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Abstract: Flaviviruses have become increasingly important pathogens in Europe over the past few
decades. A better understanding of the spatiotemporal distribution of flaviviruses in France is
needed to better define risk areas and to gain knowledge of the dynamics of virus transmission cycles.
Serum samples from 1014 wild boar and 758 roe deer from 16 departments (administrative units) in
France collected from 2009 to 2014 were screened for flavivirus antibodies using a competitive ELISA
(cELISA) technique. Serum samples found to be positive or doubtful by cELISA were then tested
for antibodies directed against West Nile virus (WNV), Usutu virus (USUV), Bagaza virus (BAGV),
and tick-borne encephalitis/Louping ill viruses (TBEV/LIV) by microsphere immunoassays (except
BAGV) and micro-neutralization tests. USUV antibodies were detected only in southeastern and
southwestern areas. TBEV/LIV antibodies were detected in serum samples from eastern, southwestern
and northern departments. The results indicate continuous circulation of USUV in southern France
from 2009 to 2014, which was unnoticed by the French monitoring system for bird mortality. The
findings also confirm wider distribution of TBEV in the eastern part of the country than of human
clinical cases. However, further studies are needed to determine the tick-borne flavivirus responsible
for the seroconversion in southwestern and northern France.
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1. Introduction

The importance of the Flavivirus genus (family Flaviviridae) in terms of public and animal health
has increased in Europe over the last few decades [1–3]. Many of these viruses, such as West Nile
virus (WNV) or tick-borne encephalitis virus (TBEV), are major human pathogens. In nature, these
viruses are maintained in an enzootic cycle involving ornithophilic mosquitoes (WNV, Usutu virus, and
Bagaza virus) or ticks (TBEV and Louping ill virus) as competent vectors, and birds or small mammals
as main reservoir hosts. Most medium and large mammalian species are susceptible to infections, but
are considered dead-end or incidental hosts as they are not able to transmit the viruses. Louping ill
virus (LIV) is an exception, as sheep, hares and grouse are considered to be the main reservoirs [4].

In recent decades, vector-borne flavivirus infections have emerged in new areas worldwide, and
there have been continuous and growing reports of outbreaks in humans or animals [3,5,6]. In Western
Europe, an increase in the number of WNV cases in horses and humans and of TBEV cases in humans
has been reported broadly, while both viruses have been spreading to previously unaffected areas [3,5,6].
In addition, the Usutu virus (USUV), a virus belonging to the Japanese encephalitis complex, like
WNV, was detected for the first time in Italy in 1996 and in Austria in 2001, causing deaths among
Eurasian blackbirds (Turdus merula) [7]. In the following years, the USUV genome or antibodies
were found in several Central and Western European countries including Austria, Spain, Hungary,
Belgium, the Czech Republic, Germany, Poland, Greece, France, Croatia, Serbia, Slovakia, Switzerland
and the Netherlands, in areas that frequently overlapped with WNV circulation zones [2,8]. Two
major USUV outbreaks affecting wild birds were identified with extensive circulation in Northern
Europe in 2016 (Belgium, Germany, the Netherlands and France) [9], and in Western and Central
Europe in 2018 (France, Austria) [2,10]. Given that USUV and WNV are genetically, antigenically and
epidemiologically closely related, in Europe the question emerged of the influence of one virus on the
spatiotemporal dynamics of the other. This highlights the need to obtain more epidemiological data on
the spatiotemporal dynamics of USUV in endemic and nonendemic areas of WNV.

