an autosomal 
dominant form of the disease (AD-EDMD)[66], characterized by tendon contractures, wasting 
and weakness of skeletal muscle, and life threatening cardiac conduction problems. Dominant 
LMNA mutations were also linked to dilated cardiomyopathy with conduction system disease 
(DCM-CD)[67], limb girdle muscular dystrophy (LGMD1B)[68], and familial partial 
lipodystrophy (FPLD)[69,70], homozygous defects in LMNA to autosomal recessive axonal 
neuropathy (Chariot-Marie-Tooth disorder type 2, AR-CMT2)[71]. Although these findings point 
to essential functions of lamina proteins, the molecular mechanisms are still subject to 
speculation, suggesting roles in structural organization of chromatin in the nucleus, in controlling 
gene expression directly via transcription factors or indirectly by epigenetic mechanisms, and in 
cell proliferation. 

NE DYNAMICS DURING INTERPHASE  

 
Like cytoplasmic intermediate filaments, the components of the nuclear lamina, including lamins 
and lamin-binding proteins, are highly resistant against solubilization in buffers containing 
nonionic detergent and high salt[28,72], leading to the assumption that the lamina is a highly 
stable, undynamic structure. Expression of GFP-lamin fusions combined with fluorescence 
recovery after photobleaching (FRAP) analyses revealed a very slow recovery in late G1 and S-
phase cells[13,73,74], supporting the notion of a highly stable structure. FRAP analysis of cells 
expressing labeled NPC protein POM 121 and lamin B revealed that individual NPCs do not 
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show independent movements relative to each other, most likely due to their tight attachment to 
the nuclear lamina[74]. These authors observed movement of NPCs and lamina structures in 
synchronous waves as if they where part of an elastic network, providing compelling evidence for 
the existence of a flexible but stable lamina – NPC scaffold that supports the nuclear membrane.   

Dynamics of GFP-lamin, however, was significantly higher in early G1 cells, when nuclei 
grow rapidly[13], suggesting rapid incorporation of new subunits into the growing nuclear 
lamina. Interestingly, expression of a lamin-binding fragment of LAP2β in growing cells was 
found to inhibit nuclear lamina growth and inhibited progression of cells into S-phase[75]. These 
results imply two important mechanisms for nuclear lamina assembly in interphase. Firstly, 
lamina assembly requires interaction of lamin subunits with lamin-binding proteins in the 
INM[18], a notion also supported by the inability of lamins to form lamina like structures in vitro. 
Secondly, lamina growth is essential for establishing a fully functional nucleus allowing DNA 
replication. This model is in line with earlier studies showing dependence of DNA replication on 
an intact lamina in in vitro assembled Xenopus oocyte nuclei and in cells[7,8,9,76]. 

Particularly A-type lamins localize transiently in the nuclear interior during G1 
phase[15,77]. Thus, A-type lamins are most likely not directly incorporated into the nuclear 
lamina, but accumulate first in the nuclear interior, where they may be post-translationally 
processed and/or modified. Similarly, microinjected lamin A or lamin C were found to first 
accumulate in nucleoplasmic foci to different extent, before the majority was incorporated into 
the nuclear lamina[78,79]. At least for newly synthesized lamin A, which is post-translationally 
modified by C-terminal farnesylation and subsequent proteolytic cleavage of its 15 aa C-terminal 
residues containing the farnesyl group[20], intranuclear localization may be partially linked to 
processing and maturation of the protein[80,81], but the molecular mechanisms remain unclear.   

Despite the very stable nature of interphase lamina and NE structures, there has to be a 
steady exchange of subunits in the assembled structure, as dominant negative lamin mutants 
lacking their amino termini rapidly disrupted endogenous lamina structure when expressed in 
cells[8,76,82]. In agreement with FRAP studies in GFP-lamin B– and GFP-lamin A–expressing 
cells, showing higher overall stability of B- vs. A-type lamin structures, A-type lamins are more 
efficiently and more rapidly disassembled by lamin mutants[15,82]. 

