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Abstract Introduction: Development of efficacious therapeutic interventions for Alzheimer’s disease (AD) is
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hampered by the lack of understanding early disease mechanisms, biomarkers, and models that
mimic complex pathophysiology of human disease.
Methods: This article aims to assess to what extent peripheral cells recapitulate molecular mecha-
nisms altered in the brain and could be used as translational models for the development of individ-
ualized medicine for AD.
Results: Multiple studies suggest that AD is a systemic disorder with an active crosstalk between
brain and periphery where multiple pathways altered in the brain cells are also affected in plasma,
cerebrospinal fluid, and other peripheral cells of AD patients.
Discussion: Additional studies to validate molecular mechanisms in peripheral cells using advanced
system biology techniques and well-characterized cohorts of AD patients together with the develop-
ment of standardized protocols should be considered to support the application of peripheral cells in
AD research.
� 2019 The Author. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Objective

Alzheimer’s disease (AD) is the leading form of dementia
where underlying molecular mechanisms are poorly under-
stood. Therapeutic strategies designed to reduce levels of
amyloid beta (Ab) plaques or hyperphosphorylated tau (p-
tau) containing tangles, two hallmarks of AD, have failed
in clinical trials [1–3]. Factors contributing to this failure
include limited understanding of early disease mechanisms
and associated biomarkers, and poor translation of
preclinical research conducted in model organisms [4,5]. Fa-
milial AD (FAD) accounts for ~5% of all cases and is linked
icts of interest.
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to mutations in amyloid precursor protein (APP), presenilin
1 (PSEN1), and presenilin 2 (PSEN2) genes [6]. Most AD
cases are sporadic late-onset AD (LOAD) with age being
the greatest risk factor [6]. Recent clinical investigations us-
ing systems biology approaches and imaging techniques
suggest that AD is a complex disorder where changes in mul-
tiple pathways occur years before the onset of clinical symp-
toms [7]. Moreover, the disease differentially affects males
and females presenting additional challenges for biomarker
and drug discovery [8]. Animal models currently used for
preclinical therapeutic development do not recapitulate the
complexity of sporadic AD. Thus, there is an urgent need
to identify translational models that better represent AD
mechanisms and could complement existing animal models
to test novel therapeutic approaches and develop panels of
disease stage- and sex-specific diagnostic and prognostic
biomarkers.
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This article aims to test the hypothesis that AD is a sys-
temic disorder where peripheral cells recapitulate major mo-
lecular mechanisms affected in the brain. The hypothesis
predicts that alterations in pathways shown fundamentally
important in the etiology of AD including inflammation,
abnormal calcium signaling, amyloid precursor protein pro-
cessing, Ab and p-tau accumulation, altered oxidative meta-
bolism, mitochondrial dysfunction, and abnormal cellular
energetics will be detected in peripheral cells and biofluids
of AD patients providing a unique opportunity to study/
manipulate these mechanisms in a contest of the individuals’
genetic, epigenetic, and metabolic background. Here, we
will (1) provide the rationale for this hypothesis reviewing
evidence that peripheral cells and biofluids recapitulate
mechanisms affected in the brain; (2) discuss opportunities
and challenges associated with the utilization of peripheral
cells in AD research; and (3) review advantages and limita-
tions of the hypothesis including the next steps required for
its validation.
2. The rationale for the hypothesis and linkage to other
major theories

