EUS-guided versus percutaneous liver biopsy: A comprehensive review and meta-analysis of outcomes

Saurabh Chandan¹, Smit Deliwala², Shahab R. Khan³, Babu P. Mohan⁴, Banreet S. Dhindsa⁵, Jay Bapaye⁶, Hemant Goyal⁷, Lena L. Kassab⁸, Faisal Kamal⁹, Harlan R. Sayles¹⁰, Gursimran S. Kochhar¹¹, Douglas G. Adler¹²

¹Division of Gastroenterology and Hepatology, CHI Creighton University Medical Center, Omaha, Nebraska, USA; ²Department of Internal Medicine, Hurley Medical Center, Flint, Michigan, USA; ³Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; ⁴Division of Gastroenterology and Hepatology, University of Utah School of Medicine, Salt Lake City, Utah, USA; ⁵Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, Nebraska, USA; ⁵Department of Internal Medicine, Rochester General Hospital, Rochester, New York, USA; ¬Department of Gastroenterology, The Wright Center for Graduate Medical Education, Scranton, Pennsylvania, USA; ®Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA; ¬Division of Gastroenterology, University of California-San Francisco, California, USA; ¹¹Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska, USA; ¹¹Division of Gastroenterology, Hepatology and Nutrition, Allegheny Health Network, Pittsburgh, Pennsylvania, USA; ¹²Center for Advanced Therapeutic Endoscopy, Centura Health, Porter Adventist Hospital, Denver, Colorado, USA

ABSTRACT

EUS-guided liver biopsy (EUS-LB) has gained momentum in recent years, especially with availability of newer needle designs. Given the emerging comparative data on EUS-LB with second-generation needles and percutaneous LB (PC-LB), we conducted a systematic review and meta-analysis to compare the safety and efficacy of the two techniques. We searched multiple databases from inception through November 2021 to identify studies comparing outcomes of EUS-LB and PC-LB. Pooled estimates were calculated using a random-effects model, and the results were expressed in terms of pooled proportions and odds ratio (OR) along with relevant 95% confidence intervals (CIs). Five studies with 748 patients were included in the final analysis. EUS-LB was performed in 276 patients and PC-LB in 472 patients. Across all studies, PC-LB had an overall higher diagnostic accuracy than EUS-LB, 98.6% confidence interval (CI: 94.7–99.7) *versus* 88.3% (49.6–98.3), OR: 1.65, P = 0.04. On assessing data from randomized controlled trials, there was no difference between the two. While pooled diagnostic adequacy and overall adverse events were not significantly different between PC-LB and EUS-LB, the former was superior in terms of the mean number of complete portal tracts (CPT) and total specimen length. PC-LB and EUS-LB produce similar results. PC-LB allows obtaining longer samples and more CPT. Further studies are needed to see if these trends hold up as more providers begin to perform EUS-LB.

Key words: EUS, liver biopsy, meta-analysis

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

How to cite this article: Chandan S, Deliwala S, Khan SR, Mohan BP, Dhindsa BS, Bapaye J, *et al.* EUS-guided *versus* percutaneous liver biopsy: A comprehensive review and meta-analysis of outcomes. Endosc Ultrasound 2023;12:171-80.

Address for correspondence

Dr. Douglas G. Adler, Center for Advanced Therapeutic Endoscopy, Centura Health, Porter Adventist Hospital, Denver, Colorado, USA. E-mail: Douglasadler@centura.org

Received: 2021-12-12; Accepted: 2022-04-28; Published online: 2022-10-05

INTRODUCTION

Liver biopsy (LB) is often performed to obtain definitive histology for diagnostic and management purposes when information from noninvasive techniques is inadequate.^[1] Historically, liver biopsies have been performed through the computed tomography (CT)- or ultrasound (US)-guided percutaneous routes (PC-LB)[2] or a fluoroscopy-guided transjugular route (TJ-LB).[3] A recent analysis showed that the risk of major complications including mortality, major bleeding, and moderate-to-severe pain with PC-LB was 0.01%, 0.5%, and 0.34%, respectively.^[4] In addition, compared to other methods, the PC-LB method typically requires more passes to acquire an adequate tissue sample, thus increasing the risk of complications and patient discomfort. [5] TJ-LB is the preferred biopsy method in high-risk patients, such as those with coagulopathy, coagulation disorders, or high-volume ascites and those not clinically stable enough to tolerate PC procedures. [6] Complications following TJ-LB are estimated to range between 2.5% and 7.1%.[7] However, there remains a substantial variation in histologic yield with both PC-LB and TJ-LB routes.[8]

Since the first published description in 2007, EUS-guided LB (EUS-LB) has emerged as an attractive means for obtaining parenchymal LB specimens for the diagnosis and staging of chronic liver diseases.^[9] EUS-LB technique allows for high-quality images of both hepatic lobes, which subsequently allows for a safer biopsy technique and improved ability to access focal liver lesions, resulting in an increase in sample adequacy and tissue yield.[10,11] EUS guidance can confirm the presence or absence of bowel, blood vessels, and biliary structures along the needle track in real time, for both lobes, greatly enhancing its safety profile. EUS-LB also minimizes the impact of ascites and body habitus on ability to visualize and obtain liver tissue. [12] In addition, EUS-LB is conducted under sedation, allowing for reduced procedural anxiety and increased patient comfort. [13] The pooled rate of successful histologic diagnoses with EUS-LB is estimated to be 93.9%, while the incidence of adverse events is about 2.3%.[14]

EUS-LB has gained momentum in the recent years, with availability of newer- or second-generation needle designs, which appear to perform better than traditional ones for EUS-LB tissue acquisition, such as the 19G TruCut needle (Quick-Core; Cook Medical

Inc., Winston-Salem, NC). [15] Second-generation needles include the EchoTip HD ProCore (Cook Medical Inc., Winston-Salem, NC), SharkCore (Medtronic Inc., Minneapolis, MN), and Acquire (Boston Scientific, Marlborough, MA). A recent *ex vivo* study showed that the specimen adequacy was similar among these three commercially available 19G needles. [16]

Given the emerging comparative data on EUS-LB with second-generation needles and PC-LB, we conducted a systematic review and meta-analysis to compare the safety and efficacy of the two techniques with modern core biopsy needles.

METHODS

Search strategy

The relevant medical literature was searched by a medical librarian for studies reporting on the outcomes of EUS-LB with modern core biopsy needles and PC-LB for liver lesions. The search strategy was created using a combination of keywords and standardized index terms. A systematic and detailed search was run in November 2021 in Ovid EBM Reviews, ClinicalTrials.gov, Ovid Embase (1974+), Ovid Medline (1946+ including epub ahead of print, in-process, and other nonindexed citations), Scopus (1970+), and Web of Science (1975+). Literature search was performed to include studies published in all languages, and in the case of non-English studies, electronic language translation service was used to convert the text to English. The review was not registered, and a protocol was not prepared.

The full-search strategy is available in Supplementary Appendix 1. For observational studies, the MOOSE (Meta-analyses Of Observational Studies in Epidemiology) Checklist was followed^[17] and is provided as Supplementary Appendix 2. The PRISMA Flowchart for study selection is provided in Supplementary Figure 1. The quality of evidence presented in the randomized controlled trials (RCTs) and risk of bias in all the included studies was assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) methodology [Supplementary Figure 2].^[18] Reference lists of the evaluated studies were examined to identify other studies of interest.

Study selection

In this meta-analysis, we only included studies where outcomes of EUS-LB were compared to PC-LB. Studies

included randomized controlled trials, cohort, and case-control studies that reported outcomes of both interventions. Studies were included irrespective of whether they were performed in inpatient or outpatient setting, follow-up time, and country of origin as long as they provided the appropriate data needed for the analysis.

Our exclusion criteria were as follows: (1) studies reporting outcomes of EUS-LB alone, (2) studies reporting outcomes of EUS-LB performed with first-generation biopsy needles, (3) single patient case reports and case series studies, (4) studies with sample size <10 patients, and (5) studies performed in the pediatric population (age <18 years). In cases of multiple publications from a single research group reporting on the same patient cohort and/or overlapping cohorts, data from the most recent and/or most appropriate comprehensive report were retained. The retained studies were determined based on the publication timing (most recent) and/or the sample size of the study (largest). In situations where a consensus could not be reached, overlapping studies were included in the final analysis and any potential effects were assessed by sensitivity analysis of the pooled outcomes by leaving out one study at a time.