NE DISASSEMBLY AT THE ONSET OF MITOSIS 

 
The more complex the NE has become during metazoan development the more efficient ways had 
to be developed to disassemble the NE. In vertebrates, the disassembly of the NE defines the 
transition between prophase and prometaphase. In lower multicellular eukaryotes C. elegans and 
D. melanogaster, the NE is disrupted only partially and/or at later stages of mitosis[16,83], and 
NE dynamics can be considered as an intermediate between a closed mitosis with no NE 
breakdown in yeast and a completely open mitosis in vertebrates. NE breakdown involves the 
depolymerization of the lamina, the fragmentation and removal of the nuclear membranes from 
condensing chromatin, and the disassembly of NPCs. 

Interestingly, very recent data suggest that microtubules themselves help to efficiently 
disassemble the NE in vertebrates by literally ripping open the NE[84,85] (see Fig. 1). Highly 
sophisticated live cell imaging analyses of cells expressing fluorescent GFP-fusion proteins[86], 
immunofluorescence[87], and electron microscopy[88] revealed that duplicated centrosomes 
attach to the NE in nuclear invaginations. While previous studies have suggested that the NE 
ruptures at sites of invaginations due to pushing of microtubules[87], recent studies clearly 
showed that the NE seemed to be pulled apart at sites distal to the invaginations[86,88]. By  
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FIGURE 1. Molecular mechanisms of NE disassembly at the onset of mitosis. Arrows denote specific mechanisms known to be 
involved in NE disassembly. (A): Dynein/dynactin complexes attach at the NE and migrate towards the minus ends of microtubules, 
assembled from cytoplasmic centrosomes in NE invaginations, and thus, generate a tension that tears the NE open at sites distal to the 
centrosomes. (B): Lamins and Lamin-binding proteins are phosphorylated by mitotic kinases and dissociate from the lamina and 
chromatin. (C): NPCs are partially disassembled and become leaky, allowing larger molecules to passively diffuse in or out of the 
nucleus. 

 
pulling NE components towards the centrosomes, membranes seem to be torn open due to 

tension. The mechanical force is provided by a minus-end-directed microtubule motor dynein, 
which is recruited to the NE at late G2 phase[88]. Overexpression of a dynactin component, 
which usually mediates interaction of dynein with membranes, was found to delay NE   
breakdown, probably by interfering with the attachment of endogenous dynein to the membranes. 
The interaction partner for dynein at the NE remains, however, obscure. It also has to be stated, 
that the microtubule-dependent NE rupture only facilitates NE breakdown, but is not essential for 
this process, as nuclear disassembly can also occur in the absence of microtubules. 

In view of this novel model for NE disassembly, the contributions of other NE components 
or other mechanisms to NE breakdown (Fig. 1) appear less clear. The disassembly of NPCs 
provides one example for another potentially important process in NE breakdown. Using 
fluorescent dextran dyes, large enough to be excluded from the nucleus, Terasaki et al.[89] could 
distinguish two phases of nuclear accumulation of dextran during NE breakdown in starfish 
oocytes, an initial slow uniform increase followed by a massive wave. The slow nuclear 
translocation of dextran has been attributed to partial NPC disassembly causing leakiness, while 
the massive wave was correlated with the formation of holes in the NE. This observation 
suggested that loss of NPC function may precede NE rupturing and may thus allow diffusion of 
larger protein complexes into the nucleus, which may initiate disassembly. In line with this 
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hypothesis, distinct stages of NPC disassembly have been visualized by field emission scanning 
electron microscopy during mitosis in early Drosophila embryos, including the release of the 
central transporter and the removal of the cytoplasmic ring subunits followed by removal of star 
rings[90]. On the other hand, studies in sea urchin embryonic nuclei have shown that blocking 
NPC function by wheat germ agglutinin prevented NE breakdown, suggesting that active nuclear 
transport is required for initiation of NE breakdown[91]. A second possibility, however, is that 
binding of wheat germ agglutinin to nucleoporins directly blocks NPC disassembly.  

