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Abstract

Post-hoc subgroup analysis of the negative trial of interleukin-1β receptor antagonist (IL1RA) for 

septic shock suggested that patients with features of macrophage activation syndrome (MAS) 

experienced a 50% relative risk reduction for mortality with treatment. Here we seek a genetic 

basis for this differential response. From 1341 patients enrolled in the ProCESS trial of early goal 

directed therapy for septic shock, we selected 6 patients with MAS features and the highest 

ferritin, for whole exome sequencing (mean 24,030.7 ηg/ml, +/SEM 7,411.1). Eleven rare (minor 

allele frequency <5%) pathogenic or likely pathogenic variants causal for the monogenic disorders 

of Familial Hemophagocytic Lymphohistiocytosis, atypical Hemolytic Uremic Syndrome, 

Familial Mediterranean Fever, and Cryopyrin-associated Periodic Fever were identified. In these 

conditions, seven of the identified variants are currently targeted with IL1RA and four with anti-

C5 antibody. Gene-targeted precision medicine may benefit this subgroup of patients with septic 

shock and pathogenic immune variation.

Introduction

A landmark study of Danish adoptees showed a near 6-fold increase in the risk of death from 

infection before age 50 for adoptees whose biological parents also died from infection under 

50.1 Multiple familial, case control and genome wide association studies have sought to 

identify genetic variation that contributes to sepsis outcome.2–6 However, despite great 

variation in host response, attempts to identify genetic variants that contribute to sepsis 

outcomes has proven challenging. Typically, genomic studies in sepsis have treated all 

patients as a single group, assuming shared genetic risk factors. They have also focused on 
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correlations between common polymorphisms and sepsis outcome with limited functional 

studies to support associations.4,7,8

MAS is a fulminant form of multi-organ dysfunction presenting with fever, cytopenia, 

hepatosplenomegaly, hemophagocytosis, and extremely elevated serum ferritin, that can be 

triggered by sepsis.9 Although classically described in children, septic hyperferritinemic 

adults are also at risk of poor outcome.9,10 Additionally, while overall, interleukin-1β 
receptor antagonist (IL1RA) therapy was ineffective for septic shock, post-hoc subgroup 

analysis showed that patients with MAS features experienced a 50% relative risk reduction 

for mortality when treated with IL1RA.11,12 As the hyperferritinemic sepsis phenotype 

overlaps with other inherited immunologic disorders, including hemophagocytic 

lymphohistiocytosis (HLH), Cryopyrin Associated Periodic Syndromes (CAPS), Familial 

Mediterranean Fever, and atypical Hemolytic Uremic Syndrome (aHUS), we hypothesized 

that known pathogenic disease variants for these disorders would be identified in individuals 

with this sepsis phenotype. This work uses whole exome sequencing (WES) to identify 

causal mutations for these diseases.13–17 Here we focus on a subset of adults with septic 

shock with MAS features to identify rare pathogenic variants known to cause monogenic 

immunologic disorders, potentially underlying a shared phenotype leading to multi-organ 

failure.

Results and Discussion

Because MAS is characterized by extremely high serum ferritin levels, we identified 6 

patients (0.5%) with the highest concentrations from the ProCESS multicenter trial of 

protocolized early goal directed therapy for adult septic shock18 to undergo WES. We 

hypothesized that patients with hyperinflammation identified by the highest serum ferritin 

during macrophage activation syndrome would have pathogenic variants known to cause 

other single gene disorders of defective inflammation control, in a shared genotype-

phenotype hypothesis. All variants with a minor allele frequency (MAF) >5% as reported by 

the 1000 Genomes, ExAC and NHLBI Esp6500 databases were treated as polymorphisms 

and removed from further analysis. Additionally, to bolster claims of disease relevance, 

previous literature reports of clinical phenotype related to pathogenic or likely pathogenic 

variant was required in the filtering scheme. Subsequently, only variants with MAF <5% that 

have been previously reported as pathogenic or likely pathogenic for heritable immunologic 

disorders are discussed here. Reference to the general population allows identification of all 

pathogenic and likely pathogenic variants, which are unlikely to be identified in a smaller 

sepsis controls sample. The mean ferritin among these 6 patients was 24,031 +/− 7,411 

ηg/ml (+/− SEM). As hemophagocytic phenotypes are rare in adults, soluble IL-2 receptor, 

triglyceride and NK cell function studies are not available. The 6 patients had a mean 

APACHE II score of 27 +/− 4, corresponding to a mortality risk of 60.5% and multiple 

system organ failure including hepatic dysfunction and coagulopathy typical of MAS.19 Five 

of 6 patients died by 30 days, with subject 3 being the sole survivor. Halacli et al. recently 

reported a cohort of adults with severe sepsis where 0.7% had ferritin over 15,000 ηg/ml 

with an observed mortality was 100%.10 Clinical characteristics of these 6 patients are 

shown in Table 1.
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As shown in Table 2, 100% of subjects inherited at least one pathogenic or likely pathogenic 

variant previously reported in the literature as causal for heritable immunologic diseases. 