Data abstraction and quality assessment

Data on study-related outcomes from the individual studies were abstracted independently onto a standardized form by at least two authors (SC and SRK). The authors (SD, AP, and HG) cross-verified the collected data for possible errors and the two authors (SC and SRK) performed the quality scoring independently.

Outcomes assessed

The following outcomes were assessed:

- Pooled odds ratio (OR) and proportion of diagnostic adequacy with EUS-LB as compared to PC-LB: Diagnostic adequacy was defined as the specimen's ability to render a diagnosis and accurately stage the disease, independent of the length of biopsy cores or the number of portal tracts present in the specimen
- 2. Pooled odds ratio (OR) and proportion of diagnostic accuracy with EUS-LB as compared to PC-LB: Diagnostic accuracy was defined as true positive + true negative divided by the total number of patients
- 3. Pooled OR and proportion of overall adverse events with EUS-LB as compared to PC-LB
- 4. Mean difference in CPT obtained between EUS-LB and PC-LB

5. Mean difference in total specimen length (TSL) between EUS-LB and PC-LB.

Statistical analysis

We used meta-analysis techniques to calculate the pooled estimates in each case following the methods suggested by DerSimonian and Laird using the random-effects model, and the results were expressed in terms of pooled proportion (PP) and OR along with relevant 95% confidence intervals (CIs). When the incidence of an outcome was zero in a study, a continuity correction of 0.5 was added to the number of incident cases before statistical analysis. We performed pairwise analysis to compare outcomes in patients with cirrhosis and patients without cirrhosis. P < 0.05 was used 'a priori' to define significance between the groups compared and considered descriptive only as they were uncorrected for multiple testing.

We assessed heterogeneity between study-specific estimates using Cochran's Q statistical test for heterogeneity, 95% confidence interval (CI), and the I^2 statistics. [20-22] In this, values of <30%, 30%–60%, 61%–75%, and >75% were suggestive of low, moderate, substantial, and considerable heterogeneity, respectively. We assessed publication bias, qualitatively, by visual inspection of funnel plot, and quantitatively, by the Egger test. [23] When publication bias was present, further statistics using the fail-Safe N test and Duval and Tweedie's "Trim and Fill" test was used to ascertain the impact of the bias. [24]

All analyses were performed using Comprehensive Meta-Analysis software, version 3 (BioStat, Englewood, NJ, USA).

RESULTS

Characteristics and quality of the included studies

We excluded studies prior to 2020 where EUS-LB was performed using first-generation needles. Three of the included studies were retrospective in design and two were prospective randomized controlled trials. PC-LB was performed under US guidance in four studies. Four studies were carried out in the USA, one in Italy and one in Japan. Based on the Newcastle–Ottawa scoring system [Supplementary Table 1], two cohort studies were considered to be of medium quality and one of high quality. There were no low-quality studies. Based on GRADE Methodology for the assessment of randomized controlled trials,

the overall certainty of evidence was graded as high (Grade A).

Search results and population characteristics

All search results were exported to Endnote where 211 obvious duplicates were removed leaving 444 citations. Five studies with a total of 748 patients were included in the final analysis. EUS-LB was performed in 276 patients and PC-LB in 472 patients. The mean age ranged from 51.8 years to 68 years. A schematic diagram demonstrating our study selection is illustrated in Supplementary Figure 1. Further details of indications and etiology, type of needles used for EUS-LB and PC-LB, number of complete portal tracts (CPT), and TSL are described in Tables 1 and 2.

Meta-analysis outcomes

- 1. Pooled OR and proportion of diagnostic adequacy: Overall diagnostic adequacy was not significantly different between PC-LB and EUS-LB, 96.6% (95% CI: 63.4–99.8; *I*² 93%) *versus* 94.9% (95% CI: 40.2–99.8; *I*² 93%), OR: 0.81 (95% CI: 1.65–0.03; *I*² 0%), *P* = 0.06. The results were similar when the data from observational studies and RCTs were analyzed separately [Figure 1]
- 2. Pooled OR and proportion of diagnostic accuracy: PC-LB had an overall higher diagnostic accuracy than EUS-LB, 98.6% (95% CI: 94.7–99.7; *I*² 0%) *versus* 88.3% (95% CI: 49.6–98.3; *I*² 89%), OR: 1.65 (95% CI: 3.21–0.09; *I*² 0%), *P* = 0.04. When assessing data only from randomized controlled trials (RCTs), there was no difference between the two techniques [Figure 2]
- 3. Pooled OR and proportion of overall adverse events: Pooled rate of overall adverse events was not significantly different between PC-LB and EUS-LB techniques, 11.9% (95% CI: 0.0–97.9; *I*² 96%) *versus* 13% (95% CI: 0.4–84.9; *I*² 95%), OR: 0.39 (95% CI: 1.02–1.79; *I*² 0%), *P* = 0.6, including when the data from observational studies and RCTs were analyzed separately [Figure 3]
- 4. Mean difference in CPT between EUS-LB and PC-LB: The mean number of CPT was higher in the PC-LB cohort compared to EUS-LB; mean difference: 1.18 (95% CI: 2.34–0.02; *I*² 95%), *P* = 0.05 [Figure 4]
- 5. Mean difference in TSL between EUS-LB and PC-LB: The mean TSL was statistically higher in the PC-LB group as compared to EUS-LB; mean difference: 1.25 (95% CI: 2.50–0.00; *I*² 96%), *P* = 0.05 [Figure 5].

VALIDATION OF META-ANALYSIS RESULTS

Sensitivity analysis

To assess whether any one study had a dominant effect on the meta-analysis, we excluded one study at a time and analyzed its effect on the main summary estimate. We found that exclusion of any single study did not significantly affect the primary outcome or influence the heterogeneity.

Heterogeneity

We assessed dispersion of the calculated rates using the I^2 percentage values as reported in the meta-analysis outcomes section. We found low to substantial heterogeneity in our outcomes. This is likely due to variability in the sizes of EUS-LB needles, indications for tissue sampling, operator variability, and location of the lesions.

Publication bias

Publication bias was not assessed, given that the total number of studies was less than 10.

DISCUSSION

Our analysis, based on a limited number of studies, shows that PC-LB has a higher overall diagnostic accuracy when compared to EUS-LB performed with second-generation needles. The two techniques appear to have similar diagnostic adequacy and overall adverse events. When the data exclusively from RCTs are assessed, the two techniques appear to be at par in terms of overall diagnostic accuracy. In addition, PC-LB results in longer specimens and more CPT.

The field of endohepatology continues to evolve with the advent of new-generation EUS-guided biopsy needles, and the growing body of literature suggests that EUS-LB may have fewer contraindications than the traditional PC-LB and TJ-LB techniques. [12] Some of the notable advantages of EUS-LB include the ability to perform several needle passes after a single liver capsule puncture, to assess and treat luminal pathology concurrently, as well as providing faster recovery compared to other approaches. Some of the potential disadvantages of EUS-LB include the additional cost, need for deep sedation, and endoscopist expertise in EUS-guided tissue sampling which often warrants additional training in EUS.[34] A recent study analyzing the complications of tissue acquisition using the PC-LB approach in chronic liver disease patients noted that the

