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Grazing pressure, estimated as the ratio between microzooplankton grazing and
phytoplankton growth rates (g:µ), is a strong determinant of microbial food-web
structure and element cycling in the upper ocean. It is generally accepted that g
is more sensitive to temperature than µ, but it remains unknown how the thermal
dependence (activation energy, Ea) of g:µ varies over spatial and temporal scales.
To tackle this uncertainty, we used an extensive literature analysis obtaining 751
paired rate estimates of µ and g from dilution experiments performed throughout the
world’s marine environments. On a geographical scale, we found a stimulatory effect
of temperature in polar open-ocean (∼0.5 eV) and tropical coastal (∼0.2 eV) regions,
and an inhibitory one in the remaining biomes (values between −0.1 and −0.4 eV). On
a seasonal scale, the temperature effect on g:µ ratios was stimulatory, particularly in
polar environments; however, the large variability existing between estimates resulted
in non-significant differences among biomes. We observed that increases in nitrate
availability stimulated the temperature dependence of grazing pressure (i.e., led to
more positive Ea of g:µ) in open-ocean ecosystems and inhibited it in coastal ones,
particularly in polar environments. The percentage of primary production grazed by
microzooplankton (∼56%) was similar in all regions. Our results suggest that warming of
surface ocean waters could exert a highly variable impact, in terms of both magnitude
and direction (stimulation or inhibition), on microzooplankton grazing pressure in different
ocean regions.

Keywords: activation energy, herbivorous grazing, phytoplankton growth, plankton communities, polar
ecosystems, temperate ecosystems, temperature, tropical ecosystems

INTRODUCTION

Temperature is a key environmental driver controlling the rates at which energy and materials flow
through food webs and ecosystems (Gillooly et al., 2001; Cross et al., 2015). Predictions by the
metabolic theory of ecology (MTE, Brown et al., 2004) and evidence from terrestrial (Allen et al.,
2005; Allen and Gillooly, 2009) and aquatic (López-Urrutia et al., 2006; Liu et al., 2019; Barton et al.,
2020) ecosystems show that the thermal dependence [or activation energy (Ea)] of heterotrophic
processes [e.g., grazing rates (g)] is higher than that of autotrophic ones [e.g., phytoplankton growth
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rates (µ)]. A weaker thermal sensitivity of phytoplankton growth
compared with microzooplankton growth and grazing activity
could contribute to trigger phytoplankton blooms in cold waters
(Rose and Caron, 2007). However, growing empirical evidence
has shown that autotrophic processes can be as sensitive to
temperature as heterotrophic ones (Chen and Laws, 2017;
Wang et al., 2019). Recent experimental studies also show
that the thermal dependence of phytoplankton growth and
microzooplankton grazing can change seasonally, with Ea of µ
exhibiting variations two- to four-fold larger than those found in
Ea of g (Liu et al., 2019). In light of these findings, two hypotheses
can be postulated. According to MTE, if Ea of g is higher than
that of µ, Ea of g:µ should be positive, i.e., enhanced grazing
pressure with increasing temperature. By contrast, following
the arguments of Wang et al. (2019), if Ea of g and µ are
similar, grazing pressure should be independent of temperature.
In addition, the temperature dependence of plankton metabolism
can be weaker (Liu et al., 2021b) and even suppressed (O’Connor
et al., 2009; Marañón et al., 2018) when nutrient availability is
low. Under this premise, if nutrient limitation decreases Ea of
µ (without altering Ea of g), we could expect a lower Ea of g:µ
in nutrient-rich, coastal, and upwelling areas than in the open
ocean, where nutrient limitation of phytoplankton growth is most
prevailing (Moore et al., 2013).