Traditionally, AD has been viewed as a central nervous
system disorder where the amyloid cascade hypothesis was
broadly used to connect the accumulation of amyloid pla-
ques and neurodegeneration [9]. In recent years, new
research, clinical, and epidemiological evidence together
with the consistent failure of clinical trials focused on
Ab production and clearance have prompted the reassess-
ment of molecular mechanisms involved in AD pathogen-
esis [10,11]. New investigations conducted using human
tissue, biofluids and advanced omics, computational, and
network biology approaches to establish etiological mech-
anisms of AD suggest a multifactorial nature where the
disease stage- and sex-specific changes in multiple inter-
connected pathways play a key role [12,13]. Furthermore,
it is increasingly recognized that AD mechanisms extend
outside of the brain where connections between cardiac,
metabolic, and gut microbiota abnormalities, among others,
may contribute to the development of sporadic AD [10,14–
18]. Based on observations generated in red blood cells,
platelets, skin fibroblasts, and lymphocytes from AD
patients demonstrating defects in calcium homeostasis,
membrane trafficking, and metabolic functions including
glucose oxidation, ideas that AD is a systemic disorder
were put forward as early as in 1980s [19,20]. More recent
investigations reinforced these observations formulating
“the erythrocytic hypothesis of AD” [21] where age-
dependent decrease in energy production and altered ability
of red blood cell to transfer oxygen to brain cells were
linked to inadequate oxygenation and abnormal glucose/
energy metabolism, oxidative stress, and increased
neuronal damage instigating the development of AD.
Further support for metabolic dysfunction as an underlying
mechanism of AD came from multiple studies demon-
strating that type 2 diabetes was associated with increased
risk of developing AD. These studies linked peripheral
changes in glucose metabolism and brain function and pro-
vided a foundation for the “metabolic hypothesis of AD”
[22]. Changes in glucose availability and utilization in
the brain induced by either local or systemic alterations
were shown to affect levels of lipids, proteins, glycogen,
and neurotransmitters including g-aminobutyric acid
(GABA) [23], glutamate [24], and acetylcholine [25].
Changes in concentrations of these important molecules
directly affect neuronal homeostasis contributing to excito-
toxic cell death, abnormal calcium signaling, and synaptic
dysfunction. The systematic studies conducted since 1960s
in the brain tissue of patients with AD clearly defined a
substantial presynaptic cholinergic deficit manifested in
reduced choline uptake, acetylcholine release, and loss of
cholinergic perikarya from the nucleus basalis of Meynert
[26]. These studies and the recognized importance of
acetylcholine in learning and memory provided a founda-
tion for the “cholinergic hypothesis of AD” [27], which
led to the development of cholinesterase inhibitors that
are among a few medications that the FDA approved for
treatment of AD. Unfortunately, this approach is not
disease-modifying emphasizing a need for further AD
research [28].

Furthermore, substantial evidence supports the crosstalk
between the brain and periphery to maintain proper energy
homeostasis [29]. Specialized neuronal networks in the
brain coordinate adaptive changes in food intake and energy
expenditure in response to changes in plasma levels of a key
metabolic hormones and nutrients [30]. Because the brain
has exceptionally high-energy requirements, age- or
disease-related alterations in energy metabolism that occur
throughout the body could have a direct effect on the brain.
Recent evidence suggests that early changes underlying AD
pathogenesis, LOAD in particular, are associated with
impaired mitochondrial function, which directly affects en-
ergy homeostasis [31–33]. The capacity of mitochondria to
produce energy and sustain stress could determine the
survival of brain cells [34]. Changes in mitochondrial dy-
namics and function affect multiple cellular processes
including level of oxidative stress, energy production, gener-
ation of important signaling molecules involved in protec-
tive stress response, and epigenetic modifications, which
could independently determine the course of the disease
[35]. Indeed, the “mitochondrial cascade hypothesis” pro-
poses that an individual’s genetic predisposition, environ-
mental exposure, and lifestyle could affect mitochondrial
function and mediate, drive, and/or contribute to a variety
of AD pathologies [31]. These mitochondrial alterations
are not restricted to the brain and could be detected in the pe-
riphery including cerebrospinal fluid (CSF), plasma,
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lymphocytes, and fibroblasts [32,36,37]. Importantly,
altered mitochondrial behavior could affect APP processing,
Ab production, and tau phosphorylation exacerbating AD
phenotype [38]. Furthermore, abnormal calcium homeosta-
sis associated with increased levels of Ab and mitochondrial
dysfunction has been shown to affect multiple pathways in
AD including neuronal development, synaptic transmission
and plasticity, and the regulation of various metabolic path-
ways [39]. Consequentially, increased levels of oxidative
stress that induces lipid peroxidation and mitochondrial
and nuclear DNA damage have been considered as an impor-
tant contributing factor to the development of age-related
diseases including AD supporting the concept of a vicious
cyclewhere with age, accumulating dysfunctions in multiple
interconnected pathways contribute to the onset and exacer-
bate the disease development [38,39]. Finally, a sustained in-
flammatory response well documented in the brain tissue of
patients with AD has been considered as an early and central
feature of neurodegenerative process, the “inflammation hy-
pothesis of AD” [40]. This devastating process is not limited
to the brain. In recent study, a presence of peripheral chronic
low-grade inflammation in patients carrying the APOE ε4
allele, a risk factor for AD development, has been shown
to shorten latency for onset of AD [41]. The compromised
integrity of the blood-brain barrier in AD allows the migra-
tion of peripheral immune cells to and from the brain
inducing inflammatory response throughout the body [42].