Table 1. Study characteristics

Study, year	Study, year Design To	Total	Total (n)	Sex male/female	/female	Age (ran	Age (range) [SD]	Needle type	type	Indications/	Indications/etiology (n)
	•	EUS-LB	PC-LB	EUS-LB	PC-LB	EUS-LB	PC-LB	EUS-LB	PC-LB	EUS-LB	PC-LB
Ali, 2020	Retrospective,	30	SU) 09	11/19	22/38	54 (46-63)	53 (45-59)	19G or 22G Fork-tip	18G CorVocet	5 (fibrosis	43 (fibrosis
	January 2018		guided)			[median	[median	SharkCore biopsy	needle	staging), 17	staging), 10
	to August 2019. Single					(IQR)]	(IQR)]	needle (Medtronic, Massachusetts.	(Meritmedical, Sought Jordan.	(elevated liver enzvmes). 8	(elevated liver enzymes). 7
	center, USA							United States)	Utah, United States)	(evaluation of	(evaluation of
									or 15G Jamshidi needle (Care-Fusion, Vernon Hills, Illinois, United States)	suspected NASH)	suspected NASH)
Bhogal, 2020	Retrospective, October 2013	135	287	49/86	145/142	53 [15]	52 [15]	19G needle (Expect FNA 2013 to 2017,	NR N	120 (abnormal LFT,) 9 (abnormal	254 (abnormal LFT,) 5 (abnormal
	to June 2019 (EUS-LB)/June 2016 to June							Acquire FNB 2017 to 2019 Boston Scientific		imaging), 3 (suspected adv fib cirrhosis),	Imaging), 4 (suspected adv fib cirrhosis),
	2019 (PC- LB), Single center, USA									3 (follow-up of chronic condition)	22 (follow- up of chronic condition)
Bang, 2021	Prospective, RCT, July 2019 to November 2020, Single	21	19	X X	Z Z	Z Z	Ϋ́ Z	19G Acquire, Boston Scientific	16G Biopince, Argon Medical Devices	X X	X X
Facciorusso,	Retrospective,	54	62 (US	32/22	38/24	56 (48-69) Imedian	54 (45-67) Imedian	22G ProCore® [Cook Medical_Bloomington	16G biopsy needle	27 (Focal lesion), 27 (Parenchymal	31 (Focal lesion),
-	Multicenter, Italy					(IQR)]	(IQR)]	IN, USJ, 22G SharkCore®, or 22G	Medical Devices, Frisco, TX, USA)	disease)	disease)
								Acquire®) and 19G FNA (EchoTip Ultra®, Cook Medical LLC,			
								Bloomington, IN, USA)			
Nallapeta, 2021 (Abs)	Prospective, RCT, October	36	44 (US guidance)	10/26	17/27	53.4 [13.7]	51.8 [13.8]	19G Franseen (Acquire™) or 19G	18G cutting needles or by suction15G	X Z	NR N
	2020 to March 2021, Single							Fork-tip (SharkCore™) needle biopsy	liver biopsy needle		
	, , , , , , , , , , , , , , , , , , , ,										

LB: Liver biopsy; PC-LB: Percutaneous LB; IQR: Interquartile range; US: Ultrasound; NR: Not reported; NASH: Nonalcoholic steatohepatitis; LFT: Liver function tests; SD: Standard deviation

Table 2. Study outcomes

		(CPT				Outc	omes		
				-	nostic quacy	•	nostic Iracy	Advers	se events (n)	
	EUS-LB		PC-LB	EUS-LB	PC-LB	EUS-LB	PC-LB	EUS-LB	PC-LB	
Ali, 2020	5 (5-8) [med (IQR)]/5.75±6		13 (8-21) [median (IQR)]/13.75±3.7556	NR	NR	28/30	60/60	0/30	0/60	
Bhogal, 2020	19.7 (SD 1 (mean)	0)	17.4 (SD 9) (mean)	134/135	284/287	NR	NR	133/135 (none) 1/135 (severe pain), 0/135 (bleeding) 1/135 (mortalit [within 30 days]	1/287 (severe pain), 1/287 (bleeding), y 0/287 (mortality	
Bang, 2021	1 (4.8) [0- 3 (14.3) [6- 17 (81.0) [2	9],	0 [0-5], 1 (5.3) [6-9], 18 (94.7) [≥10]	NR	NR	19/21	19/19	0/21	0/19	
Facciorusso, 2021	18.5 (10-23 [Median (IQR)]/17.55	,	21 (11-24) [median (IQR)]/19.25±3.73	51/52	62/62	24/27	31/31	0/54	0/62	
Nallapeta, 2021 (Abs)	Mean 12.5 10.6]	[SD	Mean 18.9 [SD 10.5]	20/36	33/44	36/36	44/44	0/36	0/44	
Study, year		T;						Procedure ti	me (min)	
			EUS-LB	PC-LB			EUS-LB		PC-LB	
Ali, 2020			25 mm (21-33) lian (IQR)]/26±3.48	31 mm (20-42) [median (IQR)]/31±6.35				NR	NR	
Bhogal, 2020		3	4.7 mm (SD 10)	29	.2 mm (SD 9	9)	NR		NR	
Bang, 2021		16.5	mm (6.9) [mean], (IQR 15-21.5, range 5-32.5) [median]	26 n	nm (4.3) [m nm (IQR 25- 15-32) [me	30,		NR	NR	
Facciorusso,			5 mm (10.1-22.4) n (IQR)]/17.375±3.544		4 mm (21-2 n (IQR)]/26	,	, ,	min [median m-maximum)]	1 (1-3) min [median (minimum-maximum)]	
Nallapeta, 20	021 (Abs)	19.5 m	nm (5.8) [Mean (SD)]	19.6 mn	n (5.7) [Mea	ın (SD)]		NR	NR	

LB: Liver biopsy; PC-LB: Percutaneous LB; IQR: Interquartile range; NR: Not reported; SD: Standard deviation; CPTs: Complete portal tracts; TSL: Total specimen length

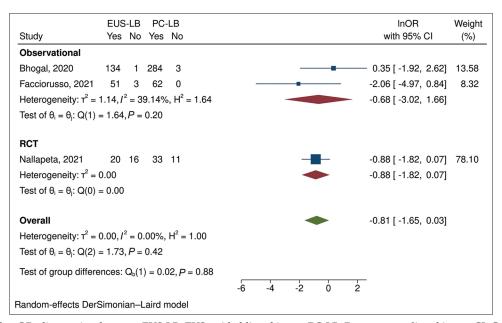


Figure 1. Forest plot, OR, diagnostic adequacy. EUS-LB: EUS-guided liver biopsy; PC-LB: Percutaneous liver biopsy; CI: Confidence interval; OR: Odds ratio; RCT: Randomized controlled trial

incidences of complications such as major and minor respectively, and postprocedure pain occurred in 0.34% of patients. In addition, technical failure was high at

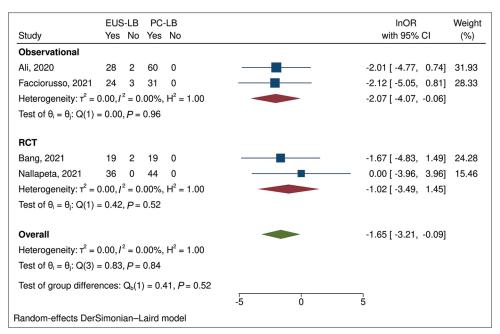


Figure 2. Forest plot, OR, diagnostic accuracy. EUS-LB: EUS-guided liver biopsy; PC-LB: Percutaneous liver biopsy; CI: Confidence interval; OR: Odds ratio; RCT: Randomized controlled trial

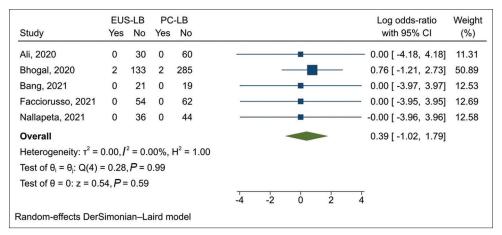


Figure 3. Forest plot, OR, overall adverse events. EUS-LB: EUS-guided liver biopsy; PC-LB: Percutaneous liver biopsy; CI: Confidence interval; OR: Odds ratio

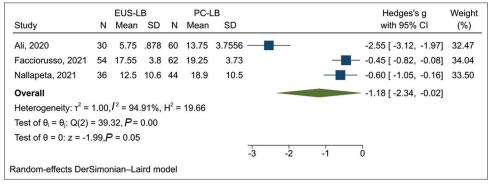


Figure 4. Forest plot, OR, mean complete portal tracts. EUS-LB: EUS-guided liver biopsy; PC-LB: Percutaneous liver biopsy; CI: Confidence interval; OR: Odds ratio

0.94%. [4] In our analysis, we noted that the rate of overall adverse events was similar between EUS-LB and

PC-LB, with severe pain occurring in 1 patient in each group, 1 case of postprocedure bleeding in the PC-LB

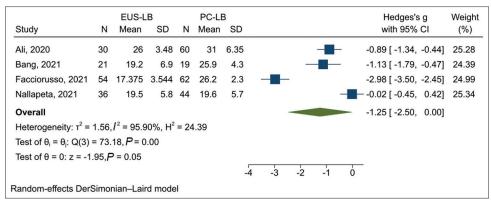


Figure 5. Forest plot, OR, total specimen length. EUS-LB: EUS-guided liver biopsy; PC-LB: Percutaneous liver biopsy; CI: Confidence interval; OR: Odds ratio; RCT: Randomized controlled trial

group, and a single death, unrelated to the procedure, occurring in the EUS-LB group.