Despite the similarity in phenotype, the variants found on WES represent diverse genetic 

disorders. Three of the six patients had UNC13D variants, where mutations are known to 

cause abnormal NK cell degranulation and cytolytic killing20 and when inherited as 

autosomal recessive AR (Bi-allelic mutations) cause Familial HLH Type 3. Accumulating 

evidence suggests that adults with sporadic HLH16 or MAS in the context of rheumatic 

disease,17,21 or infections22–24 often carry heterozygous mutations in NK cell degranulation 

pathways including UNC13D. The heterozygous UNC13D (c.1579C>T; p.Arg527Trp) 

mutation in subject 1 has been reported in an 18-year-old female with familial HLH with 

normal PRF1 and STXBP2 sequencing25 as well as a 12 year HLH patient who also carried 

a PRF1 c.50delT variant26. The UNC13D (c.2782C>T; p.Arg928Cys) variant in subject 3 

has been described by Aricò et al in 3 individuals with ALPS27 a predisposing condition for 

FHLH, and by Kaufman in a heterozygous individual with MAS related to systemic Juvenile 

Idiopathic Arthritis28. The variants described in subject 5, UNC13D (c.2983G>C; p. 

Ala995Pro) and (c.2542A>C; p.Ile848Pro) have also been described in an ALPS patient 

without identified FAS, FASL, or CASP10 mutation with functional studies of transfected 

HMC-1 cells showing decrease in secretory granule fusion with the plasma membrane as 

measured by a CD63 expression assay following stimulation with fMLP, a macrophage 

activating chemokine27.

Among those with pathogenic mutations for recurrent fever syndromes, causal mutations for 

CAPS and FMF were identified in MEFV and NLRP3.29–33 Interestingly, subject 4 carried 

both NLRP3 (c.2113 C>A; p.Gln705Lys) and MEFV (c.250 G>A; p.Glu84Lys) variants. 

Screening of individuals with clinical suspicion for CAPS demonstrated that the NLRP3 
(p.Gln705Lys) variant is associated with a mild autoinflammatory phenotype characterized 

by skin lesions, arthralgia and myalgia.34,35 This variant increases IL-1β and IL-18 release 

by cultured monocytes in an IL-1 receptor-dependent manner.36 Similarly, the MEFV 
(p.Glu84Lys) variant has been reported in both heterzogygous and compound heterozygous 

states in FMF.37–39 Other studies have investigated potential interaction of NLRP3 and 

MEFV variants in digenetic inheritance of abnormal Il-1 driven FMF.33,40 While there are 

multiple treatment strategies for CAPS/FMF15 and MAS,16,17 both can be targeted with 

IL1RA.

Complement pathway mutations causal for aHUS were identified in three subjects: two in 

CD46, both with (c.1058C>T; p.Ala353Val) and one in C3 (c.1407G>C; p.Glu469Asp) and 

CFHR5 (c.832G>A; p.Gly278Ser). aHUS is a thrombotic microangiopathy resulting from 

uncontrolled complement activation causing anemia, thrombocytopenia and kidney failure.13 

This is markedly similar to Thrombocytopenia Associated Multiple Organ Failure, a sepsis 

phenotype of new onset thrombocytopenia and acute kidney injury where we have recently 

reported increased incidence of hyperferritinemia.41,42 When found in patients with aHUS, 

these variants are FDA approved indications for the C5 inhibitor eculizumab.13,14

Our study also identified individuals with multiple pathogenic variants, affecting different 

aspects of the inflammatory response. This heterogeneity may explain the observed absence 

of effect of immunomodulatory agents in sepsis, where clinical trials have applied agents 
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without consideration of potential variation in underlying disease process, leading to overall 

negative results.43

While all the variants reported here have been classified as pathogenic or likely pathogenic 

in CAPS, aHUS, and HLH/MAS, their identification in hyperferritinemic sepsis is of 

interest, but cannot be claimed as causal. Additionally, WES sequencing will miss 

pathogenic variants in regulatory and intronic gene regions that could be relevant to clinical 

phenotype. This has been shown in some individuals with HLH.44 Further, the application of 

immunomodulatory therapies to septic individuals with these variants is of unclear benefit or 

harm. However, these findings provide evidence that screening select sepsis patients can 

identify unappreciated heritable disease, and could facilitate a genome-driven precision 

medicine.

Patients and Methods

Subjects were taken from the ProCESS multicenter trial cohort of protocolized resuscitation 

strategies in the emergency department as DNA was collected from the enrollees.18 

Immunomodulatory therapy was not systematically studied in this trial. While the Shakoory 

study of interleukin-1 receptor blockade in sepsis patients with MAS features laid the 

groundwork for this study, no DNA samples were available from this initial study. 