Despite the well-recognized ecological role of grazing pressure
by microzooplankton, which represents a consumption of
∼60% of global marine primary production (Schmoker et al.,
2013), most studies evaluating its sensitivity to temperature
have considered microzooplankton grazing and phytoplankton
growth separately (Liu et al., 2019). However, the g:µ ratio is a key
variable to evaluate how warming could impact microbial trophic
interactions because it gives a more integrative view of trophic
functioning than considering both rates separately and has major
implications for the fate of newly produced organic matter.
Moreover, earlier studies have evaluated mostly geographical
variability (Calbet and Landry, 2004; Chen et al., 2012; Liu et al.,
2019), whereas changes over time have received less attention
(Lawrence and Menden-Deuer, 2012; Franzè and Lavrentyev,
2014; López-Ábate et al., 2016). The importance of temporal
dynamics has been stressed by Anderson and Harvey (2019), who
proposed that µ and g should be measured over annual cycles
at weekly to monthly intervals and across ecosystems to provide
more accurate predictions of the fate of primary production (and
related food web processes) and to ascertain the factors that drive
plankton dynamics in contrasting marine regions. In addition,
Li et al. (2013) have shown the feasibility of space-for-time
substitution for inferring the future structural and compositional
state of plankton communities in a given ecosystem from present
observations across geographical gradients.

Here, we address the temperature dependence of g:µ in surface
natural planktonic communities considering both geographical
(i.e., from temperate to polar biomes in coastal and open-ocean
ecosystems) and seasonal variability. We compiled a global ocean
database using published reports of experimental determinations
of µ and g using the dilution or modified dilution method
(Landry and Hassett, 1982; Chen, 2015). Our main goal was to
quantify the thermal sensitivity of g:µ over geographical and

seasonal scales of variability and to assess how its magnitude and
direction can be affected by changes in nutrient availability.

MATERIALS AND METHODS

Literature Database
We surveyed the published literature until February 4, 2020 using
SCOPUS R© and Web of Knowledge R© with the following keywords
and Boolean operators in advanced searches: (“grazing∗” OR
“growth∗”) AND (“microzooplankton∗” OR “phytoplankton∗”)
AND (“seasonal variations”) and retrieved a total of 163 studies
published from 1988 to 2020. After a detailed inspection of
the abstracts, results, and supplementary information, when
supplied, we found that 64 studies reported in situ µ and g rates
using the dilution method in coastal and open-ocean ecosystems
from polar, temperature and tropical biomes worldwide and
20 that reported in situ µ and g rates from the same
sampling point/area over time. Additionally, we used in situ
phytoplankton µ and microzooplankton g rates from an updated
database made by Sherman et al. (2016) from the work by
Calbet and Landry (2004).

We conducted a subsequent filtering of the data of µ
and g retrieved, whereby data were excluded in the following
cases: (1) the linear regression fit between dilution factor and
phytoplankton growth rate had a determination coefficient<0.35
(Sherman et al., 2016); (2) growth rates had values of zero,
which results in a value of infinite for g:µ; (3) rates in which
µ was higher in undiluted treatments than in diluted ones; (4)
experiments in which inorganic nutrients were added to the
incubation bottles, and (5) experiments that did not expose
samples to in situ temperature and light conditions. We focused
our study in rates measured under non-enriched conditions
because experiments where nutrients were added did not follow a
consistent pattern. They differed in chemical forms applied (e.g.,
nitrate vs. ammonium), concentrations used (nitrate ranging
between 0 and 10 µM; phosphate ranging between 0 and
1 µM), and also in the ratios N:P applied. In some cases, other
macronutrients (e.g., silicate) and even different micronutrients
were also added.

Additionally, and to minimize the potential effect of
differences in light availability among sites and experiments, we
only considered surface or near-surface waters (<30 m depth).
The biomes considered (i.e., tropical, temperate, polar) were
established following a latitudinal range (0–29.99◦, 30–59.99◦,
and 60–90◦, respectively) from the latitude coordinates given in
the studies considered, whereas geographical areas followed the
criteria already established by Sherman et al. (2016): open ocean
are oceanic habitats, and coastal areas are habitats overlying
the continental shelf. The rationale for assessing changes in g:µ
ratios for each biome separately was testing how natural plankton
communities with a priori different thermal histories respond to
changes in temperature.