In mammalian cells, transport of mitotic cyclin-dependent kinases through NPCs[92] may be 
required for efficient phosphorylation of lamins and lamin-binding proteins, which then trigger 
the disassembly of lamins and the dissociation of proteins from chromatin (for review see: 
[6,33,93]). Phosphorylation might be a prerequisite for microtubule-dependent membrane 
rupture, as phosphorylation-dependent disassembly of lamin structures or dissociation from 
chromatin may destabilize the NE (Fig. 1). In line with this notion, cells expressing lamin mutants 
that can not be phosphorylated by mitotic kinases did not efficiently disassemble the NE[94]. 
Furthermore, lamin A was found to dissociate from the nuclear lamina into the nucleoplasm in 
early prophase, before it was massively released into the cytoplasm upon NE rupture[87]. This 
suggests that (phosphorylation-dependent) disassembly of lamin A structures occurs before the 
NE becomes leaky regardless of the mechanism of NE rupturing. 

Phosphorylation of LBR[95,96] and LAP2[14,28] likely triggers the dissociation of 
membranes from chromatin. B-type lamin subunits often remain associated with membranes due 
to their C-terminal farnesyl modification, and probably also due to an interaction with LBR 
throughout mitosis[24]. Immunofluorescence and live cell imaging studies suggested that the 
nuclear membranes merge into the ER and nuclear membrane proteins diffuse freely throughout 
the mitotic membrane structures[97,98]. Other studies involving cell lysis and membrane 
fractionation suggested domain specific vesicularization of the nuclear membrane into different 
populations of vesicles containing different sets of proteins from the inner nuclear membrane, the 
pore membrane or the outer nuclear membrane/ER[99,100]. However, in these studies membrane 
vesicularization and fragmentation might have been caused by cell homogenization (discussed in 
[101]). Eggs of Xenopus or sea urchin, on the other hand, which contain huge stockpiles of 
membranes required to support rapid cell divisions, may contain different types of membranes 
that support nuclear assembly[102,103,104]. 

POSTMITOTIC REASSEMBLY OF THE NE 

 
Open mitoses poses problems, because NE and nuclear structure reassembly has to proceed in a 
tightly regulated manner after chromatid separation, ensuring that the interphase organization of 
chromatin can be reestablished in daughter nuclei[16].      

Numerous studies have shown that the assembly of the NE and the establishment of nuclear 
and chromatin organization after cell division involves the targeting and assembly of lamins and 
lamin-binding proteins in a temporally and spatially regulated manner. 

Interactions of NE Components with Chromosomes 

In principle, the targeting of NE components to the chromosomal surface could be mediated by 
any protein that is able to interact with DNA or chromosomal proteins. Lamins can interact with 
and assemble around chromatin in vitro. This assembly involves their rod domain[105,106] 
and/or their C-terminal tail domain that binds to core histones[107,108]. In addition, many lamin-
binding proteins were shown to interact with DNA and/or chromosomal protein. LBR interacted 
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directly with DNA[26,109] and bound to human heterochromatin HP1-type chromodomain 
proteins[110,111] and to histones H3/H4 in a histone acetylation-dependend manner[112,113]. In 
cross-linking studies LBR was also found to associate with chromatin-associated HA95, a nuclear 
protein with high homology to the nuclear A-kinase anchoring protein AKAP95[114]. LAP2 
proteins contain several chromatin and/or DNA binding domains, which are either common to all 
or unique to some isoforms. The LEM domain (amino acids 111–152) in the constant N-terminal 
region common to all LAP2 proteins (see also Fig. 3), was found by yeast two hybrid assays and 
by biochemical studies to interact with the chromosomal protein Barrier-to-Autointegration 
Factor (BAF)[115,116]. BAF is an 89-residue, highly conserved protein in multicellular 
eukaryotes[117] that binds double-stranded DNA without sequence specificity forming 
nucleoprotein complexes (dodecamers) between DNA molecules[118]. The LEM domain in 
emerin also bound BAF[39], that in MAN1 has not been experimentally tested yet. Moreover, the 
N-terminal 50 residues of the LAP2 constant region were found by structural studies to contain a 
LEM-like motif that bound DNA[37] and an N-terminal 85 residues LAP2 fragment containing 
the LEM-like motif associated with chromosomes in vitro[32]. In addition to the common N-
terminal chromatin binding domains, a DNA binding region has been identified in the LAP2ß-
specific region[119], and a chromosome association region in the unique C-terminus of the 
nucleoskeleton-associated isoform LAP2α[120,121]. Similar to LBR, LAP2ß has also been 
identified by cross-linking experiments to associate with HA95[114]. Thus a complex sequence 
of interactions between NE components and chromatin is likely involved in the reformation of 
fully functional daughter nuclei after sister chromatid separation. 