A better understanding of the spatiotemporal distribution of flaviviruses is needed to define risk
areas of virus circulation, and to gain knowledge on the dynamics of virus transmission cycles. Although
global changes (climatic, environmental or anthropogenic factors) may impact the geographical
distribution of tick-borne flaviviruses, these viruses generally exhibit more epidemiological stability
over time than mosquito-borne flaviviruses, which evolve by epizootic waves [6]. WNV, USUV and
TBEV are the main flaviviruses that have been circulating in France. Two other seabird-related tick-borne
flaviviruses have occasionally been found on the Atlantic coast: Meaban virus and Tyuleniy virus [6].
The presence of Louping ill virus (LIV) or Louping ill-like virus (LI-like virus) and Bagaza virus (BAGV)
in neighbouring countries, including Spain [6], raises questions about the potentially undetected
circulation of these flaviviruses in France. The endemic area for WNV in France is located along the
Mediterranean coast, more specifically in the Camargue region, a natural wetland. However, the virus
has been detected irregularly during the past two decades. WNV epizootics with neuroinvasive cases
in horses were reported in France in 2000, 2003, 2004, 2006, 2015 and 2018-2019 [11–13]. Between
these epidemic years, it is unknown whether the virus circulated every year in some areas, or whether
epizootics are caused by new strains introduced by migrating birds, even though the identification
of silent circulation episodes by active surveillance and virus genome analysis tend to support the
first hypothesis [14,15]. The presence of USUV was suspected in 2009–2010 in Camargue, with six
Eurasian magpies (Pica pica) displaying USUV-specific neutralizing antibodies [15]. Since then, several
lineages of the virus have been detected from 2015 to 2018 in several French regions from dead birds,
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one human patient or mosquito pools [13,16–19], but there is no information on the spatiotemporal
circulation of USUV in France between 2009 and 2015.

France is located in the western area of the TBEV geographical distribution. Compared to
neighbouring countries (e.g., Switzerland and Germany), the number of human TBEV cases is relatively
stable, from two to 29 per year [3]. Clinical cases in humans have only been reported in some areas
of eastern France: Mainly in Alsace-Lorraine, in the Alpine area (Haute-Savoie), and recently in the
Loire and Haute-Loire [20,21]. Although human infection seems to be restricted to certain areas, the
virus is thought to circulate to a larger extent in eastern France. In fact, TBEV-positive serum samples
from forest workers from other regions of eastern France (Bourgogne, Franche-Comté and Ardennes)
have been detected [22]. Nevertheless, as it is often difficult to know the exact location where people
were infected through the bites of TBEV-infected ticks, these results require further investigation to
better define the areas where TBEV circulates. Other viruses antigenically closely related to TBEV
belonging to the TBEV serocomplex, LIV and LI-like viruses, such as Turkish sheep encephalomyelitis
(TSE) and Spanish sheep encephalomyelitis (SSE), are well known in the British Isles and Ireland, but
have also been detected sporadically in northern Spain (Basque Country, Asturias), Norway, Denmark,
Turkey, Bulgaria and Greece [23–27]. In these countries, except for Great Britain (LIV), data on the
natural transmission cycle are not available. Recently, TBEV serocomplex neutralizing antibodies were
detected in dogs in the south of Spain [28] and in horses on the island of Mallorca (off the eastern coast
of Spain) [29]. Based on our current knowledge of the TBEV epidemiological cycle, it is more likely
that the virus involved is LIV or a LI-like virus. The key factor in TBEV persistence in a given area is
thought to be co-feeding of tick larvae and nymphs. These stages have synchronous activities only
under specific climatic conditions that are not found in Spain [30].

Hunter-harvested mammals are more accessible than wild birds or small mammals and may
be used as sentinels for monitoring flavivirus activity [31–33]. Antibodies against WNV, USUV and
TBEV have been detected in naturally exposed roe deer (Capreolus capreolus), red deer (Cervus elaphus)
and wild boar (Sus scrofa) [31,32,34–36]. These species have a long life span and antibodies against
flaviviruses may persist for more than one year [31,32,34,35,37]. Thus, analysing serum from all age
classes is useful to explore the spatiotemporal flavivirus trends in a given area. In this study, we used
serum banking of samples from hunter-harvested wildlife to estimate the exposure level of wild boar
and roe deer to flaviviruses in several regions of France from 2009 to 2014. The main objectives were:
1) to improve knowledge on TBEV distribution; 2) to determine whether LIV or BAGV are present
in France; and 3) to determine whether USUV and WNV circulated from 2009 to 2014 and if so, in
which areas.