With the abovementioned considerations, we obtained a
total of 473 (n polar = 83, n temperate = 175, n tropical = 215)
and 278 (n polar = 53, n temperate = 113, n tropical = 112)
valid individual data points for the geographical and seasonal
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analyses, respectively (Supplementary Figures 1, 2). Additional
information compiled was geographical location of the sampling
points (latitude and longitude), chlorophyll a concentration
(Supplementary Figures 3A, 4A and Supplementary
Tables 1, 2), nitrate concentration (Supplementary Figures 3B,
4B and Supplementary Tables 2, 3), and temperature (◦C).
Considering the scarcity of data on nutrients other than NO3

−,
and the fact that nitrogen is the primary limiting nutrient in the
majority of the ocean (Moore et al., 2013), we focused on NO3

−

availability to assess the role of nutrient limitation.

Statistical Analysis
From the two original databases, data were divided to study
grazing pressure response, as g:µ ratios, in global open-ocean
versus coastal ecosystems, in polar, tropical, and temperate
ecosystems, as well as in polar, tropical, and temperate open-
ocean and coastal ecosystems. By considering temperature as
predictor variable, and g:µ as dependent variable, we used
ordinary least-squares regression to determine the apparent
activation energy of grazing pressure, i.e., the slope (−Ea) of the
linear relationship between 1/KT and the natural logarithm of the
g:µ ratio, where K is the Boltzmann’s constant (8.62 × 10−5 eV
K−1) and T is temperature in K. We used temperature as
a single predictor variable because previous stepwise multiple
linear regression analyses (with temperature, nitrate and Chl
a as predictors) evidenced that it was the only significant
variable (data not shown). In the geographical analysis, some
g:µ ratios had extremely low values, which were identified as
outliers after calculating the lower inner fences using the formula
Q1–1.5 × IQR where Q1 is the 25th percentile and IQR is
the interquartile range (difference between the 75th and 25th
percentiles). Therefore, we tested how the exclusion of such
values could affect the slope of the linear fit model and thus
the response pattern observed. Since in no case did we find
significant differences between models (Supplementary Figure 5
and Supplementary Table 4), we used the slope values obtained
after extremely low g:µ data points were excluded. Linear
regression models were fitted to assess the relationship between
apparent Ea and NO3

− availability in the geographical and
seasonal approaches. Two-way analysis of the variance (ANOVA)
was used to test for interactions between area (i.e., coastal vs.
open-ocean) and biome type (i.e., polar/boreal, temperate and
tropical) on apparent Ea of g:µ ratio for the geographical study.
Also, two-way ANOVA, with study (i.e., this study vs. Calbet and
Landry, 2004) and biome or area type (i.e., global comparisons,
open-ocean vs. coastal comparisons, and temperate, tropical,
and boreal/polar) as factors, were used to test for significant
differences between estimates of g:µ ratios. One-way ANOVA,
with biome type as factor, was used to test for significant
differences in the apparent Ea of g:µ ratio quantified in the
seasonal approach. Before performing regression and ANOVA
analyses, assumptions of homogeneity of variance (by Shapiro-
Wilk’s test and by residual vs. fitted values plots for linear
regression) and normal distribution (by Kolmogorov-Smirnov’s
test) of the errors, and independence of the predictor variable
respect to the explanatory variable (by Pearson’s correlation
coefficient) were checked. Because such assumptions were not

met for apparent Ea in the seasonal approach, original data
were 1/x-transformed. When interactions were significant, a
Least Significant Differences (LSD) post hoc test was performed.
Student’s t-test was used to evaluate significant differences
between apparent Ea values obtained in the geographical analysis
using the full dataset and dataset with low g:µ ratios excluded.
Mann–Whitney U test was used to test for significant differences
in NO3

− and Chl a concentrations among biomes and/or within
areas in both approaches.