Taken together, there is a strong evidence of the
cross-talk between brain and periphery where multiple
molecular mechanisms identified as the key contributing
factors to the development of neurodegeneration in AD
might be also present in periphery. If peripheral cells
indeed share the complexity of mechanisms altered in
the brain, they could provide valuable models for AD
research.
3. Early experimental evidence to support the
hypothesis

Independent studies have demonstrated that neuronal
mechanisms altered in AD including signal transduction
pathways, oxidative metabolism, APP processing, mito-
chondrial dynamics and function, calcium homeostasis,
and inflammation are also affected in fibroblasts, erythro-
cytes, platelets, urine, plasma, and CSF [19,43–51]. For
biomarker discovery, plasma represents the best source for
repeated measures while the utilization of skin fibroblasts
provides an outstanding opportunities for longitudinal
mechanistic studies because they could be kept in culture
for a long time, do not need to be transformed, and could
be differentiated into disease- and patient-specific neural
cell lines using inducible pluripotent stem cell (iPSC) tech-
nology [52]. Below, we will review current literature that
highlights to what extent mechanisms important for the
development of AD in the brain are present in primary hu-
man cells, fibroblasts in particular.
3.1. Altered energy homeostasis and mitochondrial
dysfunction

Reduced glucose utilization in the brain of patients with
mild cognitive impairment (MCI), a prodromal stage of AD,
and AD patients detected using fluorodeoxyglucose posi-
tron emission tomography indicates a decline in neuronal
cellular metabolism that is secondary to mitochondrial
dysfunction. Similar changes were identified in peripheral
cells. In 1990, Parker and colleagues reported decreased cy-
tochrome oxidase (COX) activity indicative of mitochon-
drial dysfunction in platelets from AD subjects [53].
Around the same time, Sims and colleagues demonstrated
reduced alpha-ketoglutarate dehydrogenase complex activ-
ity and altered patterns of glucose utilization in AD fibro-
blasts [49]. Using stable isotopes, the authors determined
that the glycolytic capacity in AD fibroblasts was increased
while glutamine metabolism was significantly inhibited
compared to healthy controls [50]. Additional studies
confirmed altered mitochondrial function in glucose and
glutamine oxidation in fibroblasts from patients with spo-
radic AD [54]. Functional analysis conducted using an
Extracellular Flux Analyzer in intact cells provided addi-
tional evidence that LOAD fibroblasts have increased
glycolytic capacity, impaired mitochondrial metabolic po-
tential associated with decreased nicotinamide adenine
dinucleotide metabolites and reduced activity of the tricar-
boxylic acid cycle compared to control cells [33]. Lactate
levels were higher in LOAD fibroblasts but not in healthy
age-matched and young fibroblasts suggesting that
increased glycolysis was specific to the disease and not ag-
ing [33]. The authors concluded that the increase in glycol-
ysis and the abnormal mitochondrial metabolic potential in
LOAD fibroblasts appeared to be intrinsic further support-
ing the hypothesis that impairment in multiple components
of bioenergetics may be a key mechanism contributing to
the risk and pathophysiology of LOAD. Furthermore,
reduced removal of damaged mitochondria via autophagy/
mitophagy pathways was demonstrated in patient-derived
AD fibroblasts and neurons from iPSCs harboring the famil-
ial PSEN1 mutation [45]. This mitophagy impairment and
associated lysosomal impairment resulted in the accumula-
tion of dysfunctional mitochondria [45]. Similar alterations
in the impairment of autophagy/mitophagy pathways lead-
ing to the accumulation of dysfunctional mitochondrial
were observed in fibroblasts and postmortem brain tissue
from LOAD patients [55]. These findings suggest that
altered mitochondrial dynamics and function represent a
common nexus between familial and sporadic cases of the
disease where human skin fibroblasts share mitochondrial
defects observed in the AD brain [45]. Changes in mito-
chondrial function in AD fibroblasts also recapitulate meta-
bolic alterations in energy pathways that we and others
identified in the CSF and plasma from patients with MCI
and AD [32,51,56]. These findings support the hypothesis
that impairment of bioenergetics, mitochondrial dynamics
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and function, and cell metabolism occur throughout the
body and contribute to the pathophysiology of AD
providing a rationale for the analysis of mitochondrial bio-
energetics in peripheral tissues as a promising strategy to
develop new diagnostic methods for AD [33].
3.2. Oxidative stress and calcium homeostasis