Potential Mechanisms of NE Assembly 

 
In the past years, several labs have investigated the detailed timing of the accumulation of 

different NE proteins relative to each other at decondensing chromosomes by 
immunofluorescence and time-lapse microscopic studies in fixed and living cells. By transient 
expression of GFP-tagged NE proteins Haraguchi et al.[122] could observe membrane targeting 
to chromosomes 5 min after metaphase-anaphase transition, involving accumulation of LBR and 
emerin. This was followed by NPC assembly between 5 to 7 min after metaphase-anaphase 
transition, involving early accumulation of Nup153 and p62 NPC protein. Nuclear import activity 
could be observed as early as 8 min after metaphase-anaphase transition, suggesting that nuclear-
transport-dependent steps may be important for later stages of NE assembly and/or for NE 
growth. LAP2β was also found to accumulate at chromosomes early[13,28,123] at around the 
same time as emerin[124]. Finally, we have shown that LAP2α assembled around chromosomes 
even earlier than LAP2β[121], suggesting that it is the first protein among the NE/nucleoskeleton 
components to associate with chromosomes during assembly. Concerning the lamins, recent 
studies applying GFP tagged lamins have shown that assembly of B- and A-type lamins followed 
clearly different pathways. B-type lamins associated with chromosomes at early stages of NE 
reformation, yet LAP2β associated earlier, as it had nearly completely accumulated around 
chromosomes, when lamin B was detectable on the chromosomal surface[13]. Nevertheless, these    
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FIGURE 2. Differential attachment sites of proteins at chromosomes during nuclear assembly. (A): Schematic representation of a 
half-spindle and separated sister chromatids at anaphase, showing preferred attachment of LAP2α, BAF, and emerin at core regions, 
and LBR, lamin B and probably LAP2β at peripheral regions of decondensing chromosomes. LEM domains and transmembrane 
regions of proteins are indicated; LAP2α is labeled with a, LAP2β with b, and emerin with e. (B): Confocal immunofluorescence 
image of a cell in anaphase expressing YFP-labeled LAP2α (green) and CFP-labeled LBR (red), and phase contrast image of the same 
cell. Merge of red and green stain is shown to visualize the different localization of proteins at chromosomes during nuclear assembly 
in anaphase. Image was kindly provided by Thomas Dechat. Bar represents 10 µm. 
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FIGURE 3. Specific interaction of LEM-domain proteins during nuclear assembly. Domains in LAP2 proteins and in emerin are 
shown. Numbers in boxes indicate the sequence of interactions occurring during NE assembly after mitosis, and red arrows denote 
interaction domains in the proteins. Black arrows denote interactions, which have not been shown to occur at specific time points of 
assembly and/or may be important for stabilizing interactions of assembled NE with chromatin in interphase (HA95, DNA) or 
controlling gene expression (GCL[169]) For details, see text.    

 
studies indicated that a significant fraction of lamin B may access chromosomes directly 

prior to NE assembly without being imported through NPC. The bulk of lamin A, on the other 
hand, seemed to translocate through newly assembled NPCs and to accumulate in the nuclear 
interior rather than the nuclear periphery[13], where they may interact with intranuclear LAP2α 
structures in late telophase/G1 phase[14,15]. Thus, the order of assembly of these proteins may 
be: LAP2α, followed by membrane proteins LAP2β, LBR, and emerin, and the NPC proteins 
NUP 153 and POM 121, followed by lamin B, followed by lamin A.  