RESULTS

Chl a Concentrations on a Geographical
vs. Seasonal Approach
Chl a concentrations showed low median values (<2 µg L−1)
regardless of the ecosystem considered; however, such values
ranged between ∼0.1 and ca. 18 µg L−1 (temperatecoast), and
significant differences were found between most biomes
and areas considered (Supplementary Figure 3A and
Supplementary Table 1). For the seasonal approach, we
also found significant differences in Chl a concentration between
biomes, with median values being lower in polar (i.e., 1.35 µg
L−1) than in temperate (3.90 µg L−1) and tropical (5.60 µg
L−1) regions (Supplementary Figure 4A and Supplementary
Table 2). The higher Chl a concentration observed in the tropical
biome was likely due to a higher contribution of samples from
coastal waters (e.g., estuaries and lagoons).

Nitrate Concentrations on a
Geographical vs. Seasonal Approach
Median nitrate concentrations were <1 µM in tropical
ecosystems, 3.10–5.40 µM in temperate regions, and 6–21 µM
in polar ones. These concentrations were significantly different
between coastal and open-ocean areas in polar (Z = −3.76,
p < 0.001) and temperate (Z = 2.28, p < 0.05) biomes, but not
in tropical ecosystems (Z = −0.60, p = 0.55) (Supplementary
Figure 3B and Supplementary Table 3). Nitrate concentrations
measured in biomes considered in the seasonal analysis were
significantly higher in polar (i.e., ∼10 µM) compared with
tropical (i.e., 1.40 µM) and temperate (i.e., 0.80 µM) ones
(Supplementary Figure 4B and Supplementary Table 2).

Grazing Pressure by Microzooplankton
on a Geographical vs. Seasonal
Approach
Global ocean-scale ln g:µ ratios ranged between ∼0 and -
3.70 (which corresponds to ca. 0.02–1 in non-transformed
values; Supplementary Figure 2A). The strongest grazing
pressure was similar in coastal and open ocean ecosystems (i.e.,
values ∼0, which correspond to g:µ ratios near 1), whereas
the weakest was observed in open-ocean ecosystems (i.e., -
3.66, or a non-transformed g:µ ratio of 0.06; Supplementary
Figures 2B,C). No significant relationship was found between
temperature (which ranged from ca. −3 to 31◦C) and g:µ
ratios, neither when all ecosystems were pooled together nor
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FIGURE 1 | Geographical analysis. Natural logarithm of microzooplankton grazing:phytoplankton growth ratio (g:µ) versus in situ temperature in natural plankton
communities from coastal (A–C) and open-ocean (D–F) areas in polar, temperate, and tropical biomes. Solid lines denote the linear regression fit. Data points
indicated with filled symbols were excluded from the linear regression analyses (see section “Materials and Methods”).

when we differentiated them by areas (i.e., coastal vs. open-
ocean). However, at the biome level, there was a modest
but significant negative thermal dependence of g:µ ratios for
temperate ecosystems (Ea = -0.10 ± 0.04; R2 = 0.05, F166 = 5.23,
p < 0.01; Supplementary Figure 2E). When we performed a
detailed geographical analysis, distinguishing between areas and
biome types (i.e., polar/boreal, temperature, and tropical), two
response patterns emerged: (1) a negative relationship between
temperature and g:µ ratios, observed in polar and temperate
coastal ecosystems (Figures 1A,B and Supplementary Table 5) as
well as in temperate and tropical open-ocean ones (Figures 1E,F
and Supplementary Table 5), and (2) a positive relationship
between temperature and grazing pressure, as found in tropical
coastal and polar open-ocean ecosystems (Figures 1C,D and
Supplementary Table 5).

Over the seasonal scale of variability, g:µ ratios ranged
between∼0 and−3 (or between 0.05 and∼1 in non-transformed
values) over the thermal gradient considered (Figure 2). Also,

we found that the magnitude (i.e., slope absolute values) and
direction (i.e., positive or negative) of the temperature effect on
g:µ ratios was highly variable regardless of the biome (Figure 2
and Supplementary Table 6).