Multiple retrospective studies have been previously published comparing the adequacy and clinical safety of EUS-LB with PC-LB. Pineda et al. concluded that EUS-guided biopsy yielded a longer total specimen, when both lobes were biopsied and that this technique yields specimens at least comparable to, and in some cases better than, PC or transjugular LB.[26] Another study by Shuja et al. reported that while the TSL was longer for EUS-LB, a maximum number of CPT were seen with PC biopsy.^[35] However, in these studies, EUS-LB was performed using first-generation fine-needle aspiration needles, and not fine-needle biopsy needles. In a bid to improve the histologic yield of samples with EUS-LB, new-generation of core biopsy needles with specialized tip designs has been developed and been commercially available since 2012. The Procore reversed bevel tip with a tissue trap design (Echo TipHD ProCore; Cook Medical Inc., Winston-Salem, NC) was the first, followed by a fork-tip design (SharkCore, Medtronic Inc., Minneapolis MN) and finally a Franseen tip design (Acquire, Boston Scientific, Marlborough, MA). In our study, 19G or 22G Fork-tip SharkCoreTM biopsy needles (Medtronic, Massachusetts, United States) were used in two studies, [29,33] 19G AcquireTM (Boston Scientific) was used in two studies, [30,32] and 22G ProCore® [Cook Medical, Bloomington, IN, US], 22G SharkCore®, or 22G Acquire®) and 19G FNA (EchoTip Ultra®, Cook Medical LLC, Bloomington, IN, USA) were used in another study.^[31] We found that the overall pooled diagnostic adequacy of samples was comparable between EUS-LB and PC-LB groups. This trend was also seen when the data from observational studies and RCTs were analyzed separately.

The American Association for the Study of Liver Diseases states that an adequate biopsy sample should be at least 20 mm in length with eleven or more CPT (defined as containing all 3 portal structures: portal vein, hepatic artery, and bile duct). [36] In our analysis, we found that the TSL and the mean number CPTs were both statistically higher in the PC-LB group. This may be due to two possible reasons. First, while two studies in our analysis utilized 18G cutting or 15G suction needles to obtain the biopsy specimen, [29,33] two studies used the 16G biopsy needle (Biopince®, Argon Medical Devices, Frisco, TX, USA), which has shown to be superior to 18G needles in terms of CPTs and TSL.[31,32] Second, in two of the retrospective cohort studies included in our analysis, some EUS-LB procedures were performed using the older-generation 19G FNA needles, which may have resulted in samples with lesser number of CPT and shorter specimen length.[30,31] A recent meta-analysis of five studies comparing outcomes of EUS-LB, PC-LB, and TJ-LB concluded that there was no difference in biopsy adequacy or adverse events for EUS-LB compared to PC-LB and TJ-LB. A comparison of EUS-LB and PC-LB also revealed no difference between specimens regarding CPT; however, a longer TSL was observed with EUS-LB.[37] It is important to note that in all the included studies in the analysis, EUS-LB was carried out using first-generation FNA needles including 19G TruCut needle (Quick-Core; Cook Medical Inc., Winston-Salem, NC) and 19G Expect or ExpectFlexible needles (Boston Scientific, Marlborough, MA). We included only those studies where majority of EUS-LB procedures were performed using the newer second-generation needles to better compare outcomes with PC-LB.

There are several strengths to our analysis. First, we conducted a systematic literature search with

well-defined inclusion criteria, careful exclusion of redundant studies, inclusion of good-quality studies with detailed extraction of data, and rigorous evaluation of study quality. Second, to validate our findings further, we assessed outcomes of observational studies and RCTs separately. There are also several limitations to this study, most of which are inherent to any meta-analysis. First and foremost, our analysis included a limited number of studies as comparative data between EUS-LB with newer-generation needles and PC-LB continues to evolve. Second, only three of the included studies reported the indications for performing LB. In one of the included studies, diagnostic accuracy for both EUS-LB and PC-LB groups was reported only from a sample of focal liver lesions and not parenchymal liver disease.[31] Three of the included studies were retrospective in design which may have resulted in selection bias. Third, one of the included studies in our analysis was only published in abstract format as it is an ongoing randomized controlled trial.[33] Data regarding the number of passes with EUS-LB were not consistently reported in all the studies. In two studies, the authors reported that two passes were performed from either lobe of the liver, [31,32] whereas in patients with focal liver lesions, the number of passes was decided based on the macroscopic appearance of the collected material. In a majority of the included studies, the authors reported that during EUS-guided sampling, the right or left lobe of the liver was punctured either through transduodenal or transgastric approach. Bhogal et al. reported that majority of EUS-LB specimens were obtained from the left hepatic lobe via a transgastric approach.[30] Historically, PCLB was performed without image guidance from the right lobe of the liver, which was identified by percussion of the liver, with breath held in inspiration.^[38] However, studies suggest that image-guided PC sampling using the subxiphoid approach can be used for targeting the left hepatic lobe. [39] Given anatomical limitations of either method, it remains to be determined whether one approach is better than the other for a particular liver segment. Finally, a majority of the studies in our analysis originated in USA and were carried out in expert centers, making our results not generalizable.

Nevertheless, our analysis is the first in literature to compare outcomes of EUS-LB with second-generation needles and PC-LB. While the two techniques performed at par in terms of diagnostic adequacy and overall adverse events, PC-LB allows obtaining longer

specimen samples and more CPT. Further studies are needed to see if these trends hold up as more providers begin to perform EUS-LB.

Acknowledgments

We acknowledge Elissa A. Kinzelman-Vesely, MLIS, MA, Librarian, Mayo Clinic Libraries, for help with the systematic literature search.

Financial support and sponsorship

Nil

Conflicts of interest

Douglas G. Adler is a Co-Editor-in-Chief of the journal. This article was subject to the journal's standard procedures, with peer review handled independently of the editor and his research group.

Supplementary materials

Supplementary information is linked to the online version of the paper on the *Endoscopic Ultrasound* website.

REFERENCES

- Neuberger J, Patel J, Caldwell H, et al. Guidelines on the use of liver biopsy in clinical practice from the British Society of Gastroenterology, the Royal College of Radiologists and the Royal College of Pathology. Gut 2020;69:1382-403.
- Bravo AA, Sheth SG, Chopra S. Liver biopsy. N Engl J Med 2001:344:495-500.
- Kalambokis G, Manousou P, Vibhakorn S, et al. Transjugular liver biopsy-indications, adequacy, quality of specimens, and complications – A systematic review. J Hepatol 2007;47:284-94.
- Thomaides-Brears HB, Alkhouri N, Allende D, et al. Incidence of Complications from Percutaneous Biopsy in Chronic Liver Disease: A Systematic Review and Meta-Analysis. Dig Dis Sci 2022;67:3366-94.
- Procopet B, Bureau C, Métivier S, et al. Tolerance of liver biopsy in a tertiary care center: Comparison of the percutaneous and the transvenous route in 143 prospectively followed patients. Eur J Gastroenterol Hepatol 2012;24:1209-13
- Dohan A, Guerrache Y, Dautry R, et al. Major complications due to transjugular liver biopsy: Incidence, management and outcome. Diagn Interv Imaging 2015;96:571-7.
- Behrens G, Ferral H. Transjugular liver biopsy. Semin Intervent Radiol 2012;29:111-7.
- Regev A, Berho M, Jeffers LJ, et al. Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. Am J Gastroenterol 2002;97:2614-8.
- Dewitt J, McGreevy K, Cummings O, et al. Initial experience with EUS-guided Tru-cut biopsy of benign liver disease. Gastrointest Endosc 2009:69:535-42.
- Saraireh HA, Bilal M, Singh S. Role of endoscopic ultrasound in liver disease: Where do we stand in 2017? World J Hepatol 2017;9:1013-21.
- Stavropoulos SN, Im GY, Jlayer Z, et al. High yield of same-session EUS-guided liver biopsy by 19-gauge FNA needle in patients undergoing EUS to exclude biliary obstruction. Gastrointest Endosc 2012;75:310-8.
- 12. DeWitt JM, Arain M, Chang KJ, et al. Interventional endoscopic ultrasound: Current status and future directions. Clin Gastroenterol Hepatol

