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Friedreich ataxia (FRDA) is a progressive neurodegenerative disease with developmental
features caused by a genetic deficiency of frataxin, a small, nuclear-encoded mitochondrial
protein. Frataxin deficiency leads to impairment of iron–sulphur cluster synthesis, and con-
sequently, ATP production abnormalities. Based on the involvement of such processes in
FRDA, initial pathophysiological hypotheses focused on reactive oxygen species (ROS) pro-
duction as a key component of the mechanism. With further study, a variety of other events
appear to be involved, including abnormalities of mitochondrially related metabolism and
dysfunction in mitochondrial biogenesis. Consequently, present therapies focus not only on
free radical damage, but also on control of metabolic abnormalities and correction of mi-
tochondrial biogenesis. Understanding the multitude of abnormalities in FRDA thus offers
possibilities for treatment of this disorder.

Friedreich ataxia (FRDA) is an autosomal recessive, neurodegenerative disorder that affects roughly
1 in every 50–100000 people in the United States. FRDA was first described in 1863 as a disease that is
primarily early onset, associated with progressive limb and gait ataxia, absent tendon reflexes from the
legs, axonal sensory neuropathy, dysarthria, muscle weakness, spasticity in the lower limbs, and loss of
position and vibration sense [1-4] (Table 1). Neurodegeneration occurs early in the large proprioceptive
sensory neurones of the dorsal root ganglia (DRG) and their axons in the posterior columns, with later
atrophy of the corticospinal and spinocerebellar tracts of the spinal cord and the dentate nucleus in the
cerebellum [5-9]. There is also loss of pancreatic islet cells and hypertrophic cardiomyopathy, which is the
most common cause of death amongst FRDA patients. Patients can also develop scoliosis (curvature of
the spine), pes cavus (fixed plantar foot flexion; severely high-arched feet), hearing loss (from auditory
neuropathy), and vision loss (from optic neuropathy) [9-12]. In addition, fatigue is a dominating symptom
amongst people with FRDA.

FRDA results from decreased levels of functional frataxin protein, coded by the FXN gene on chro-
mosome 9 [13,14]. Such decreases in frataxin levels are caused by guanine-adenine-adenine (GAA) trin-
ucleotide repeats within intron 1 of the FXN gene in the vast majority of abnormal alleles. In patients
carrying two expanded alleles (96%) in FRDA patients, the length of the allele with the shorter GAA ex-
pansion inversely correlates with frataxin levels, age of onset, and rate of disease progression; longer alleles
result in earlier onset and faster progression [15-18]. A subset of FRDA patients have GAA expansion in
one chromosome and a point mutation in the FXN exon in the other chromosome [19-22]. Most point
mutations lead to absence of frataxin production by alterations in the start codon, RNA splice sites, or
in residues needed for protein folding. Other mutations do not lower protein levels but instead appear to
disrupt the function of frataxin.
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Table 1 Clinical features of FRDA

System Pathology Clinical result

Neurological Degeneration of large sensory neurones – proprioception Loss of balance and coordination

Loss of deep tendon reflexes

Degeneration of spinocerebellar tracts (dorsal) Loss of balance and coordination

Degeneration of dentate nucleus of the cerebellum Loss of balance and coordination

Dysarthria (slurred speech)

Eye movement abnormalities (modest)

Degeneration of corticospinal tracts Spasticity, pyramidal weakness

Visual Degeneration of retinal ganglion cells Optic neuropathy

Auditory Degeneration of auditory nerve Auditory neuropathy

Cardiac Hypertrophic cardiomyopathy, with early hypertrophy, later
fibrosis

ECG abnormalities

Arrhythmias

Progressive heart failure

Endocrine Loss of pancreatic islet cells Diabetes mellitus

Increased insulin resistance Diabetes mellitus

Orthopedic Scoliosis

Pes cavus (fixed plantar foot flexion; high arched feet)

Abbreviation: ECG, electrocardiogram.