Thermal Sensitivity of Grazing Pressure
by Microzooplankton: Geographical vs.
Seasonal Patterns
From g:µ ratios and temperature we calculated the apparent
Ea as shown in Figures 3, 4. Apparent Ea values indicated a
variable thermal dependence of g:µ ratios due to a significant
biome × area interacting effect (df = 2, F = 15.24, p < 0.001;
Figure 3). Temperature exerted a stimulatory effect on g:µ ratio
(i.e., increased grazing pressure) in polar open-ocean (∼0.5 eV)
and, to a lesser extent, tropical coastal (∼0.2 eV) ecosystems
(Figure 3A). By contrast, increasing temperature resulted in
decreased grazing pressure in the remaining areas and biomes.
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FIGURE 2 | Seasonal analysis. Natural logarithm of microzooplankton grazing:phytoplankton growth ratio (g:µ) versus in situ temperature in natural plankton
communities coming from polar, temperate, and tropical biomes. Note that each individually colored solid line represents the linear regression fit of an experimental
study performed in a specific coastal study site over time.

Specifically, rising temperature exerted a stronger inhibitory
effect in tropical open-ocean ecosystems (Ea ∼−0.4 eV) followed
by those on polar coastal and temperate ecosystems, where no
significant differences between areas were detected (Ea ∼ −0.1
and −0.2 eV) (Figure 3A). Considering the seasonal variability,
apparent Ea values showed that the overall mean temperature
effect on g:µ ratios was slightly stimulatory, particularly in polar
environments; however, due to the large variability existing we
did not find significant differences among biomes (df = 2,
F = 0.05, p =∼0.95; Figure 3B).

Thermal Sensitivity of Grazing Pressure
by Microzooplankton: Effect of Nitrate
Availability
We also explored the relationship between nitrate availability and
apparent Ea of g:µ (Figure 4). For the geographical analysis,
we found significant and opposite response patterns in open-
ocean [y = 0.04 × −0.35, R2 = 0.80, p = 0.0024] and coastal

[y = −0.06 × + 0.15, R2 = 0.76, p = 0.0023] ecosystems, with
increasing nitrate availability stimulating (i.e., leading to more
positive Ea) the temperature dependence of g:µ in open-ocean
ecosystems and weakening it in coastal ones (Figure 4A). In
the seasonal analysis, we found a positive but not significant
relationship between the temperature sensitivity of g:µ ratio and
nitrate availability ([y = 0.15 × −0.02, R2 = 0.31, p = 0.1180;
Figure 4B).

Recent vs. Previous Estimates of
Grazing Pressure by Microzooplankton
in the Ocean
Finally, we compared our g:µ estimates with previous
results by Calbet and Landry (2004; Figure 5). Although
our database included a ∼50% of new estimates (i.e., 219
estimates), we found that g:µ ratios, i.e., the percentage
of primary production grazed by microzooplankton, was
similar in the two studies, regardless of the biome or region
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FIGURE 3 | Mean (±SE) apparent activation energy (Ea) of microzooplankton grazing:phytoplankton growth ratio (g:µ) on a geographical (A) and seasonal (B)
analyses in polar, temperate, and tropical biomes.

FIGURE 4 | Mean (±SE) apparent activation energy (Ea) of microzooplankton grazing:phytoplankton growth ratio (g:µ) on a (A) geographical and (B) seasonal
analysis in polar, temperate, and tropical biomes and their relationship with median (±SE) nitrate availability (in mmol NO3

− m−3). Solid and dashed lines represent
the fitted linear regression models, and numbers next to the symbols indicate the number of estimates obtained for each biome/area.

considered. However, in our dataset, microzooplankton grazing
represented, on average, 56% of phytoplankton production,
compared with ∼68% found by Calbet and Landry (Table 2;
reduced dataset).