- 2021:19:24-40
- Diehl DL. Endoscopic ultrasound-guided liver biopsy. Gastrointest Endosc Clin N Am 2019;29:173-86.
- Mohan BP, Shakhatreh M, Garg R, et al. Efficacy and safety of EUS-guided liver biopsy: A systematic review and meta-analysis. Gastrointest Endosc 2019;89:238-46.e3.
- Ching-Companioni RA, Diehl DL, Johal AS, et al. 19G aspiration needle versus 19G core biopsy needle for endoscopic ultrasound-guided liver biopsy: A prospective randomized trial. Endoscopy 2019;51:1059-65.
- Eskandari A, Koo P, Bang H, et al. Comparison of endoscopic ultrasound biopsy needles for endoscopic ultrasound-guided liver biopsy. Clin Endosc 2019;52:347-52.
- Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000;283:2008-12.
- Atkins D, Eccles M, Flottorp S, et al. Systems for grading the quality of evidence and the strength of recommendations I: Critical appraisal of existing approaches The GRADE Working Group. BMC Health Serv Res 2004;4:38.
- DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7:177-88.
- Sutton AJ, Abrams KR, Jones DR, et al. Methods for Meta-Analysis in Medical Research. New York: J. Wiley; 2000.
- Mohan BP, Adler DG. Heterogeneity in systematic review and meta-analysis: How to read between the numbers. Gastrointest Endosc 2019;89:902-3.
- Higgins JP, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects meta-analysis. J R Stat Soc Ser A Stat Soc 2009;172:137-59.
- Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ 2003;327:557-60.
- Duval S, Tweedie R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. *Biometrics* 2000;56:455-63.
- Nakanishi Y, Mneimneh WS, Sey M, et al. One hundred thirteen consecutive transgastric liver biopsies for hepatic parenchymal diseases: A single-institution study. Am J Surg Pathol 2015;39:968-76.
- Pineda JJ, Diehl DL, Miao CL, et al. EUS-guided liver biopsy provides diagnostic samples comparable with those via the percutaneous or transjugular route. Gastrointest Endosc 2016;83:360-5.

- Foor-Pessin C, Bittner K, Kothari S, et al. Mo1273 histologic yield of endoscopic ultrasound guided liver biopsy compared to percutaneous and transjugular approaches: A single-center retrospective review. Gastrointest Endosc 2017;85:AB485-6.
- Shahshahan M, Gertz H, Fakhreddine AY, et al. Mo1285 endoscopic ultrasound-guided liver biopsy versus percutaneous and trans-jugular liver biopsy for evaluation of liver parenchyma. Gastrointest Endosc 2017;85:AB490.
- Ali AH, Panchal S, Rao DS, et al. The efficacy and safety of endoscopic ultrasound-guided liver biopsy versus percutaneous liver biopsy in patients with chronic liver disease: A retrospective single-center study. J Ultrasound 2020;23:157-67.
- Bhogal N, Lamb B, Arbeiter B, et al. Safety and adequacy of endoscopic ultrasound-guided random liver biopsy in comparison with transjugular and percutaneous approaches. Endosc Int Open 2020;8:E1850-4.
- Facciorusso A, Ramai D, Conti Bellocchi MC, et al. Diagnostic yield of endoscopic ultrasound-guided liver biopsy in comparison to percutaneous liver biopsy: A two-center experience. Cancers (Basel) 2021;13:3062.
- Bang JY, Ward TJ, Guirguis S, et al. Radiology-guided percutaneous approach is superior to EUS for performing liver biopsies. Gut 2021;70:2224-6.
- Nallapeta N, Ali AH, Swi A, et al. Endoscopic ultrasound-guided liver biopsy is comparable to percutaneous liver biopsy: A randomized clinical trial. Hepatology 2021;74:379A-80A.
- Obaitan I, Saxena R, Al-Haddad MA. EUS guided liver biopsy. Tech Innov Gastrointest Endosc 2022;24:66-75.
- Shuja A, Alkhasawneh A, Fialho A, et al. Comparison of EUS-guided versus percutaneous and transjugular approaches for the performance of liver biopsies. Dig Liver Dis 2019;51:826-30.
- Rockey DC, Caldwell SH, Goodman ZD, et al. Liver biopsy. Hepatology 2009;49:1017-44.
- McCarty TR, Bazarbashi AN, Njei B, et al. Endoscopic ultrasound-guided, percutaneous, and transjugular liver biopsy: A comparative systematic review and meta-analysis. Clin Endosc 2020;53:583-93.
- Gilmore IT, Burroughs A, Murray-Lyon IM, et al. Indications, methods, and outcomes of percutaneous liver biopsy in England and Wales: An audit by the British Society of Gastroenterology and the Royal College of Physicians of London. Gut 1995;36:437-41.
- Shaw C, Shamimi-Noori S. Ultrasound and CT-directed liver biopsy. Clin Liver Dis (Hoboken) 2014;4:124-7.

Supplemen	Supplementary Appendix 1. Literature search strategy	ure search strategy			
Database	MEDLINE(R) 1946 to	Embase <1974–2021	EBM Reviews	Scopus (1823-present)	SCIE
	Present and Epub	November 9>	Cochrane Central	,	ESCI (1900-present)
	Ahead of Print, In-		Register of Controlled		
	Process and Other		Trials <1991-October		
	and Ovid MEDI INF(R) Deily		~1707		
Platform/	Ovid	Ovid	Ovid	Elsevier	Web of Science
Vendor					
Date	10 November 2021	10 November 2021	10 November 2021	10 November 2021	10 November 2021
Search					
Null					
Results	156	198	17	207	77
Numbers					
(overall					
and line					
by line if					
nsed)					
Terms and	1	1 endoscopic	1 ((endoscopic adj	(((INDEXTERMS	#1 TS=((endoscopic
Field	Endosonography/13583	ultrasonography/11837	(ultrasonography or	(endosonography OR	NEAR/1
Codes	2 (endoscopic adj	2 ((endoscopic adj	ultrasound)) or EUS or	{endoscopic	(ultrasonography OR
	(ultrasonography or	(ultrasonography or	EUS-guided or EUS-LB	ultrasonography}) OR	ultrasound)) OR EUS
	ultrasound)).ab,kf,ti.	ultrasound)) or EUS or	or endosonograph\$ or	TITLE-ABS-KEY	OR EUS-guided OR
	13182	EUS-guided or EUS-	echo-endoscop\$ or	((endoscopic W/1	EUS-LB OR
	3 (EUS or EUS-guided	LB or endosonograph\$	ultrasonic-endoscop\$ or	(ultrasonography OR	endosonograph* OR
	or EUS-LB or	or echo-endoscop\$ or	echoendoscop\$).ti,hw,ab	ultrasound)) OR eus OR	echo-endoscop* OR
	endosonograph\$ or	ultrasonic-endoscop\$ or	. 2210	eus-guided OR eus-lb	ultrasonic-endoscop*
	echo-endoscop\$ or	echoendoscop\$).ab,kf,ti	2 (percutaneous or	OR endosonograph*	OR echoendoscop*)
	ultrasonic-endoscop\$ or	. 36073	transcutaneous or PC-	OR echo-endoscop* OR	#2 TS=(percutaneous
	echoendoscop\$).ab,kf,ti	3 1 or 2 39787	LB).ti,hw,ab. 28122	ultrasonic-endoscop*	OR transcutaneous OR
	. 13224	4 percutaneous biopsy/	3 (biopsy or biopsies or	OR echoendoscop*))	PC-LB)
	4 1 or 2 or 3 24899	5497	fine-needle-aspiration\$	AND (INDEXTERMS	#3 TS=(liver* OR
	5 (percutaneous or	5 (percutaneous or	or FNA or EUS-	({percutaneous biopsy})	intrahepatic OR "bile