Expanded GAA repeats may form unusual triplex structures, disrupting RNA polymerase and preventing tran-
scription elongation [23]. In addition, epigenetic mechanisms decrease frataxin expression as regions flanking GAA
repeat expansion exhibit marks of condensed heterochromatin. There is also increased methylation of specific CpG
sites, reduction in histone H3 and H4 acetylation levels, and increased histone H3 lysine 9 (H3K9) trimethylation in
FRDA lymphoblasts, peripheral blood, brain, and heart [24-28]. Overall, this leads to a decrease in frataxin mRNA
synthesis and a decrease (but not absence) in frataxin protein in people with FRDA [29-32]. As the phenotype of
FRDA in subjects with point mutations altering frataxin production or stability is almost identical with those with
GAA repeats, the clinical syndrome largely if not entirely reflects the loss of frataxin protein rather than the effects
on frataxin mRNA levels.

Frataxin protein structure, function, and role in metabolism
FRDA patients’ peripheral tissues typically have less than 10% of the frataxin levels exhibited by unaffected people,
and the level of frataxin inversely correlates with disease severity [29-32]. The FXN gene contains seven exons (exons
1–4, 5a, 5b and 6), with exons 4 and 5a being the most conserved across species [33]. Frataxin mRNA is translated
by cytoplasmic ribosomes and translocated to the mitochondria based on an N-terminal mitochondrial localization
sequence. Upon entry into the mitochondria, frataxin undergoes a two-step proteolytic cleavage by mitochondria
processing peptidase (MPP) to generate the mature protein [34-36]. The mature protein forms a twisted, six-stranded
β-antiparallel sheet, flanked by N- and C-terminal α helices (α1 and α2) [37]. The negatively charged residues on
the helical plane may bind iron, while the uncharged residues on the surface β sheet can lead to protein–protein
interactions [38].

Frataxin functions in iron metabolism, iron storage, and iron–sulphur cluster biosynthesis, with resultant effects
on many downstream events [39-43] (Table 2). A conserved primary Fe2+-binding site, with a dissociation constant
within the micromolar range (3–55 μM), is contained in residues of the acidic ridge in the first α helix. In addition to
iron binding, frataxin interacts with mitochondrial aconitase, ferrochelatase, and proteins of the mitochondrial Fe–S
cluster synthesis pathway [44]. Iron and Fe–S clusters are essential for metabolic processes including electron trans-
port, DNA synthesis, both redox and non-redox reactions, as well as other cellular functions [45,46]. Iron–sulphur
containing proteins play a crucial role in cellular respiration and ATP production; therefore, decreased activity should
significantly impair mitochondrial function. Frataxin’s role in iron–sulphur cluster biogenesis makes it essential for
enzymatic activity of Fe–S containing aconitase and respiratory chain complexes. Consequently, decreased frataxin
levels result in decreased aconitase activity in cell culture models, in vivo, and in heart tissues and biopsies of FRDA
patients [47,48]. These effects on key enzymes of energy production lead to a failure of ATP production in FRDA, as
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Table 2 Selected cellular functions of frataxin

Protein Function

Isu1/Nfs1 Scaffold proteins for Fe–S biogenesis. Frataxin controls iron entry and sulphur production through activation of
cysteine desulphurization

Aconitase FXN facilitates and stabilizes transfer of Fe group to Aconitase to convert it into its active form

Ferrochelatase FXN meditates iron delivery to Ferrochelatase in heme synthesis

Succinate dehydrogenase FXN regulates entry of electrons into Complex II of electron transport chain

ATP synthase FXN regulates entry of electrons into Complex II of electron transport chain. Reduced FXN expression is correlated to
a reduction in ATP