DISCUSSION

Our results show that the temperature dependence of grazing
pressure is highly variable among biomes and regions. This high
variability is particularly marked (up to three-fold higher) when
the thermal dependence is addressed over a seasonal instead of

a geographical scale. In addition, we found that even within
the same biome (i.e., polar), rising temperature can exert a
dual effect, accentuating or reducing grazing pressure. These
patterns differ from predictions by MTE (Brown et al., 2004;
Bruno et al., 2015) and field observations supporting an increased
grazing pressure with rising temperature (O’Connor et al., 2009;
Chen et al., 2012; Carr et al., 2018; Liu et al., 2021a,b). By
contrast, our results align with experimental evidence showing a
negative relationship between temperature and grazing pressure
(Menden-Deuer et al., 2018; Liu et al., 2019). Although the latter
studies considered only short-term and transient responses to
abrupt temperature changes, recent findings have shown that
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FIGURE 5 | Mean (±SE) microzooplankton grazing:phytoplankton growth ratios (g:µ,%) in global ocean, open-ocean vs. coastal ecosystems, and temperate,
tropical, and polar/boreal biomes. Solid bars represent estimates extracted from Table 2 (reduced data) of Calbet and Landry (2004). Letters and numbers on top of
bars represent significant differences by LSD post hoc test.

lack of acclimation do not necessarily affect microzooplankton
activity (Franzè and Menden-Deuer, 2020).

According to the MTE, the different Ea of autotrophic
versus heterotrophic metabolic rates arises because RUBISCO
has a lower thermal sensitivity than processes associated with
heterotrophy (Allen et al., 2005). However, these predictions
are based on land plant ecophysiology and do not consider
some particular characteristics of photosynthetic unicells (i.e.,
presence of inorganic carbon concentrating mechanisms, Raven
et al., 2008), and additional constraints such as the different
availability of CO2 in water and air and the different solubility
of CO2 and O2 (Sarmiento and Gruber, 2013). A recent study
by Wang et al. (2019) challenging this paradigm proposes that
the thermal sensitivity of autotroph growth rates can be as high
as that of heterotroph growth when considering within-taxon
responses. In addition, considering that gross growth efficiency
is relatively constrained in microzooplankton (∼30%; Straile,
1997) which means that the coupling between grazing and growth
is high, it is likely that both rates exhibit comparable thermal
sensitivity. A similar Ea for both phytoplankton growth and
microzooplankton grazing would explain the absence of thermal
dependence of grazing pressure (g:µ ratio) reported by Sherman
et al. (2016), which differs from the results reported here, where
temperature either stimulated or inhibited grazing pressure.

One unexpected result from our geographic analysis is
that grazing pressure decreased with increasing temperature
in four of the six ecosystems considered. Several non-
exclusive mechanisms may help explain this pattern. For
instance, secondary metabolites with allelopathic effect such as
polyunsaturated aldehydes (PUA), which are abundant both
in coastal and open-ocean areas and oceanic gyres (Cózar
et al., 2018), can be a strong deterrent for microzooplankton