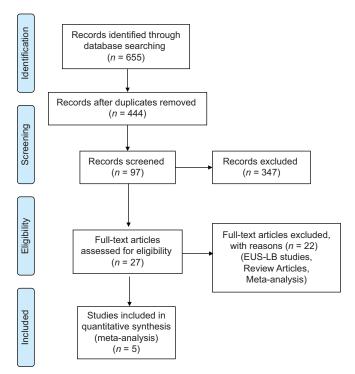
transcutaneous or PC-	transcutaneous or PC-	FNA).ti,hw,ab. 35153	OR TITLE-ABS-KEY	canalicul*" OR hepatic
LB).ab,kf,ti. 170925	LB).ab,kf,ti. 256098	4 (liver\$ or intrahepatic	(percutaneous OR	OR hepatis OR hepati
6 exp Biopsy,	6 4 or 5 257844	or bile-canaliculs or	transcutaneous OR pc-	OR "Budd-Chiari" OR
Needle/68425	7 liver biopsy/ 62621	hepatic or hepatis or	Ib)) AND	"Chiari* syndrom*" OR
7 exp Image-Guided	8 ((liver and (biopsy or	hepati).ti,hw,ab. 66674	((INDEXTERMS	hepatitis OR hepatitides
Biopsy/7479	biopsies or fine-needle-	5 (alpha-1-antitrypsin	({liver biopsy}) OR	OR "hepatic necrosis"
8 pathology.fs.	aspiration\$ or FNA or	adj1 deficien\$).ti,hw,ab.	TITLE-ABS-KEY	OR "hepatic necroses"
3,085,151	EUS-FNA)) or	197	(liver AND (biopsy OR	OR Alagille* OR
9 diagnostic imaging.fs.	LB).ab,kf,ti. 98480	6 (Budd-Chiari or	biopsies OR fine-	"Watson-Miller" OR
1315025	9 7 or 8 122005	Chiari\$-syndrom\$ or	needle-aspiration* OR	"arteriohepatic
10 (biopsy or biopsies	10 3 and 6 and 9 211	(hepatic adj (vein or	fna OR eus-fna))) OR	dysplasia" OR AHD OR
or fine-needle-	11 exp animal/ not exp	venous) adj (outflow-	((INDEXTERMS	cirrhosis OR cholangitis
aspiration\$ or FNA or	human/4857775	obstruction or	({Biopsy, Needle} OR	OR cholangitides OR
EUS-FNA).ab,kf,ti.	12 10 not 11 204	thrombos\$))).ti,hw,ab.	{Image-Guided	steatohepatitis OR
433870	13 exp infant/ 1045145	64	Biopsy }) OR TITLE-	steatohepatitides OR
11 or/6-10 4296746	14 exp juvenile/	7 (((liver or hepatic)	ABS-KEY (biopsy OR	steatosis OR steatoses
12 exp Liver	3676378	adj3 (injur\$ or toxic\$ or	biopsies OR fine-	OR NAFLD OR "fatty
Diseases/586089	15 13 or 14 3676378	disease\$)) or hepatitis or	needle-aspiration* OR	liver" OR "focal nodular
13 exp Liver/ 456927	16 exp adult/ 9386778	hepatitides).ti,hw,ab.	fna OR eus-fna)) AND	hyperplasia*" OR ACLF
14 (liver\$ or	17 15 not 16 2342985	37110	(INDEXTERMS	OR PT-NANBH OR
intrahepatic or bile-	18 12 not 17 201	8 hepatic-	({Liver Diseases} OR	ET-NANBH OR
canaliculs or hepatic or	19 english.lg. 31935015	necros?s.ti,hw,ab. 33	liver OR {liver	"sinusoidal obstruction
hepatis or	20 18 and 19 198	9 (yellow adj3	disease}) OR TITLE-	syndrome" OR
hepati).ab,kf,ti.		atroph\$).ti,hw,ab. 0	ABS-KEY (liver* OR	pseudosclerosis OR
1026740		10 (intrahepatic adj3	intrahepatic OR "bile	pseudoscleroses OR
15 (alpha-1-antitrypsin		(cholestas?s or biliary-	canalicul*" OR hepatic	"wilson* disease*" OR
adj1 deficien\$).ab,kf,ti.		stas?s)).ti,hw,ab. 204	OR hepatis OR hepati	"Westphal-Strumpell"
2688		11 (Alagille\$ or Watson-	OR "Budd-Chiari" OR	OR "copper storage" OR
16 (Budd-Chiari or		Miller or	"Chiari* syndrom*" OR	hepatomegaly OR ZSS
Chiari\$-syndrom\$ or		((cardiovertebral or	hepatitis OR hepatitides	OR "portal
(hepatic adj (vein or		hepatofacioneurocardiov	OR "hepatic necrosis"	hypertension*" OR
venous) adj (outflow-		ertebral) adj syndrome)	OR "hepatic necroses"	"Cruveilhier-
obstruction or		or arteriohepatic-	OR alagille* OR	Baumgarten" OR
thrombos\$))).ab,kf,ti.		dysplasia or AHD or	"Watson-Miller" OR	fascioliasis OR

2092	13	Cibe stasis	"arteriohenatic	faciosa OR "facioral
17	7 (((liver or hepatic)	pulmonary stenos?s) or	dvsplasia" OR ahd OR	infection*" OR
adj	adj3 (injur\$ or toxic\$ or	(paucity adj3 bile duct\$)	cirrhosis OR cholangitis	hepatoma* OR "peliosis
dis	disease\$)) or hepatitis	or (hepatic adj2	OR cholangitides OR	hepatis" OR porphyria*
ori	or hepatitides).ab,kf,ti.	hypoplasia)).ti,hw,ab.	steatohepatitis OR	OR coproporphyria OR
37.	373197	137	steatohepatitides OR	coproporphyrinogen OR
18	18 hepatic-	12 (cirrhosis or	steatosis OR steatoses	Protoporphyria*) OR
nec	necros?s.ab,kf,ti. 2568	cholangitis or	OR NAFLD OR "fatty	TS=("alpha-1-
19	19 (yellow adj3	cholangitides).ti,hw,ab.	liver" OR "focal	antitrypsin" NEAR/1
atro	atroph\$).ab,kf,ti. 214	11849	nodular hyperplasia*"	deficien*) OR
20	20 (intrahepatic adj3	13 (steatohepatitis or	OR aclf OR pt-nanbh	TS=(hepatic NEAR/3
(ch	(cholestas?s or biliary-	steatohepatitides or	OR et-nanbh OR	("outflow obstruction"
sta	s?s)).ab,kf,ti. 3744	steatos?s or	"sinusoidal obstruction	OR thrombos*)) OR
21	21 (Alagille\$ or	NAFLD).ti,hw,ab. 3901	syndrome" OR	TS=((liver OR hepatic)
We	Watson-Miller or	14 ((Reye\$ adj2	pseudosclerosis OR	NEAR/3 (injur* OR
<u>3))</u>	((cardiovertebral or	syndrome) or fatty-	pseudoscleroses OR	toxic* OR disease*)) OR
her	hepatofacioneurocardio	liver).ti,hw,ab. 4353	"wilson* disease*" OR	TS=(yellow NEAR/3
ver	vertebral) adj	15 (focal-nodular-	"Westphal-Strumpell"	atroph*) OR
Syr	syndrome) or	hyperplasia\$ or ((hepatic	OR "copper storage"	TS=(intrahepatic
arte	arteriohepatic-dysplasia	or liver or	OR hepatomegaly OR	NEAR/3 (cholestasis OR
or,	AHD or (cholestasis	hepatocellular) adj3	zss OR "portal	cholestases OR "biliary
adj	adj2 pulmonary	(infarct\$ or insuffiency	hypertension*", OR	stasis" OR "biliary
ste	stenos?s) or (paucity	or failure\$ or abscess\$	"Cruveilhier-	stases")) OR
adj	adj3 bile duct\$) or	or am?ebiasis or	Baumgarten" OR	TS=((cardiovertebral
(he	(hepatic adj2	entam?ebias?s or	fascioliasis OR	OR
hyl	hypoplasia)).ab,kf,ti.	fibros?s or	fascioliases OR	hepatofacioneurocardiov
20.	38	Echinococcosis or	"fasciola infection*"	ertebral) NEAR/1
22	22 (cirrhosis or	Hydatidosis or Hydatid-	OR hepatoma* OR	syndrome) OR
chc	cholangitis or	Cyst\$ or neoplasm\$ or	"peliosis hepatis" OR	TS=(cholestasis
chc	cholangitides).ab,kf,ti.	cancer\$ or adenoma\$ or	porphyria* OR	NEAR/2 ("pulmonary
11;	5034	carcinoma\$ or	coproporphyria OR	stenosis" OR
23	23 (steatohepatitis or	tuberculos?s))).ti,hw,ab.	coproporphyrinogen OR	"pulmonary stenosis"))
ste	steatohepatitides or	15372	protoporphyria*) OR	OR TS=(paucity
ste	steatos'/s or	16 ((hepatic or portal-	III LE-ABS-KEY (NEAR/3 "bile duct*")