2. Materials and Methods

2.1. Data and Study Area

In 2009, the French National Hunter’s Federation launched a voluntary program for departmental
(French administrative unit) hunting associations aimed at serum banking of wild ungulate samples.
Blood samples were taken from the thoracic cavity of freshly killed hunted animals and centrifuged.
Serum samples were then stored at −20 ◦C by local hunter’s associations. Animals were killed during
the hunting season, which is from September to February. Animals were classified by gender and
by age according to dentition patterns (juveniles: <1 year old and adults: >1 year old). Among
the 31 departments in which local hunter’s associations participated in this program, we selected
18 departments to represent different bioregions of France (Figure 1C). For the sampling scheme and
analysis, given their smaller size, the departments from the “Ile-de-France” region (departments 78, 91,
and 95 in Figure 1C) were considered one department. We used all serum samples collected from these
departments from 2009 to 2014.
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Figure 1. Geographical distribution of the serum samples from wild boar (A) and roe deer (B), analysed
for the detection of flavivirus antibodies using competitive ELISA. The size of each point is defined
according to the number of serum samples per municipality. In department 59, as the geographical
coordinates associated with the collected serum samples were not available, we indicated the number
of serum samples sampled within the department. In (C), the numbers represent the department code.

2.2. Laboratory Analysis

Antibodies against flaviviruses were detected using a commercial competitive enzyme-linked
immunosorbent assay (cELISA; ID Screen® West Nile Competition, ID Vet, Montpellier, France)
based on purified whole WNV antigen for the detection of antibodies directed against the envelope
E protein common to all flaviviruses. Although this ELISA test is designed for WNV detection,
the high cross-reactivity observed makes this method suitable for the detection of a broad range of
flavivirus antibodies [38,39]. The test was performed according to the manufacturer’s instructions and
interpreted following their recommendations: Samples with a sample-to-negative control (S/N) ratio
≤40%, [40–50%] and >50% were considered positive, doubtful and negative, respectively.

To identify the virus causing the seroconversion, samples with positive or doubtful results were
then tested for the presence of antibodies against WNV, USUV, TBEV, and LIV by two methods, xMAP
microsphere immunoassays (MIAs) and virus micro-neutralization tests (MNTs), as detailed below.
In addition, these samples were also tested for BAGV antibodies by virus micro-neutralization.

Serological screening of samples was performed using MIA technology. Purified recombinant
envelope domain III (rEDIII) proteins of WNV, USUV, TBEV and LIV were used for the capture
of specific IgG antibodies. A recombinant soluble ectodomain of WNV envelope (E) glycoprotein
(WNV.sE), which identifies infection by all flaviviruses in the same way as the competitive ELISA test,
and WNV.EDIII, USUV.EDIII, TBEV.EDIII and LIV.EDIII were coupled to MagPlex® Microspheres
using a Bio-Plex Amine Coupling Kit (Bio-Rad Laboratories, Hercules, CA, USA), according to the
manufacturer’s instructions, as described in Beck et al. (2015) [39]. Five micrograms of WNV.sE,
TBEV.EDIII or LIV.EDIII or 50 µg of WNV.EDIII and USUV.EDIII were coupled to the beads. The
serum samples (diluted 1:100) were then tested with MIA technology using an equimolar mixture
of the five beads, as previously described in Beck et al. (2015) [39]. The secondary antibody was a
rabbit anti-deer IgG biotin conjugate (Interchim) for roe deer serum samples, and a goat anti-pig IgG
biotin conjugate for wild boar serum samples (AB_2338429, Jackson Immunoresearch, West Grove,
PA, USA), diluted 1:500. For each antigen, the diagnostic cutoff was determined from the mean of
median of fluorescence (MFI) values of 25 pig (for the analysis of wild boar serum samples) or roe deer
(for the analysis of roe deer serum samples) negative serum samples plus three standard deviations
of the mean. The 25 pig and roe deer serum samples used to determine the cutoff were sampled in
the field from several departments of France and were found to be negative by cELISA. In cases of
positive reactions with several rEDIIIs for viruses belonging to the Japanese (i.e., USUV and WNV) or
tick-borne encephalitis serocomplexes (i.e., TBEV and LIV), an animal was considered infected with a
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specific flavivirus if the corresponding bead coupled to rEDIII generated an MFI at least double that
generated with the other beads.