Similar to AD neurons that exhibit increased susceptibil-
ity to oxidative stress, excessive oxidative DNA damage and
the accumulation of oxidative marker 8-oxo-guanine were
found in patient-derived AD fibroblasts [57]. Application
of microarray gene expression profiling in AD or control fi-
broblasts treated to simulate conditions of oxidative stress
revealed pathways that could play a critical role in the etiol-
ogy and/or pathology of AD [57]. However, in another study,
the authors found a greater resistance of AD fibroblasts to the
acute H2O2 treatment that generates reactive oxygen species,
DNA damage, and apoptosis [58]. The protective mecha-
nism was related to an impairment of H2O2-induced cell cy-
cle arrest and characterized by an accelerated re-entry into
the cell cycle and a diminished induction of apoptosis. Fibro-
blasts from AD patients also had a profound impairment in
the H2O2-activated, p53-dependent pathway, which resulted
in a lack of activation of p53- or p53-target genes, including
p21, GADD45, and bax. This study demonstrates a specific
alteration of an intracellular pathway involved in sensing
and repairing DNA damage in peripheral cells from AD pa-
tients [58]. Calcium homeostasis was altered to a greater
extent in fibroblasts fromAD patients compared to aged con-
trols [59]. Total bound calcium in fibroblasts was elevated in
normal aging (152%) but was elevated even further in AD
(1197%). The authors connected this increase with other
processes including reduced mitochondrial function and
altered biosynthesis that depends on mitochondria, such as
glucose or glutamine incorporation into proteins and lipids,
which also paralleled mitochondrial dysfunction. Interest-
ingly, cytosolic and nuclear processes such as leucine incor-
poration into proteins and thymidine into DNA were
depressed more by aging than AD. The authors concluded
that calcium homeostasis and mitochondrial functions
were affected to a greater extent by AD compared to normal
aging [59].
3.3. Ab and p-tau

Increased levels of Ab42 and p-tau were reported in mul-
tiple studies that examined fibroblasts from patients with
FAD and LOAD and in iPSC-derived neuronal cells from
a donor with sporadic AD [60–64]. Increase in Ab was
detected along with a reduction in ATP production
associated with altered mitochondrial respiration and
diminished mitochondrial content in fibroblasts from AD
patients with PSEN1 mutations [60]. Similarly, fibroblasts
from patients carrying a familiar Swedish APP670/671 mu-
tation release significantly more Ab compared to healthy
controls [63]. In the brain, the enzyme activity of protein ki-
nase C ε (PKCε) is associated with neuroprotective functions
including reducing levels of Ab oligomers [65]. In AD skin
fibroblasts, levels of PKCε were lower compared to control
subjects, which might explain increased Ab levels [65].
Furthermore, an increase in Ab processing and tau phos-
phorylation in AD fibroblasts could be attributed to the acti-
vation of the mitogen-activated protein kinases Erk1 and
Erk2, which is dependent on PKC activity. Activation of
Erk1/2 is well documented in susceptible neurons in mild
and severe AD cases (Braak stages III-VI) [66] further sup-
porting a cross-talk between brain and periphery. Further-
more, in neuronal cells differentiated from the iPSCs
derived from fibroblasts of an 82-year-old female patient
affected by sporadic AD, the expression of p-tau and
GSK3b, a physiological kinase of tau, was significantly
increased [64]. A similar increase in GSK3b activity has
been observed in the brains of AD patients [67]. Given
that GSK3b activity has been linked to most pronounced
AD phenotype including cognitive impairment, inflamma-
tion, increased production of p-tau, mitochondrial dysfunc-
tion, and neuronal death, this fibroblast-derived model may
provide an outstanding tool to study the underlying molecu-
lar basis of sporadic AD and a platform for drug screening
and toxicology studies. Indeed, the authors were able to
use this system to demonstrate that treatment with an inhib-
itor of gamma-secretase resulted in the downregulation of p-
tau supporting a mechanistic connection between p-tau,
GSK3b, and Ab pathology [68]. In addition, transcriptome
analysis conducted in these fibroblast-iPSC-derived
neuronal cells revealed significant changes in the expression
of genes reminiscent of changes in subregions within the AD
brain [64].
3.4. Inflammation