NAFID) 3k Lft;	systemic or	"alpha-1-antitrymein"	OR TS=/hepatic
41106	benetice of	W//1 doffer: ** OD	MEAD (homeonless) OD
41106	nepatocerebral or	W/I deficien") UK	NEAK/2 hypopiasia) OK
24 ((Reye\$ adj2	portosystemic) adj3	TITLE-ABS-KEY	TS=(Reye* NEAR/2
syndrome) or fatty-	(encephalopath\$ or	(hepatic W/3 ("outflow	syndrome) OR
liver).ab,kf,ti. 36902	coma\$ or	obstruction" OR	TS=((hepatic OR liver
25 (focal-nodular-	stupor\$)).ti,hw,ab. 1862	thrombos*)) OR	OR hepatocellular)
hyperplasia\$ or	17 (ACLF or PT-	TITLE-ABS-KEY	NEAR/3 (infarct* OR
((hepatic or liver or	NANBH or ET-	((liver OR hepatic) W/3	insuffiency OR failure*
hepatocellular) adj3	NANBH).ti,hw,ab. 219	(injur* OR toxic* OR	OR abscess* OR
(infarct\$ or insuffiency	18 (sinusoidal-	disease*)) OR TITLE-	amebiasis OR
or failure\$ or abscess\$	obstruction-syndrome or	ABS-KEY (yellow W/3	amoebiasis OR
or am?ebiasis or	((hepatolenticular or	atroph*) OR TITLE-	entamebiasis OR
entam?ebias?s or	hepatocerebral or	ABS-KEY (intrahepatic	entamoebiasis OR
fibros?s or	neurohepatic or	W/3 (cholestasis OR	entamebiases OR
Echinococcosis or	lenticular) adj1	cholestases OR "biliary	entamoebiases OR
Hydatidosis or Hydatid-	degeneration\$) or	stasis" OR "biliary	fibrosis OR fibroses OR
Cyst\$ or neoplasm\$ or	pseudoscleros?s or	stases")) OR TITLE-	Echinococcosis OR
cancer\$ or adenoma\$ or	wilson\$-disease\$ or	ABS-KEY	Hydatidosis OR
carcinoma\$ or	Westphal-Strumpell or	((cardiovertebral OR	Hydatid-Cyst* OR
tuberculos?s))).ab,kf,ti.	copper-storage).ti,hw,ab.	hepatofacioneurocardio	neoplasm* OR cancer*
208957	219	vertebral) W/1	OR adenoma* OR
26 ((hepatic or portal-	19 (hepatomegaly or	syndrome) OR TITLE-	carcinoma* OR
systemic or	ZSS).ti,hw,ab. 325	ABS-KEY (cholestasis	tuberculosis OR
hepatocerebral or	20 ((hepatopulmonary or	W/2 ("pulmonary	tuberculoses)) OR
portosystemic) adj3	hepato-pulmonary or	stenosis" OR	TS=((hepatic OR "portal
(encephalopath\$ or	hepatorenal or	"pulmonary stenosis"))	systemic" OR
coma\$ or	Zellweger\$ or cerebro-	OR TITLE-ABS-KEY	hepatocerebral OR
stupor\$)).ab,kf,ti.	hepato-renal) adj2	(paucity W/3 "bile	portosystemic) NEAR/3
11083	(syndrome\$ or disease or	duct*") OR TITLE-	(encephalopath* OR
27 (ACLF or PT-	spectrum)).ti,hw,ab. 486	ABS-KEY (hepatic W/2	coma* OR stupor*)) OR
NANBH or ET-	21 (portal-hypertension\$	hypoplasia) OR TITLE-	TS=((hepatolenticular
NANBH).ab,kf,ti. 1279	or Cruveilhier-	ABS-KEY (reye* W/2	OR hepatocerebral OR
28 (sinusoidal-	Baumgarten).ti,hw,ab.	syndrome) OR TITLE-	neurohepatic OR
obstruction-syndrome	1403	ABS-KEY ((hepatic OR	lenticular) NEAR/1

or ((hepatolenticular or	22 ((22 ((esophageal or	liver OR hepatocellular)	degeneration*) OR
hepatocerebral or	oeso oeso	oesophageal or gastric)	W/3 (infarct* OR	TS=((hepatopulmonary
neurohepatic or	adj1	adj1 (varix or	insuffiency OR failure*	OR hepato-pulmonary
lenticular) adj1	varic	varices)).ti,hw,ab. 1757	OR abscess* OR	OR hepatorenal OR
degeneration\$) or	23 (1	23 (fasciolias?s or	amebiasis OR	Zellweger* OR "cerebro
pseudoscleros?s or	fasci	fasciola-	amoebiasis OR	hepato renal") NEAR/2
wilson\$-disease\$ or	infec	infection\$).ti,hw,ab. 27	entamebiasis OR	(syndrome* OR disease
Westphal-Strumpell or	24 (1	24 (hepatoma\$ or	entamoebiasis OR	OR spectrum)) OR
copper-storage).ab,kf,ti.	pelic	peliosis-hepatis or	entamebiases OR	TS=((esophageal OR
7746	drod	porphyria\$ or	entamoebiases OR	oesophageal OR gastric)
29 (hepatomegaly or	copr	coproporphyria or	fibrosis OR fibroses OR	NEAR/1 (varix OR
ZSS).ab,kf,ti. 8341	copr	coproporphyrinogen or	echinococcosis OR	varices)) OR
30 ((hepatopulmonary	Prot	Protoporphyria\$ or	hydatidosis OR hydatid-	TS=((Hydroxymethylbil
or hepato-pulmonary or	(H)	((Hydroxymethylbilane	cyst* OR neoplasm*	ane OR
hepatorenal or	or U	or Uroporphyrinogen or	OR cancer* OR	Uroporphyrinogen OR
Zellweger\$ or cerebro-	UPS	UPS or PBGD or	adenoma* OR	UPS OR PBGD OR
hepato-renal) adj2	Porp	Porphobilinogen or ppox	carcinoma* OR	Porphobilinogen OR
(syndrome\$ or disease	or P ₁	or Protoporphyrinogen	tuberculosis OR	ppox OR
or spectrum)).ab,kf,ti.	or Fe	or Ferrochelatase or	tuberculoses)) OR	Protoporphyrinogen OR
4550	hem	heme-synthetase) adj3	TITLE-ABS-KEY	Ferrochelatase OR
31 (portal-	defic	deficien\$)).ti,hw,ab. 333	((hepatic OR "portal	"heme-synthetase")
hypertension\$ or	25 0	25 or/4-24 84311	systemic" OR	NEAR/3 deficien*)
Cruveilhier-	26 1	26 1 and 2 and 3 and 25	hepatocerebral OR	#4 TS=(biopsy OR
Baumgarten).ab,kf,ti.	17		portosystemic) W/3	biopsies OR fine-needle-
19898			(encephalopath* OR	aspiration* OR FNA OR
32 ((esophageal or			coma* OR stupor*))	EUS-FNA)
oesophageal or gastric)			OR TITLE-ABS-KEY	#5 (#3) AND #4
adj1 (varix or			((hepatolenticular OR	#6 TS=(liver AND
varices)).ab,kf,ti. 9825			hepatocerebral OR	(biopsy OR biopsies OR
33 (fasciolias?s or			neurohepatic OR	fine-needle-aspiration*
fasciola-			lenticular) W/1	OR FNA OR EUS-
infection\$).ab,kf,ti.			degeneration*) OR	FNA))
1948			TITLE-ABS-KEY	#7 (#5) OR #6
34 (hepatoma\$ or			((hepatopulmonary OR	#8 ((#7) AND #2) AND