MNTs were performed for the detection of specific neutralizing antibodies against WNV (strain
Is98, Genbank ID AF481864.1, provided by Philippe Desprès, IPP, Paris), USUV (strain Italy 2012,
206795-3/2012, Genbank ID KX816653.1, provided by Davide Lelli, IZSLER, Brescia), TBEV (strain Hypr,
Genbank ID U39292.1), LIV (strain Li 3/1, Genbank ID KP144331.1, provided by Nicholas Johnson,
APHA, Weybridge), and BAGV (strain Spain 2010, Genbank KR108244) as described in Beck et al.
(2015) [39]. A serum sample was considered positive if cells were protected at the 1:10 serum dilution
for WNV, USUV and BAGV, and 1:20 for TBEV and LIV. When results indicated cross-neutralization
between flaviviruses, we identified the infecting flavivirus by considering the virus with the highest
neutralization capacity, and with neutralization titres that differ by at least 4-fold.

2.3. Laboratory Result Interpretation

Detection of flaviviruses. We considered a serum sample to be i) “flavivirus-negative” when the
result of the pan-flavivirus cELISA was negative or was doubtful and negative in MNTs or MIAs;
or ii) “flavivirus-positive” when flavivirus antibodies were detected by the pan-flavivirus cELISA
(positive serum in cELISA), MNTs or MIAs (doubtful serum in cELISA).

Identification of flaviviruses. As MNTs and MIAs gave complementary and specific results and
identified the same viruses (see Results 3.1), we considered that a serum sample was positive for a
specific virus (i.e., USUV-, TBEV-, LIV-, WNV- or BAGV-positive) when antibodies towards this virus
were detected by at least one of the methods, MNTs or MIAs, given the conditions described above.
TBEV and LIV could not be differentiated by MNTs and MIAs, and hereafter results are noted as
“TBEV/LIV positive.”

We considered a positive or doubtful cELISA serum sample as “confirmed” when the flavivirus
responsible for the seroconversion was identified by one of the confirmatory tests, MNTs or MIAs.
Positive cELISA serum samples not identified by MNTs or MIAs were considered “non-confirmed”.
We calculated the proportion of confirmatory results as the proportion of confirmed serum samples
among positive or doubtful cELISA serum samples. We compared the S/N ratio of the cELISA between
serum samples confirmed by two or only one test to assess whether the difference in the results was
correlated to the S/N ratio.

2.4. Statistical Analyses

The apparent seroprevalence of antibodies against flaviviruses was estimated by species from the
ratio of cELISA positives to the total number of samples, with the exact binomial confidence intervals
of 95% (CI95%). Differences between species were tested by a Pearson’s Chi-square test. The mean
cELISA S/N ratio values were compared between species by a Student’s t-test.

As no antibodies were detected against WNV and BAGV, we only analysed the factors associated
with USUV and TBEV/LIV antibody seroprevalence. This analysis was only conducted in USUV- and
TBEV/LIV-infected departments. A department was considered USUV-infected (or TBEV/LIV-infected)
when at least one serum sample was USUV- (or TBEV/LIV-) positive in MNT or MIA. For TBEV/LIV,
we only included the departments of eastern France, the known geographical distribution area of
the TBE virus. We considered that the TBEV/LIV-positive serum samples from eastern France were
likely “TBEV-positive.” In infected departments, the exposure status of animals for each virus was
modelled using binomial generalized linear mixed model (GLMM), as a function of sampling period,
ungulate species and age. The department was included as a random factor to take into account the
potential spatial aggregation in virus circulation. We defined the sampling period from 1 September to
28 February of the following year, in order to take into account the hunting season and the probable low
flavivirus circulation during the winter. Odds ratios and 95% confidence intervals were estimated by
bootstrapping. All statistical analyses were performed with R 3.5.0 software (Vienna, Austria) [40]. All
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maps were created with QGIS 2.18.11 (QGIS Geographic Information System. Open Source Geospatial
Foundation Project).