Subsequently, DNA from individuals from the ProCESS trial who met the Shakoory et al. 

MAS definition underwent WES in the present study.11 The trial was approved by 

Institutional Review Board at each enrolling institution. All patients or their legally 

authorized representatives provided written informed consent. Briefly, individuals were 18 

years of age or older and enrolled based on 1.) clinical suspicion for septic shock and 2.) 

either refractory hypotension (SBP less than 90mmHg or vasopressor requirement following 

fluid challenge) or evidence of poor perfusion (lactate level > 4mmol per liter).18 We defined 

features of MAS as the combination of coagulation dysfunction (platelet count < 100K or 

INR > 1.5) plus hepatobiliary dysfunction (total bilirubin level > 1.2 mg/dL).13 Eighty two 

of the 1341 ProCESS patients met these criteria. While serum ferritin levels were not 

available a priori, the levels were measured retrospectively from banked serum with the 

highest level recorded. Among those meeting MAS criteria, the median serum ferritin was 

601.9ng/ml (IQR 268.33–2013.45). From these we selected the six patients with the highest 

ferritin levels (range 7,259–55,314ng/mL) for whole exome sequencing. A recent study from 

the Hellenic Sepsis Study Group identified serum ferritin greater than 4420 ng/ml as a 

marker for mortality and increased inflammation as measured by levels of IL-18, INF-y and 

sCD163.45 The individuals with the 6 highest ferritin level samples were selected as a proof 

of concept that pathogenic variants for immunologic disorders with overlapping phenotype 

could be identified among enriched populations.

DNA was extracted from whole blood samples using standard methods and WES performed 

at the University of Pittsburgh Genomic Research Core with the Ion Torrent Platform. 

Libraries were constructed using Ion Ampliseq Exome RDY (ThermoFisher) with target of 

100X coverage per sample. FASTQ files were aligned to homo sapiens reference sequence 

hg19 to create VCF files. VCF files were analyzed in the Fabric Genomics Opal 5.2.2 

software platform (Fabric Genomics Inc, CA, https://www.fabricgenomics.com) to identify 
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missense, nonsense or frameshift mutations. Variants were filtered for minor allele 

frequency less than 5% in the ExAC 46, 1000 Genome 47 and NHLBI-ESP 6500 databases 
48. ExAC database frequencies are reported in Table 2. While no control group was 

sequenced, all identified variants are previously reported as pathogenic or likely pathogenic, 

and are rare in the general population.49,50 Identified variants were restricted to candidates in 

an immune disorder panel to enhance relevance (Table 3). Each identified variant was 

evaluated in the HGMD professional database 51 with manual literature review. All 

identified variants were confirmed via Sanger sequencing. Specific primer pairs can be 

found in the supplementary table S1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 3

This table shows the gene panel examined in our study. All 6 subjects underwent whole exome sequencing. 

Identified variants were filtered for minor allele frequency less than 5% based on the 1000 Genomes, ExAC 

and NHLBI-ESP 6500 databases. Variants were then filtered for those genes in the panel of interest, that were 

previously reported as pathogenic or likely pathogenic in the corresponding immunologic disorder as reported 

in the HGMD professional database.

Disease Class Disease Genes

Primary Immunodeficiencies Chronic Granulomatous Disease CYBA, CYBB, NCF1, NCF2, NCF4

WHIM Syndrome CXCR4

Bruton's Agammaglobulinemia BTK

Activated PI3K-Delta Syndrome PIK3CD

Common Variable Immunodeficiency BLK, CD19, CD81, CR2, CTLA4, ICOS, IKZF1, IL21, 
IL21R, LRBA, IRF2BP2, MS4A1, NFKB1, NFKB2K, 
PIK3R1, PLCG2, PRKCD, RAC2, TNFRSF13B, 
TNFRSF13C, TNFSF12, VAV1

SCID ADA, AK2, CD3D, CD3E, DCLRE1C, FOXN1, IL2RG, 
IL7R, JAK3, NHEJ1, ORAI1, PNP, PTPRC, RAG1, 
RAG2, RMRP, STAT5B, STIM1, TBX1, ZAP70

HLH PRF1, UNC13D, AP3B1, BLOC1S6, CD27, ITK, LYST, 
RAB27A, SLC7A7, STX11, STXBP2, SH2D1A, XIAP

Lymphoproliferative Syndromes ALPS CASP10, CASP8, FADD, FAS, FASLG, KRAS, 
MAGT1, NRAS

Recurrent Fever Syndromes Crypopyrin-Associated Periodic Syndrome NLRP3

Familial Mediterranean Fever MEFV

Complement Coagulation Disorders aHUS PLG, C3, CD46, CBF, CFH, CFHR5, CFI, DGKE, 
THBD

TTP ADAMTS13

Disorders of Iron Handling Hemochromatosis FTH1, HFE, SLC40A1, TFR2

Juvenile hemochromatosis HAMP, HFE2
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