Pyruvate dehydrogenase Pyruvate dehydrogenase subunit E3 may exhibit proteolytic activity capable of cleaving FXN under certain conditions

p38 FXN deficiency may alter p38 mitogen-activated protein kinase signaling

Nrf2 FXN deficiency impairs Nrf2 translocation to the nucleus

Nitric oxide NO increases as a result of FXN deficiency. This increase is related to the increase in ROS due to iron accumulation.
NO increases as a protective effect from Fe-mediated oxidative stress

PGC1α PGCα is the master regulator of mitochondrial biogenesis. FXN deficiency results in dysregulation of PGC1α. This is
tissue dependent but is down-regulated in most cell types

PDK1 Frataxin deficiency triggers the activation of PDK1 through increasing phosphorylation levels of S241 and may
deactivate pyruvate dehydrogenase and decrease cell metabolism

Iron uptake, import, and export
protein

Frataxin deficiency causes increased expression of transferrin receptor 1 and mitochondrial iron importer mitoferrin-2,
and decreased expression of ferroportin1, contributing to increased iron accumulation in mitochondria

Abbreviations: Nrf2, nuclear factor E2-related factor 2, PGC1α, peroxisome proliferator-activated receptor γ coactivator 1-α.

observed in humans in muscle spectroscopy [49-51]. This may represent one of the more important pathophysiolog-
ical events in FRDA, as it is clearly observable in human muscle in FRDA, and is readily linked to one of the most
important symptoms of FRDA, fatigue.

Additionally, frataxin deficiency may secondarily affect enzymes of intermediary metabolism. In addition to di-
rect effects on iron–sulphur cluster-containing enzymes, specific cellular and mitochondrial enzymes are regulated
through frataxin level or the resultant effects on ATP levels. For example, while FRDA patients have normal pyruvate
dehydrogenase (PDH) activity in most tissues [52], under certain conditions, including mitochondrial acidification,
the dehydrogenase subunit (E3) of PDH exhibits proteolytic activity that is capable of cleaving frataxin [53]. Although
PDH is likely not the only enzyme controlled by frataxin levels, it provides an example of how enzyme-specific reg-
ulation at the intersection of multiple mitochondrial metabolic pathways could control cellular phenotype through
alteration of metabolism. FRDA patient platelets exhibit significantly decreased acetyl Co-A (Ac-CoA) synthesized
through glycolysis than healthy control platelets [54,55] while creating substantially more Ac-CoA and HMG-CoA
from palmitate. This emphasizes how the collection of changes in Fe–S containing enzymes alter flux through specific
pathways. Recent evidence additionally suggests that frataxin deficiency may alter p38 kinase signaling, providing
further evidence of a role for frataxin in signaling and metabolism [56]. Thus, the alterations in Fe–S containing and
other enzymes provide a manner for specific frataxin-related changes in metabolism, which may have deleterious
effects on cells.

Frataxin deficiency and mitochondrial dysfunction
Frataxin overexpression demonstrates this protein’s crucial role in mitochondrial energy conversion and oxidative
phosphorylation (OXPHOS), as well as regulation of the Krebs cycle [57] (Figure 1). Frataxin directly interacts with
Complex II subunits, suggesting it directly supports the electron transport chain by providing Fe–S complexes [58-60].
Endomyocardial biopsies of FRDA patients exhibit decreased Complexes I, II, and III activity [61], and FRDA mouse
models demonstrate mitochondrial biogenesis impairment and OXPHOS dysfunction in respiratory chain complexes
I, II, and IV in cerebellum [62].