3. Results

3.1. Serological Results

In total, 758 roe deer serum samples and 1014 wild boar serum samples were collected from
September 2009 to November 2014 (Figure 1). From eight to 304 serum samples were collected per
department (Figure 1 and Table 1). Pan-flavivirus antibodies (i.e., positive and doubtful cELISA results)
were detected in 16/758 (2.1%, CI95%: 1.2-3.4%) roe deer serum samples and 57/1014 (5.6%, CI95%:
4.3-7.2%) wild boar serum samples. These data represent a significantly higher seroprevalence in wild
boar than in roe deer (Chi2 p < 0.001). Among positive pan-flavivirus cELISA samples, the mean % S/N
value of wild boar serum samples was lower than that of roe deer (Student’s t-test, t = −3.7, df = 29,
p < 0.001), suggestive of a stronger antibody response in wild boar.

Among the ELISA positive and doubtful samples (n = 73), seven could not be tested by MNTs due
to serum cytotoxicity or low serum quantity (Table 1). None of the serum samples tested contained
specific antibodies against WNV or BAGV. Specific antibodies against USUV or TBEV/LIV were
detected in 32 and four serum samples by MNTs, and in 30 and seven serum samples by MIAs,
respectively. The results were identical between both methods for 49 serum samples (Table 2): 22
were negative, 26 positive for USUV, and one positive for TBEV/LIV, with a higher proportion of
identical results among the USUV-positive serum samples (26/35, 74%) than the TBEV/LIV-positive
serum samples (1/9, 11%). The mean % S/N value was lower for samples confirmed by MNT and MIA
than that confirmed by only one test, or that not confirmed by any test (Mann–Whitney U test, W = 330,
p = 0.007), suggesting that high antibody levels facilitated the confirmation of flavivirus infection.

Overall, specific antibodies against USUV were detected by either method in two roe deer and
34 wild boar serum samples, and those against TBEV/LIV were detected in one roe deer and nine
wild boar serum samples. Neutralizing antibody titres were around 1/10–1/20 for 11 samples and
ranged from 1/40 to 1/320 for 23 samples. The mean % S/N value was positively correlated with the
neutralizing antibody titres (Spearman correlation, rs = 0.88, p-value = 0.03), suggesting again that
high antibody levels facilitated the confirmation of flavivirus infection by MNT. The proportion of
confirmatory results (i.e., positive for at least one test) was higher in wild boar (43/57, 75%) than in roe
deer (2/16, 13%).

3.2. Geographical Distribution

USUV antibodies were detected in animals from six departments, located in southwestern and
southeastern France by MNT and/or MIA (Figure 2). TBEV/LIV MNT- and MIA-positive antibodies were
detected in three departments of eastern France (Figure 2). TBEV/LIV antibodies were detected only by
MIA in three departments located in eastern (Marne, department 51), southwestern (Hautes-Pyrénées,
department 65) and northern France (Yvelines, department 78) (Figure 2, Table 1). The 28 serum
samples found to be positive or doubtful with the pan-flavivirus cELISA that could not be tested (low
serum quantity or too hemolysed) or confirmed by MIA and MNT were from 11 departments (Figure 2).
They included nine departments in which USUV or TBEV/LIV antibodies had been confirmed, and
two from eastern France close to the TBEV endemic area. No flavivirus antibodies were detected in
four departments with >30 serum samples tested: Three were located in western and northern France
and one was located in far southeastern France.
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Table 1. Serological results on wild boar and roe deer serum samples tested by pan-flavivirus competitive ELISA, virus micro-neutralization tests (MNTs) and xMAP
microsphere immunoassays (MIAs) by department (Dpt) (see Figure 1 for the geographical localization). Pos.: Positive, Dbt; doubtful, § proportion of positive results
by MNT or MIA among all the samples tested by cELISA; a three and b four serum samples not tested by MNTs.