AD now is increasingly recognized as a chronic inflam-
matory disease where inflammation most likely plays a
causative role [41,42,69]. Bidirectional activation of im-
mune response could be facilitated by a release of soluble
inflammatory mediators (cytokines, chemokines, and
reactive oxygen species) that could act on periphery.
Indeed, multiple peripheral inflammatory markers
including interleukin (IL)-1b, IL-2, IL-6, IL-18, inter-
feron-g, homocysteine, high-sensitivity C-reactive pro-
tein, C-X-C motif chemokine-10, epidermal growth
factor, vascular cell adhesion molecule-1, tumor necrosis
factor–a converting enzyme, soluble tumor necrosis factor
receptors 1 and 2, a1-antichymotrypsin, and decreased IL-
1 receptor antagonist and leptin were elevated in patients
with AD compared to controls and inversely correlated
with cognitive scores [70]. However, most of these
markers were detected in blood, CSF, or postmortem brain
tissue from AD patients [32,71,72]. Currently, it is un-
known whether fibroblasts from AD patients have
increased inflammation.
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3.5. Peripheral cells and biofluids in biomarker and drug
discovery

To date, a handful of papers describe the utilization of pri-
mary fibroblasts for drug discovery for AD. One of these re-
ports capitalized on the previous observation that altered
PKC signaling, critical for the nontoxic degradation of
APP and inhibition of GSK3b in neurons, was present in fi-
broblasts from AD patients [73]. The authors tested whether
modulation of PKC with bryostatin and a potent synthetic
analog picolog could affect PKC signaling mechanism in
AD primary fibroblasts. The outcomes included increased
alpha-secretase activity that accounted for lowering the
amount of toxic Ab produced in AD cells. Both bryostatin
and picolog increased the secretion of the alpha-secretase
product (s-APP-alpha) of APP at sub-nanomolar to nanomo-
lar concentrations. Furthermore, both of these PKC activa-
tors were shown to convert the AD Erk1/2 phenotype of
fibroblasts into the phenotype of “normal” control skin fibro-
blasts [73]. Further experiments also demonstrated the util-
ity of human AD fibroblasts to modulate the dysfunction
associated with Erk1/2 signaling where the detection of
AD-specific differences in MAP kinase in peripheral tissues
provided an efficient means for early diagnosis of AD as well
as helped to identify therapeutic targets for drug discovery
[74]. In recent years, the use of primary human AD fibro-
blasts was extended via generating the iPSCs and further dif-
ferentiation into neuronal cells for drug discovery [75–77].
The main advantages of these models include the ability to
work with disease-relevant human cells to conduct high-
throughput screening of thousands of compounds with
disease-specific outcomes [78]. However, technical diffi-
culties and high cost of these experiments represent substan-
tial disadvantages.