Another intriguing difference in the dynamic behavior of NE proteins during nuclear 
assembly was observed in regard to the sites, where proteins associate with chromosomes (Fig. 
2). LAP2α accumulated at “core regions” of the bulk of decondensing chromosomes, which are 
the regions next to the spindle pole- and midspindle areas[5,14] (Fig. 2B), emerin was first seen 
at more peripheral sites but accumulated then also at the core regions[122,125], when also a 
subfraction of lamin C was detectable there (our unpublished observation). LAP2β, lamin B, and   
particularly LBR accumulated initially at the peripheral chromosomal regions before they formed 
a continuous rim around the decondensed chromatin[13,97,122,124,125]. This strongly suggested 
that the chromosome association of these different sets of proteins involves different mechanisms.  

The different behavior of LAP2α and LBR can be easily explained by their interactions with 
different proteins on chromosomes, such as HP1 and histones for LBR vs. BAF for LAP2α (see 
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above). The different dynamics of LAP2α, LAP2β, and emerin in regard to timing and initial site 
of chromosome association seem, however, less obvious, as all proteins share the LEM domain 
which mediates interaction with chromosomal BAF.   

Several recent observations might help to explain this phenomenon. Firstly, we could show, 
that the association of LAP2α with chromosomes at early stages of assembly, required the C-
terminal chromatin binding domain that is unique for LAP2α, while the N-terminal LEM-domain 
was dispensable for this interaction[121] (Fig. 3). Secondly, fragments that contained the LEM 
domain but lacked the α-specific chromatin-binding region did not associate with chromosomes 
in vivo and in vitro[120,121]. Thirdly, in vitro nuclear assembly assays showed that initial 
binding of full length LAP2α is required for membrane assembly around chromosomes, while 
chromosome binding fragments of LAP2α lacking the LEM domain inhibited assembly[120]. 
Thus one can envisage the following model for the initial stages of assembly (Fig. 3): LAP2α 
associates first with chromosomes via its C-terminus and this interaction does not depend on or 
involve the N-terminal LEM domain. This association may trigger conformational changes on the 
chromosomal surface and/or target cytoplasmic BAF to the chromosomes and/or induce post-
translational modification of BAF or other chromosomal proteins, thus allowing interaction of the 
LEM domain with BAF. We propose that LAP2β and emerin are then recruited to “active” BAF 
by their LEM domains and form membrane structures around the chromosomal surface. This 
model is supported by three recent findings. Firstly, BAF localized to the same core regions on 
chromosomes, where LAP2α accumulated[125]. Secondly, expression of a mutant BAF that did 
not bind to the LEM domain and to DNA and failed to localize at core domains inhibited 
assembly of emerin, LAP2β, and lamin A, but not lamin B, at the NE[125]. Unfortunately, 
LAP2α has not been tested yet in these cells. Thirdly, addition of BAF to in vitro Xenopus 
nuclear assembly reactions deregulated chromatin condensation, causing enhanced chromatin 
decondensation at low concentrations and a block of decondensation and nuclear assembly at 
higher concentrations[126]. 

Contribution of Individual Proteins to NE Assembly 

NE assembly includes a complex, highly regulated, and timely coordinated sequence of 
interactions. To analyze the specific contributions and importance of different NE components 
and their interactions for nuclear assembly, several labs have expressed mutants in cells or have 
added mutant proteins to Xenopus and mammalian in vitro nuclear assembly assays, or have 
immunodepleted specific NE proteins from in vitro assembly extracts. As mentioned above, 
addition of wild type BAF to Xenopus egg extracts[126], or expression of BAF mutants lacking 
emerin- and DNA binding in cells[125] interfered with NE assembly. Similarly, addition of 
LAP2α mutants missing the LEM domain to mammalian nuclear assembly reactions[120], or 
addition of N-terminal LAP2 constant region to Xenopus egg extracts[127] inhibited assembly of 
nuclear membranes. However, expression of the LAP2 constant region in cells had no 
effect[120,121]. Immunodepletion of LBR from membrane vesicles of avian cells inhibited 
binding to chromosomes[128] and addition of LBR antibodies to sea urchin egg extracts affected 
nuclear assembly[129].  