Dpt

Wild Boar Roe Deer

No. of
Samples

cELISA USUV-Positive TBEV/LIV-Positive No. of
Samples

cELISA USUV-Positive TBEV/LIV-Positive

Pos. or
Dbt % MNT MNT or

MIA % § MNT MNT or
MIA % § Pos. or

Dbt % MNT MNT or
MIA % § MNT MNT or

MIA % §

4 38 0 0% - - 0 - - 0% 40 0 0% - - 0% - - 0%
13 34 3 8.8% 2 2 5.9% 0 0 0% 2 0 0% - - 0% - - 0%
17 50 10 20.0% 8 9 18.0% 0 0 0% 44 2 4.5% 0 0 0% 0 0 0%
24 61 7 a 11.5% 2 3 4.9% 0 0 0% 60 3 5% 2 2 3.3% 0 0 0%
34 212 11 5.2% 9 10 4.7% 0 0 0% 19 0 0% - - 0% - - 0%
39 128 3 2.3% 0 0 0% 1 2 1.6% 176 4 2.3% 0 0 0% 0 1 0.6%
40 30 10 33.3% 7 8 26.7% 0 0 0% 31 1 3.2% 0 0 0% 0 0 0%
41 8 0 0% - - 0% - - 0% - - - - - - - - -
51 26 2 7.7% 0 0 0% 0 2 7.7% 54 2 3.7% 0 0 0% 0 0 0%
52 127 1 0.8% 0 0 0% 0 0 0% 85 1 1.2% 0 0 0% 0 0 0%
56 - - - - - - - - - 33 0 0% - - 0% - - 0%
58 26 0 0% - - 0% - - 0% 25 2 8.0% 0 0 0% 0 0 0%
59 29 0 0% - - 0% - - 0% 22 0 0% - - 0% - - 0%
65 37 3 8.1% 2 2 5.4% 0 1 2.7% 40 0 0% - - 0% - - 0%
73 85 3 3.5% 0 0 0% 3 3 3.5% 90 1 1.1% 0 0 0% 0 0 0%
76 29 0 0% - - 0% - - 0% 37 0 0% - - 0% - - 0%

78–91–95 94 4 b 4.2% 0 0 0% 0 1 1.1% - - - - - - - - -

TOTAL 1014 57 5.6% 30 34 3.4% 4 9 0.9% 758 16 2.1% 2 2 0.3% 0 1 0.1%
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Table 2. Contingency table of and xMAP microsphere immunoassays (MIAs) and virus
micro-neutralization tests (MNTs) results for 66 samples revealed as positive or doubtful by competitive
ELISA and tested by both MIAs and MNTs.

Confirmation
Method

MIA
TotalPositive for

USUV
Positive for
TBEV/LIV Negative

MNT

Positive for USUV 26 0 6 32

Positive for TBEV/LIV 0 1 3 4

Negative 3 5 22 30

Total 29 6 31 66
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represents the number of serum samples per municipality.

3.3. Seroprevalence in USUV-Infected Departments

In USUV-infected departments, an apparent pan-flavivirus seroprevalence of 10.0% (CI95%:
7.3–13.2%) was obtained in wild boar and 3.1% (CI95%: 1.1–6.5%) in roe deer. The USUV seroprevalence
detected by MNT and MIA was 8.0% (CI95%: 5.6–11.0%) in wild boar and 1.0% (CI95%: 0.1–3.6%)
in roe deer. None of the juvenile roe deer (n = 38) were found to be seropositive. Five juvenile
wild boar sampled in 2012 and 2013 had USUV antibodies. The USUV seroprevalence was higher
in adults (12.3%, CI95%: 8.8–16.5%) than in juveniles (4.3%, CI95%: 1.4–9.7%). In adults, the USUV
seroprevalence increased linearly with the period (p = 0.02, Wald test) from 2.6% (CI95%: 0.3–9.1%) in
2009–2011 to 12.6% (CI95%: 7.3–19.6%) in 2013–2015. The GLMM showed that the probability of being
USUV-seropositive was higher for wild boar adults and animals sampled in 2013–2014 and 2014–2015
compared to 2009–2010 (Table 3).
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Table 3. Results of the generalized linear mixed model (logistic link function) of USUV seropositivity
in wild ungulates in southern France, with the department included as random factor. OR: Odds ratio,
95% CI: 95% confidence intervals estimated by bootstrap.