neliosis-henatis or	hepato-nilmopary OR	#1
nornhyria\$ or	henatorenal OR	#9 AK=("nonulation
coproporphyria or	zellweger* OR "cerebro	
coproporphyrinogen or	hepato renal") W/2	
Protoporphyria\$ or	(syndrome* OR disease	OR women OR patient
((Hydroxymethylbilane	OR spectrum)) OR	OR female OR male OR
or Uroporphyrinogen or	TITLE-ABS-KEY	subjects OR adult) NOT
UPS or PBGD or	((esophageal OR	AK="animal models")
Porphobilinogen or	oesophageal OR gastric)	#10 (#8) AND #9
ppox or	W/1 (varix OR varices))	#11 ((#8) AND #9)
Protoporphyrinogen or	OR TITLE-ABS-KEY	AND LA=(English)
Ferrochelatase or heme-	((hydroxymethylbilane	
synthetase) adj3	OR uroporphyrinogen	
deficien\$)).ab,kf,ti.	OR ups OR pbgd OR	
39715	porphobilinogen OR	
35 or/12-34 1445278	ppox OR	
36 4 and 5 and 11 and	protoporphyrinogen OR	
35 171	ferrochelatase OR	
37 exp Animals/not exp	"heme-synthetase")	
Humans/4912992	W/3 deficien*)))) AND	
38 36 not 37 169	NOT (INDEXTERMS	
39 exp Infant/ 1195194	(animal OR animals)	
40 exp Child/ 2024760	AND NOT	
41 Adolescent/	INDEXTERMS (human	
2137385	OR humans))) AND	
42 or/39-41 3763496	NOT (INDEXTERMS	
43 exp Adult/ 7642753	(infant OR infants OR	
44 42 not 43 1995470	child OR adolescent OR	
45 38 not 44 168	adolescents OR juvenile	
46 english.1g. 28538788	OR juveniles) AND	
47 45 and 46 156	NOT INDEXTERMS	
	(adult OR adults)))	
	AND (LANGUAGE	
	(english))	


Notes on	All references exported	All references exported All references exported	All references exported	All references exported	All references exported
strategy	to EndNote.	to EndNote	to EndNote	to EndNote	to EndNote
translatio,	Human and adult study	Human and adult study	No limits or filters	Human and adult study	Human and adult study
date	filters applied. Results	filters applied. Results	applied in Central	filters applied. Results	filters applied. Results
range,	limited to English	limited to English	Search strategy saved as:	limited to English	limited to English
citations	language publications	language publications	"H:\Mayo Clinic	language publications	language publications
managem	Search strategy saved	Search strategy saved	Libraries\Systematic	Search strategy saved	Search strategy saved as:
ent	as: "H:\Mayo Clinic	as: "H:\Mayo Clinic	Reviews\2021\Novembe	as: "H:\Mayo Clinic	"H:\Mayo Clinic
software,	Libraries\Systematic	Libraries\Systematic	r\2021-11-9_Kassab	Libraries\Systematic	Libraries\Systematic
etc.	Reviews\2021\Novemb	Reviews/2021/Novemb	SR\Search	Reviews/2021/Novemb	Reviews\2021\Novembe
	er\2021-11-9_Kassab	er\2021-11-9_Kassab	Strategies\2021-11-	er\2021-11-9_Kassab	r\2021-11-9_Kassab
	SR\Search	SR\Search	10_Kassab	SR\Search	SR\Search
	Strategies/2021-11-	Strategies\2021-11-	SR_Cochrane Central	Strategies\2021-11-	Strategies\2021-11-
	10_Kassab	10_Kassab SR_Embase	search strategy.docx"	10_Kassab SR_Scopus	10_Kassab SR_Web of
	SR_Medline search	search strategy.docx"		search strategy.docx"	Science search
	strategy.docx"				strategy.docx"
SCIE: Scien	nce citation index expanded	d; ESCI: Emerging sources	SCIE: Science citation index expanded; ESCI: Emerging sources citation index; LB: Liver biopsy; PC-LB: Percutaneous LB	iopsy; PC-LB: Percutaneou	us LB

Supplementary Appendix 2. MOOSE Checklist

Item number	Recommendation	Reported on page number
	Reporting of background should include	
1	Problem definition	4-5
2	Hypothesis statement	5
3	Description of study outcome (s)	5
4	Type of exposure or intervention used	5
5	Type of study designs used	5
6	Study population	6
	Reporting of search strategy should include	
7	Qualifications of searchers (eg, librarians and investigators)	5
8	Search strategy, including time period included in the synthesis and key words	5
9	Effort to include all available studies, including contact with authors	6
10	Databases and registries searched	5
11	Search software used, name and version, including special features used (eg, explosion)	5
12	Use of hand searching (eg, reference lists of obtained articles)	-NA-
13	List of citations located and those excluded, including justification	8-9, Suppl Figure 1
14	Method of addressing articles published in languages other than English	-NA-
15	Method of handling abstracts and unpublished studies	6
16	Description of any contact with authors	-NA-
	Reporting of methods should include	
17	Description of relevance or appropriateness of studies assembled for assessing the hypothesis to be tested	5-6
18	Rationale for the selection and coding of data (eg, sound clinical principles or convenience)	6
19	Documentation of how data were classified and coded (eg, multiple raters, blinding and interrater reliability)	6
20	Assessment of confounding (eg, comparability of cases and controls in studies where appropriate)	6
21	Assessment of study quality, including blinding of quality assessors, stratification or regression on possible predictors of study results	7
22	Assessment of heterogeneity	8
23	Description of statistical methods (eg, complete description of fixed or random effects models, justification of whether the chosen models account for predictors of study results, dose-response models, or cumulative meta-analysis) in sufficient detail to be replicated	8
24	Provision of appropriate tables and graphics	Tables 1-2, Figures 1-5
	Reporting of results should include	, J
25	Graphic summarizing individual study estimates and overall estimate	Figures 1-5
26	Table giving descriptive information for each study included	Tables 1-2
27	Results of sensitivity testing (eg, subgroup analysis)	12-13
28	Indication of statistical uncertainty of findings	12-13

Supplementary Table 1. Newcastle-Ottawa Scale - Study quality assessment

Study		Selection	u		Comparability		Outcome		Score	Quality
ı	Representativeness of the average adult in community	Cohort size	Information on clinical outcomes	Outcome not present at start	Factors comparable between the groups	Adequate clinical assessment	Follow up time	Adequacy of follow-up	Maximum=8	High>6, medium 4 to 6,
	Population based: 1; multi-center: 0.5; single-center: 0	>40 patients: 1; 39 to 20: 0.5; <20: 0	Information with clarity: 1; information derived from percentage value: 0.5; unclear: 0	Not present: 1; present: 0	Yes: 1; no: 0	Yes: 1; no: 0	Yes: 1; not mentioned: 0	All patients followed up: 1; >50% followed up: 0.5; <50% followed up: 0.4 of tollowed up OR not mentioned: 0		Low<4
Ali, 2020	0	-	-	_	_	_	0	-	9	Medium
Bhogal, 2020	0	_	_	_	_	_	0	_	9	Medium
Facciorusso, 2021	0.5	-	-	_	_	_	0	-	6.5	High

Supplementary Figure 1: PRISMA flow chart

Supplementary Figure 2. Risk of bias assessment

Bang, 2021 Nallapeta, 2021	Randoi Sequen Generat (Selection	ce ion	Conce (Sel	cation ealment ection ias)	Blinding of Participants (Performance Bias)	Blinding Outcon Assessm (Detection	ne outco ent (At	omplete ome Data trition Bias)	Selective Reporting (Reporting Bias)
	_			•	•	•		•	•
Test	Outcome	Starting grade	Risk of bias	Inconsistency	y Indirectness	Imprecision	Other considerations	Overall Certainty of evidence	Overall grade
EUS-guided versus	OR - Diagnostic adequacy	High	NS	NS	NS	NS	None	High (Grade A)	High (Grade A)
percutaneous liver biopsy - A	OR - Diagnostic accuracy	High	NS	NS	NS	NS	None	High (Grade A)	
comprehensive review and	OR - Overall adverse events	High	NS	NS	NS	NS	None	High (Grade A)	
meta-analysis of outcomes	OR - Mean complete portal tracts	High	NS	NS	NS	NS	None	High (Grade A)	
	OR - Total specimen length	High	NS	NS	NS	NS	None	High (Grade A)	

S: Serious; NS: Not serious; OR: Odds ratio