Interestingly, studies in the Xenopus nuclear assembly system have revealed two distinct 
vesicle populations[104], which contain different sets of membrane proteins, and recruitment of 
these vesicles in an ordered fashion was essential for nuclear membrane assembly[103]. This, 
however, may be a specific feature in oocytes that contain huge stockpiles of membranes. Taking 
together, interfering with functions of most NE/chromatin proteins significantly affects NE 
assembly, suggesting that all these proteins are essential for nuclear assembly during a specific 
stage or in a specific cell system.  
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The contribution of lamins to NE assembly has been controversial[130]. While 
immunodepletion of lamins from Xenopus in vitro nuclear assembly extracts did not inhibit NE 
formation[9,131], other studies using Drosophila, mammalian, and Xenopus extracts showed that 
immunoadsorption of lamins inhibited NE assembly[132,133,134]. The different results were 
most likely caused by the different efficiencies in depleting and/or deactivating lamins by 
antibodies or might be attributed to the continued presence of aggregated lamins in the assembly 
reaction. Lopez-Soler et al. have recently added a peptide representing the C-terminal domain of 
Xenopus lamin B3, which inhibited lamin interactions and lamina assembly, to nuclear assembly 
reactions and found inhibition of membrane assembly around chromatin[135]. Conversely, 
inhibition of lamin B assembly in HeLa cells by inhibiting its protein phosphatase 1 (PP1)- 
dependent dephosphorylation did not block the assembly of the nuclear membrane and of lamin 
A, but induced apoptosis in G1 phase[136,137]. Thus, although a polymerized lamina (containing 
lamin B) is not important for assembly of the nuclear membrane, it is essential for cell viability in 
interphase, as also shown by functional disruption of B-type lamins in Drosophila[57] and C. 
elegans[58]. Taking all these experiments together, one may conclude that lamins may be 
important for nuclear membrane assembly, a typical lamina however, is not. 

Assembly of NPCs 

As for NPC assembly, basket-associated Nup 153 and the pore membrane protein POM 121 are 
the first NPC proteins to associate with chromatin, whereas pore membrane protein gp210 and 
Tpr, which associates with the nuclear surface of NPCs, accumulate later[123]. The sequential 
recruitment of NPC proteins may reflect the appearance of discrete intermediates in the assembly 
of mature NPCs in vitro[138]. Thus, binding of Nup 153 or POM 121 to chromatin could define 
sites of NPC assembly, which subsequently may recruit additional hierarchies of NPC proteins. In 
line with such a hypothesis, NPCs assembled in the absence of Nup 153 from immunodepleted 
extracts lacked several basket structures, were not stably anchored in the NE, and were defective 
in the importin-mediated transport[139]. In other studies Nup 153 was found to interact with 
lamin LIII, and Nup153 assembly at chromosomes was dependent on the formation of a 
lamina[140]. Thus, Nup153 may be important for linking the NPC to the lamina. Strikingly, 
however, Nup153 fluorescence recovered much faster than those of other NPC proteins[74], 
indicating that Nup153 undergoes a rapid exchange between intranuclear and NPC associated 
pools. Thus Nup 153 may have different roles during assembly and in mature NPC, where it may 
mainly be involved in transport. The presence of zinc-finger motifs in Nup153 that may mediate 
DNA interaction[141] may facilitate its early association with chromosomes during nuclear 
reassembly in a membrane-independent manner. 

REGULATION OF NE DYNAMICS 

Phosphorylation-Dependent Mechanisms 

The rapid disassembly of the NE at the onset of mitosis is driven by mitotic phosphorylation of 
lamins[142], LAP1 and LAP2[14,28,33], probably LBR[95,96,109,143,144], NPC 
proteins[145,146], and most likely other NE components. For lamins, p34cdc2 kinase, has been 
identified as the most prominent mitotic kinase involved in the disassembly of the lamina in vivo 
and in vitro[94,147,148,149,150], and ectopically expressed lamin A with mutations in the cdc2 
phosphorylation sites failed to be disassembled during mitosis. There are also other kinases 
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known to be involved[151], such as PKC[152,153]. Membrane proteins are most likely also 
targets for mitotic p34cdc2 kinase, but this has not been confirmed by mutating the respective 
phosphorylation sites in the proteins and analyzing the effect on assembly/disassembly in vivo. 
LBR was also shown to be phosphorylated by a serine/arginine kinase[95,144] that modulated 
interaction of LBR with other nuclear proteins.  