While the majority of work on biomarker discovery for
AD was traditionally conducted in biofluids [78,79], the
utilization of fibroblasts as a source of biomarkers for
AD has also been proposed [80]. One of the examples in-
cludes the identification of a proteolytic dysfunction in
AD cells that produces altered isoelectrophoretic forms
of the enzyme transketolase (TK-alkaline bands) that
could be used for an early diagnosis [81]. The TK profile
conducted in fibroblasts from clinically diagnosed prob-
able LOAD patients, their asymptomatic relatives, neuro-
logical non-AD patients, early-onset AD patients, and
control individuals demonstrated the usefulness of
cultured fibroblasts as an excellent in vitro model for the
study of the pathogenic processes of AD and as a low-
cost laboratory tool useful for supporting AD differential
diagnosis [81]. Similarly, AD fibroblasts were found to
have the upregulation of the lysosomal system including
increased levels of glycohydrolases (a-D-mannosidase,
b-D-hexosaminidase, and b-D-galactosidase). These
changes were found in AD patients affected by either spo-
radic or familial forms of the disease and also in presymp-
tomatic subjects carrying the familial mutations but
healthy at the time of skin biopsy [82]. Along with the
development of novel biomarkers, this work also provided
the foundation for the identification of early molecular
mechanism of AD that could be studied in fibroblasts.
Other biomarkers proposed for early diagnosis in AD fi-
broblasts include quantitatively measured aggregation
rate that is increased in AD cases. This biomarker was
successfully cross-validated with two more assays, AD-
Index, based on the imbalances of ERK1/2, and
Morphology, based on network dynamics, and showed
92% overlap. A significant number of cases tested with
this biomarker were freshly obtained where 82% of the
cases were validated with other clinical biomarkers
including autopsy and/or genetic confirmation of AD
[83,84]. Taken together, this evidence supports the notion
that peripheral cells represent a tool to study the underly-
ing molecular mechanisms of sporadic AD and could be
used for the development of diagnostic and prognostic bio-
markers and therapeutic strategies.
4. Major challenges to the hypothesis and future
experiments

Although multiple lines of evidence support the hypoth-
esis that peripheral cells could be successfully used in AD
research, there are certain challenges that require further
clarification. From conceptual perspective, the definitive
demonstration that peripheral cells mimic complex mecha-
nistic alterations present in brain cells of AD patients re-
mains to be done. Brain cells, especially nondividing
neurons with unique cellular architecture, and peripheral
dividing cells differ in mechanisms essential for AD devel-
opment including metabolic regulation, mitochondrial dy-
namics and function, and neurotransmitter pathways. In
support of the hypothesis, it would be important to conduct
experiments to demonstrate what mechanisms and bio-
markers are similarly affected/expressed in particular sub-
sets of brain cells versus peripheral cells versus biofluids.
Such extensive and well-controlled experiments may not
be feasible to do in living individuals but the use of animal
models might be instrumental because the comparison of
changes in neuronal versus peripheral cells could be done
in respect to disease development and progression. Further-
more, application of systems biology approaches such as
next generation sequencing, metabolomics, and epigenetics
could be very useful in the identification of longitudinal
changes in peripheral cells for biomarker and drug discov-
ery. These types of studies are now actively supported by
the National Institute of Health (NIH) through multiple con-
sortia focused on the development of new animal models for
AD research and application of systems biology techniques.
It is feasible that only a subset of molecular mechanisms
affected in AD could be recapitulated in peripheral cells,
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but the ability to develop sex- and disease-stage-specific
individualized treatments even for a limited subset of altered
functions could be very important. To further support the hy-
pothesis, it would be important to demonstrate whether hu-
man skin fibroblasts recapitulate genetic, epigenetic, and
metabolic changes established in the brain of AD patients;
how these changes are affected depending on age, sex, and
disease severity; what are the cross-sectional and longitudi-
nal changes in pathways directly linked to the development
and progression of AD; to what extent sex influences patho-
logical mechanisms that fibroblasts share with neuronal
cells. For example, longitudinal studies could be designed
to establish the hierarchy of the affected pathways since pe-
ripheral cells appear to mimic alterations in energy pathways
detected in the brain. This is especially important because
changes in fibroblasts could be correlated with changes in
cognitive performance and biomarkers including fluoro-
deoxyglucose positron emission tomography imaging reflec-
tive of energy utilization, levels of Ab, and p-tau to establish
early mechanisms underlying the disease. Consequently,
individualized approaches based on pharmacogenomics of
the particular individual could be developed and tested in hu-
man cells before evaluating efficacy in vivo. The ability to
interrogate specific mechanistic pathways as we discussed
previously for oxidative DNA damage or PKCε offers un-
matched opportunities to follow up with changes in mecha-
nisms that could help to confirm or even foster new theories
to advance the development of disease-modifying therapeu-
tics.