Frataxin deficiency is also linked to mitochondrial dysfunction through iron accumulation and production of reac-
tive oxygen species (ROS). Although produced throughout the cell, 90% of ROS result from mitochondrial respiration.
During the transfer of electrons from the mitochondrial respiratory chain to molecular oxygen (O2) in OXPHOS, a
small percentage of electrons will leak, resulting in the production of ROS, such as hydroxyl (HO−) and hydrogen
peroxide (H2O2) [63-65]. This leak mainly occurs at Complexes I and II [66]; however, when ROS levels rise too
high, oxidative damage, also termed as oxidative stress, can occur in the cell, especially in mitochondria. Oxida-
tive stress damages proteins and DNA, especially mtDNA, as mtDNA lacks the protection from histones and the
complex nuclear repair system [66]. Oxidative stress induces apoptosis by opening the mitochondrial permeability
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Figure 1. Mitochondrial features of FRDA

Frataxin deficiency leads to loss of Fe–S groups in Complexes I, II, III with downstream ROS production and other downstream

events.

transition pore, and has been implicated in a number of neurodegenerative diseases, such as Parkinson’s disease (PD),
Alzheimer’s disease (AD), amyotrophic lateral sclerosis, and multiple sclerosis [67,68].

ROS production occurs in multiple models of FRDA [69-73]. In certain Drosophila models with induced frataxin
deficiency, H2O2-scavenging enzymes ameliorate features of oxidative stress and restore both ROS-sensitive mito-
chondrial enzymes and aconitase activities to normal levels. These findings implicate H2O2 as a pathogenic mediator
of ROS production in FRDA and suggest that H2O2-scavenging molecules could play a therapeutic role in treating the
disease [64]. In fibroblasts from patients with FRDA, treatment with iron-containing compounds or hydrogen per-
oxide leads to oxidative stress, activation of caspase 3, and apoptosis [74-76]. Analogous results have been identified
across many cell types, and treatment with many proposed antioxidant-based therapies restores the healthy pheno-
types [77,78]. Consequently, oxidant-induced cell death remains an area of interest for possible FRDA therapies.

One proposed component of increased ROS sensitivity in FRDA patient cells is the accumulation of mitochondrial
iron [79-84]. Based on Fenton chemistry, mitochondrial iron accumulation has the potential to dramatically increase
susceptibility to ROS [84]. However, FRDA involves iron maldistribution more than iron overload; cells behave as if
they are depleted of iron cytosolically while simultaneously having a mitochondrial iron overload [85-87]. Systemic
iron indices such as ferritin levels are normal to low in most FRDA patient tissues, except for the heart, where ferritin
excess is noted at autopsy [88]. This raises the possibility that the direct effect of iron in FRDA may be tissue-specific.

The components of ROS production and iron overload are combined in a paradigm of cell death referred to as fer-
roptosis. Ferroptosis is a form of iron-dependent, oxidation-mediated, programmed cell death implicated in a variety
of pathological processes, including neurotoxicity, neuroinflammation, and neurodegenerative diseases such as PD,
AD, and ischemic stroke [89-92]. Ferroptosis may share some of the same downstream signaling pathways as apop-
tosis, but this form of cell death differs from classical apoptosis, and the mechanisms that underlie ferroptosis match
many of the abnormal findings of FRDA [89-92]. Upon induction of ferroptosis, there is a lack of morphological
or biochemical features of apoptosis, such as chromatin condensation and nuclear shrinkage [89,93]. Additionally,
there is no cleavage-mediated activation of caspase 3, and caspase inhibitors do not protect against ferroptosis [89].
Oxidative stress releases iron from ferritin in a redox active form, induces lipid peroxidation, particularly of polyun-
saturated fatty acids, and leads to accumulation of lipid-based ROS [89,93,94]. Accumulation of lipid peroxidation
products and ROS derived from iron metabolism triggers ferroptosis as a response to these harmful metabolic events
[92]. Ferroptosis may also be triggered following depletion of intracellular reduced-glutathione (GSH) levels, further
leading to increased cellular availability of iron as a ferroptosis catalyst [91].