herbivory (Franzè et al., 2018). Compounds produced by
dominant phytoplankton groups in coastal and open-ocean
areas (e.g., PUAs by diatoms, microcystins-like compounds by
Synechococcus) have been shown to inhibit microzooplankton
growth in natural communities (Lavrentyev et al., 2015;
Sliwinska-Wilczewska et al., 2017). These allelopathic effects
can be enhanced by warming (Felpeto et al., 2019) and
nutrient-limited conditions (Fistarol et al., 2005). Also, warmer
environments and/or low (or limiting) nutrient availability can
lead to increased phytoplankton carbon:nutrient stoichiometry,
i.e., seston with reduced nutritional quality (De Senerpont
Domis et al., 2014), which constitutes an effective defense
mechanism against herbivore predators (Branco et al., 2020),
and could help explain inverse relationship between temperature
and grazing pressure found in temperate, tropical open-ocean
and polar coastal ecosystems. A negative relationship between
temperature and g:µ may have also arisen from a decrease in
microzooplankton biomass with increasing temperature. In this
connection, Chen et al. (2012) showed that a reduced grazing
pressure with increasing temperature in oligotrophic waters
was associated with a decrease in microzooplankton biomass.
Moreover, global-ocean-scale findings by Chust et al. (2014)
suggest that rising temperatures will accentuate these reductions
in zooplankton biomass by 11%, on average, and that they
will be particularly prevalent in temperate and tropical coastal
and open-ocean areas. The decreased microzooplankton biomass
could be due to a higher energetic demand (e.g., respiration;
Clarke and Frasser, 2004) or feeding thresholds (Buitenhuis et al.,
2010) imposed by warm temperatures. Finally, and because we
used data from natural plankton assemblages, it is likely that
different populations making up the phytoplankton assemblage
were experiencing different growth phases (i.e., exponential
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vs. stationary) at the same time. For instance, Synechococcus
populations in the early-mid exponential growth phase have
been shown to suffer larger predation by Oxyrrhis marina than
populations in stationary phase (Apple et al., 2011). Thus, the
reduced grazing pressure reported here in some areas could be
also consequence that the communities studied were dominated
by phytoplankton populations in stationary growth phases.

The deviation in the thermal sensitivity of grazing pressure
from MTE predictions may also arise because of other
ecological (e.g., community composition, biomass availability)
and environmental (e.g., nitrate concentration) factors that
covary with temperature. For instance, we found that a higher
nitrate availability (>7 mmol m−3) was associated with a
stimulatory effect of temperature on grazing pressure in open-
ocean areas, and an inhibitory one in coastal ones. One plausible
explanation could be the above mentioned fact that low nutrient
availability increases the carbon:nutrient ratios in phytoplankton,
thus reducing its nutritional quality for grazers and potentially
reducing losses to grazing.

To the extent that the variability observed reflects the response
of organisms acclimated and adapted to local thermal conditions,
the observed patterns are relevant to predict the response of
marine plankton communities to ocean warming. The highly
variable apparent temperature dependence of grazing pressure by
microzooplankton on a geographical and seasonal scale suggests
that communities inhabiting polar regions could be as sensitive
to warming as those inhabiting tropical ones, hence rising
temperatures will not necessarily have the strongest effect on
tropical species, as traditionally thought, because their optimal
temperature for growth is close to current mean temperature
(Kingsolver, 2009; Thomas et al., 2012).

Our analysis covered a wide range of marine environments
characterized by markedly different phytoplankton size structure
[from a dominance by small cells in unproductive regions to a
dominance by large cells in highly productive ones; see reviews
by Chisholm (1992) and Marañón (2015)]. We found that the
proportion of primary production grazed by microzooplankton
in all regions is relatively similar, in line with previous ocean-scale
patterns reported in regions with contrasting phytoplankton size
structure (Schmoker et al., 2013). A similar grazing pressure in
ecosystems with widely different size structure (coast vs. open-
ocean) is at odds with the view that large cell size provides a
refuge from predation (Kiørboe, 1993) and that the increased
dominance of larger cells during blooms arises solely from a top-
down mechanism (Irigoien et al., 2005). An alternative though
not mutually exclusive mechanism is that large (e.g., 10–20 µm in
diameter) cells are capable of sustaining faster maximum growth
rate than their smaller counterparts (Marañón et al., 2013),
thus being more successful in exploiting conditions of enhanced
resource availability.

In conclusion, our study reveals a complex relationship
between temperature and microzooplankton grazing pressure

in marine ecosystems. Rising temperature stimulates grazing
pressure by microzooplankton in polar open-ocean and tropical
coastal environments, which could potentially reduce the amount
of newly produced biomass available for direct transfer to upper
trophic levels, thus favoring the microbial food web. On the other
hand, increasing temperature is associated with decreased grazing
pressure in the remaining regions, potentially favoring the
herbivorous food chain. Increased nutrient availability enhances
the thermal dependence of grazing pressure in open-ocean
ecosystems but attenuates it in coastal ones, particularly in
polar environments.
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