Nuclear reassembly requires phosphatase activity and, at least for B-type lamins, has been 
shown to involve phosphatase PP1[154]. PP1 is targeted to the NE by a membrane protein of the 
ER and the NE, protein A-kinase anchoring protein (AKAP149)[155]. PP1 recruitment from 
chromosomes to membranes at the nuclear periphery in telophase is a prerequisite for assembly of 
B-type lamins. Inhibition of PP1 association with AKAP149 by a peptide containing the PP1 
binding domain of AKAP149 resulted in lack of assembly of B-type lamins and 
apoptosis[136,137]. These findings suggest that lamin B assembly is dependent on the presence 
of membranes at the chromatin surface and confirms time-lapse microscopic studies showing that 
lamin B assembly starts after LAP2β-containing membranes have bound to chromosomes[13]. 
Interestingly, assembly of A-type lamins was not effected by the peptide, supporting other studies 
which show different pathways of assembly of A- and B-type lamins after mitosis[13,15].  

Mechanisms Involved in Later Stages of NE Assembly 

 
While early stages of NE assembly, such as membrane targeting to chromosomes, are energy 
independent and may mostly depend on protein dephosphorylation, the events causing membrane 
fusion are less well known. GTP hydrolysis was known to be required for vesicle fusion for 
several years[156,157], but only more recent studies in Xenopus egg extracts have shed light on 
the molecules involved. Both Ran GTPase activity and RCC1, the nucleotide exchange factor for 
Ran, have been found to be essential for extensive membrane fusion on the chromatin 
surface[158]. As beads coated with Ran-GDP were also surrounded by a membrane containing 
functional NPC in a RCC1- or GTPase activity-dependent manner, this process seems to be 
independent of chromatin[159]. It is not known, however, how membranes were targeted to the 
bead’s surface, whether a stable nuclear lamina assembled, and whether INM proteins were 
accumulated in these studies. The involvement of Ran GTPase in NE assembly has also been 
confirmed in vivo by RNAi mediated downregulation of Ran or RCC1 in C. elegans 
embryos[160].  

Intriguingly, importin-β, a Ran effector in nucleocytoplasmic transport[161,162], has been 
suggested to mediate Ran-dependent NE assembly in an importin-α-independent manner[163]. In 
this model, importin-β interacting with FxFG repeat containing nucleoporins may be targeted to 
chromosomes due to its interaction with Ran GTP, which is generated by chromosome bound 
GTP/GDP exchange factor RCC1. Since binding of importin-β to Ran-GTP decreases its affinity 
for nucleoporins, they may be released locally at the surface of chromosomes and facilitate NPC 
and NE assembly. Since Ran-regulated interactions of importin-ß control also nuclear 
transport[161] and mitotic spindle assembly[164,165,166], changes in localization, concentration, 
and interactions of RanGTP/RanGDP and importin-β may help coordinate spindle 
assembly/disassembly with reassembly of the NE and with initiation of nucleocytoplasmic 
transport. The potential function of importin-β in NE assembly was also confirmed in Drosophila 
expressing an importin-β mutant that lacked RanGTP binding activity[167].      

The molecular components involved in membrane fusion are just beginning to be 
discovered. These may include both components previously known to be involved in fusion of 
Golgi and ER membranes, such as AAA-ATPase p97-p47 adaptor complexes during NE growth, 
and complexes not previously implicated in membrane fusions, such as p97/Ufd1-Npl4 adaptor 
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complexes. Interestingly, the latter complexes have been implicated in early NE fusion 
events[168]. Assuming that ER and INM are interdispersed in mitotic stage, different adaptors 
responsible for fusion of ER and NE membranes would ensure that both membrane systems, ER 
and NM, are processed in different ways upon exit from mitosis. It is intriguing to speculate that 
INM proteins could be involved in such a mechanism by recruiting specific adaptor-p97 
complexes. 
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