In addition to ROS generation, ferroptosis is associated with the loss of mitochondrial integrity [89-92]. EM shows
cells treated with ferroptosis inducers exhibit obvious changes in mitochondrial morphology [89]. Investigators have
found that a protein originally characterized during pro-apoptotic signaling, BID, translocates to the mitochondria
during ferroptotic signaling. BID can act as a sensor of oxidative stress in an iron-dependent manner and its transloca-
tion to mitochondria mediates the loss of mitochondrial integrity and function [90]. Induced ferroptosis in neurones
leads to loss of mitochondrial membrane potential, increased mitochondrial fragmentation, reduced ATP levels, and
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permeabilization of the outer mitochondrial membrane [90]. Distinct morphological alterations are also apparent,
including decreased mitochondrial size, condensed mitochondrial membranes, reduction in mitochondrial cristae,
and outer mitochondrial membrane rupture [90-92].

Lipid peroxidation, elevated ROS generation, GSH depletion, and increased iron availability are all pathogenic
alterations found in many neurologic diseases, and interestingly, they are also common features of ferroptosis [91].
The dysregulated iron metabolism of FRDA suggests that ferroptosis may also play a role in cell death in FRDA.

ROS production is difficult to demonstrate in humans with FRDA. Although some studies find elevated urinary
oxidative stress biomarker levels, specifically the isoprostanes dihydroguanosine and malondialdehyde, isoprostanes
are not elevated in FRDA and only a single study has found abnormalities in DNA oxidation [95-99]. Moreover,
confounding factors, including the overwhelming use of antioxidant supplements by FRDA patients and the relative
inactivity of such patients leading to a lack of ongoing OXPHOS and an absence of ROS, result in further challenges to
demonstrate ROS accumulation in FRDA patients [98]. It is also possible, however, that significantly increased ROS
production is not continually occurring in FRDA. Not all cell death in animal models of FRDA is associated with
detectable ROS production or iron accumulation. In mouse models of FRDA, cell death occurs without detectable
accumulation of ROS or iron [100]. Such data provide evidence that in these models, other events such as loss of
specific enzymatic activities, failure of ATP production, or other processes may be sufficient to induce cell death in
FRDA without inducing ferroptotic pathways.

Failure of nuclear factor E2-related factor 2 and
mitochondrial biogenesis pathways
Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor that regulates cellular antioxidant response under ox-
idative stress conditions. Under normal conditions, the interaction between Nrf2 and Keap1 leads to the degradation
of Nrf2 through the ubiquitin-proteasome pathway [101]. Typical oxidative stress conditions inhibit the interaction
between Nrf2 and Keap1, leading to increased levels of active Nrf2 [102,103]; however, Nrf2 is degraded in FRDA
patients and laboratory models, which is unexpected in an environment of oxidative stress [102,104].

In the presence of ROS, Nrf2 induces the expression of ROS-response antioxidant genes such as heme oxygenase-1
(HO-1), NAD(P)H quinone oxidoreductase 1 (NQO1), Cu/Zn and Mn-superoxide dismutases (SOD 1,2), glutathione
synthetic enzymes, and others by binding to the antioxidant response element (ARE) on nuclear DNA, including an
ARE site within FXN [104,105]. In a healthy state, oxidative stress causes Nrf2 translocation to the nucleus, resulting in
the expression of antioxidant genes to protect cells from damage. In FRDA models, Nrf2 translocation to the nucleus is
compromised in response to oxidative insults, thus leading to reduced expression of antioxidant genes such as NQO1
and SOD-1,2 [101,106]. This may increase vulnerability to oxidative stress and lead to a cascade of oxidant-induced
damage in neurons and other cell types. Interestingly, studies to find compounds that induce Nrf2 lead to identifying
compounds that up-regulate frataxin gene expression [101]. Thus, Nrf2 expression correlates with frataxin expression.
Nrf2 also regulates synthesis of GSH, a tripeptide antioxidant that moderates ROS production and ferroptosis [107]. In
FRDA, the altered homeostasis between reduced and oxidized glutathione, increases cells’ susceptibility to oxidative
stress [62,104,107].