From technical perspective, the methodology for as-
saying AD mechanisms in cultured primary cells has
not been established, and the availability of well-
characterized human cells for reproducible and rigorous
research is limited. Currently, the primary source of hu-
man AD fibroblasts and other peripheral cells is the Cor-
iell Institute Biobanks (Camden, NJ; https://www.coriell.
org/). Coriell Biobanks establish, verify, maintain, and
distribute cell cultures and DNA to the research commu-
nity. These collections are supported by the NIH and
several foundations and have cell lines from patients
with various diseases including familial and sporadic
AD. However, different from other biorepositories such
as the Alzheimer’s Disease Neuroimaging Initiative
where samples collected from MCI and AD patients and
unaffected individuals have detailed demographic infor-
mation along with the genetic characterization, neuroi-
maging data, and other biomarkers (e.g., Ab, p-tau,
metabolomics data), patient information for human fibro-
blasts in almost all cases is limited to age, sex, and race.
Important questions that are currently under active inves-
tigation in AD field including sex-, age-, disease stage–
specific differences, contribution of risk factors to the
progression and severity of the phenotype, pathogenic in-
teractions, and mixed pathology could only be addressed
using peripheral cells if sufficient number of cell lines
with in-depth sample characterization will become avail-
able along with the establishment of standardized experi-
mental procedures [85].

An important caveat for validation of research conducted
in cultured cells involves the requirement to have standard
operating procedures that allow the direct comparison of
outcomes between individual laboratories. It is well known
that cultured cells could change their phenotype with each
passage ultimately reaching age-related senescence stage.
This process is associated with fluctuations in metabolism,
production of reactive oxygen species, mitochondrial func-
tion, and gene expression. Thus, some of the parameters de-
tected in cultured cells could be acquired independently of
the disease phenotype. Indeed, as we have recently shown,
technical approaches implemented for cell culturing, har-
vesting, and storage directly affect cell metabolism resulting
in variable metabolic profile [86]. It is imperative that careful
consideration will be given to experimental design and qual-
ity control to avoid data misinterpretation. Experiments
aimed to produce rigorous and reproducible results in fibro-
blasts have to include matching disease and control cells
based on age, sex of the donors, and biological age in culture,
that is, cumulative population doubling level and percentage
of life span completed. Quality control should be in place
and standard operating procedures have to include steps
where cell age, number of passages, and cell divisions will
be taken into account as confounding factors that may affect
endophenotype. Furthermore, to date, there are no data that
clearly presents the advantages of using human skin fibro-
blasts for translational drug discovery where outcomes are
confirmed in in vivo models. The demonstration that fibro-
blasts could be directly used to design individualized treat-
ment for the central nervous system disorders could offer
relatively inexpensive tool that may significantly reduce
the high cost of alternative approaches (e.g., iPSC-derived
neuronal cells or multiple animal models) [87]. Neverthe-
less, high translational potential of outcomes generated in
peripheral cells for a development of biomarkers and tar-
geted therapeutics, the opportunity to conduct extensive
evaluations using systems biology approaches to determine
mechanisms and complex functional connections in the
context of the individuals’ genetic and epigenetic makeup,
the ability to collect peripheral cells longitudinally from
the same individuals, and relatively low cost associated
with the utilization of human cells could provide comple-
mentary or even primary tools for AD research and clinical
applications.
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RESEARCH IN CONTEXT

1. Systematic review: The author reviewed the litera-
ture using traditional sources. Several studies have
investigated the extent to which peripheral cells reca-
pitulate molecular mechanisms altered in the brain of
Alzheimer’s disease (AD) patients. These relevant
articles are appropriately cited.

2. Interpretation: AD is a systemic disorder with an
active crosstalk between the brain and periphery
implying that peripheral cells could provide insight
into early disease mechanisms offering translational
model for the discovery of new therapeutic ap-
proaches and biomarkers for disease development,
diagnosis, prognosis, and monitoring the therapeutic
efficacy.

3. Future directions: Longitudinal and cross-sectional
identification of molecular mechanisms in peripheral
cells using advanced system biology techniques and
well-characterized cohorts of AD patients together
with the development of standardized protocols
should be considered to support the application of pe-
ripheral cells in AD research.
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