In addition to increased ROS production and paradoxical loss of Nrf-2, frataxin deficiency is also associated with
other components of mitochondrial dysfunction in both FRDA patients and animal models. Mitochondrial bio-
genesis deficits appear in multiple models of FRDA, including human lymphocytes and mouse models such as the
frataxin knockin/knockout (KIKO) mouse [108-110]. Interestingly, the levels of PGC-1a, the master regulator of mi-
tochondrial biogenesis, are significantly decreased in cerebellar homogenates of KIKO mice, even when mice are
behaviorally asymptomatic [62]. This suggests early impairment of mitochondrial biogenesis pathways as a poten-
tial mediator of mitochondrial loss and dysfunction in FRDA. Parallel dysfunction in downstream genes of the entire
PGC-1a/NRF1/Tfam pathway in KIKO mouse cerebellum confirms mitochondrial biogenesis impairment as an early
event in this model.

Other markers of mitochondrial number fusion are also altered in FRDA. The mitochondrial chaperone,
glucose-related protein 75 (GRP75), which physically interacts with frataxin, and the mitochondrial fusion protein
mitofusin-1 (MFN1), are lower in cerebellar homogenates of FRDA KIKO mice [62]. Human FRDA fibroblast and
PBMCs also show decreased GRP75 levels [111,112]. Furthermore, in KIKO mice, this decrease is associated with
a long-term deficit in mitochondrial number, suggesting that in some brain regions, FRDA may give rise not only
to abnormal mitochondria, but also lead to decrease in numbers of mitochondria [62]. Although the correlation be-
tween GRP75 levels and the severity of FRDA remains to be determined, GRP75 reduction should result in further
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decreases in frataxin levels and iron–sulphur cluster biogenesis and may thus impact mitochondrial function. Al-
ternatively, GRP75 reduction could potentially lead to mtDNA damage, thereby contributing to the progression of
FRDA.

Clinical trials and therapeutic strategies
At present, there is no cure or effective treatment for FRDA [113]. Current strategies aim to increase frataxin expres-
sion or target downstream pathways affected secondary to frataxin deficiency [114-120]. High-throughput screening
with different cellular models is also being used to search for new drugs. Even when restorative therapies for frataxin
achieve success, mitochondria-based therapies are still likely to be useful covering the deficiencies in restoration of
frataxin levels.

Antioxidants and OXPHOS
Frataxin deficiency potentiates cellular damage from oxidative stress, suggesting that antioxidants might present a
therapeutic approach for FRDA. For example, idebenone is a short-chain Coenzyme Q10 (CoQ10) analog that acts as
an antioxidant by protecting membrane lipids from peroxidation and stimulating OXPHOS and ATP production by
carrying electrons from Complexes I and II to Complex III in the electron transport chain [121]. Initial enthusiasm
for idebenone was highly based on its ability to protect respiratory Complex II from iron inactivation and decreased
lipoperoxidation; however, neither idebenone nor other similar agents have proven effective in double-blind trials as
compared with placebo [122-125]. Other antioxidants like CoQ10 with vitamin E, and VP20629 have also shown no
benefit in clinical trials [126].

Iron chelating strategy
As the pathogenesis of FRDA involves an imbalance in the intracellular accumulation of iron, with mitochondrial
accumulation and relative cytosolic depletion, targetted iron chelation could be beneficial in restoring a healthy iron
balance. Deferiprone, an iron chelator that localizes to the mitochondria, rapidly distributes in the CNS, crossing
membranes, and can penetrate mitochondria to remove excess iron [127]. Deferiprone has a lower affinity for iron
than other iron chelators (pFe3+ log stability constant of 19.9 compared with deferoxamine (26.6) and less tendency
to cause overall iron depletion, leading to an improved safety profile over other iron chelators in patients with low
iron overload [128]. It restores mitochondrial redox potential, reduces ROS, and increases aconitase activity, without
affecting frataxin levels [129-133]. The drug is typically well tolerated and can be administered orally. However, ex-
acerbation of tremor occurred at high doses and the risk of agranulocytosis remains a threat of deferiprone treatment
[133].
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