Variables No. of
Individuals

No. of
Positives β Error OR 95% CI

Bootstrap p

Species

roe deer 196 2 a a a a a
wild boar 419 34 2.66 0.66 17.3 4.8–9.6.108 <0.001

Age
Category

adult 458 31 a a a a a
juvenile 157 5 −1.28 0.52 0.3 0.1–0.6 0.01

Sampling Period

2009–2010 62 2 a a a a a
2010–2011 81 1 −1.01 1.23 0.4 0–75.2 0.41
2011–2012 88 4 0.19 0.9 1.2 0.1–1.5.108 0.83
2012–2013 198 12 1.08 0.83 2.9 0.9–7.3.108 0.19
2013–2014 156 13 1.84 0.82 6.3 1.5–1.3.108 0.02
2014–2015 22 4 3.17 1.04 23.9 3.9–5.3.108 0.002

a: reference category.

3.4. Seroprevalence in TBEV/LIV-Infected Departments in Eastern France

In TBEV/LIV-infected departments in eastern France, an apparent pan-flavivirus seroprevalence
of 2.9% (CI95%: 1.2–5.9%) was obtained in wild boar, and 1.9% (CI95%: 0.7–4.0%) in roe deer. The
TBEV/LIV seroprevalence detected by MNT and MIA was 2.9% (CI95%: 1.2–5.9%) in wild boar
and 0.6% (CI95%: 0.1–2.2%) in roe deer. None of the juveniles (n = 59 wild boar and 91 roe deer)
were TBEV/LIV-seropositive. TBEV/LIV antibodies have been detected annually from 2010 to 2014.
According to the GLMM results, species, age class and sampling period were not associated with the
probability of an animal being TBEV/LIV-seropositive.

4. Discussion

We used wild ungulate serum samples collected from 2009 to 2014 to investigate past circulation
of flaviviruses in France. USUV and TBEV/LIV antibodies were detected in roe deer and wild boar.

4.1. Spatiotemporal Circulation of USUV in France

Our results highlighted USUV circulation in southwestern and southeastern France from s2009 to
2014. These results confirm long-term USUV circulation in southeastern France, as reported earlier in
2009–2010 by Vittecoq et al. [15], with four common magpies (Pica pica) in the Camargue area displaying
USUV-neutralizing antibodies, while USUV infection could not be established firmly in two additional
animals presenting USUV- and WNV-neutralizing responses. Our results support the hypothesis of
continuous circulation of USUV in the study period, considering that USUV seroprevalence tended to
increase over the study period and was higher in adult wild boar than in juveniles. USUV antibodies
were detected every year from 2009 to 2014 in adults, and only in 2012–2013 and 2013–2014 in wild
boar juveniles, likely to be older than six months. There are no data on the persistence of maternal
USUV antibodies in wild boar. Considering that maternal antibodies against most viruses disappear
after six months in large mammals [41], our results would suggest that USUV circulated at least in
summer and autumn of 2012 and 2013. Although flavivirus antibody persistence in artiodactyl species
is unknown, a longer time span of exposure and antibody persistence could be associated with the
higher seroprevalence found in adults, as suggested by field observations for WNV [31,34,35,37]. Given
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the potential long persistence of antibodies in artiodactyls, it is impossible to know from our results
whether USUV circulated every year since 2009 or was re-introduced in 2012.

Very few studies have been conducted to assess exposure of wild ungulates to USUV in infected
areas in Europe. In these studies, USUV antibodies in wild ungulates were detected by MNTs to exclude
cross-reactivity with WNV antibodies in areas endemic for WNV. The prevalence of neutralizing
antibodies against USUV detected in wild boar (8%) and in roe deer (1%) in the infected departments
studied here was slightly higher than that found in two studies conducted in endemic WNV countries:
In Serbia in 2010–2011 (3.4%, n = 318 wild boar, 0%, n = 91 roe deer), and in Spain from 2003 to 2014
(0.2%, n = 4335 red deer, 0%, n = 32 roe deer) [34,42]. However, this apparent difference may only
arise from the fact that the authors estimated the seroprevalence in both infected and uninfected areas,
contrary to our results. Similar seroprevalence values in wild ungulates have been observed for WNV
antibodies in endemic WNV areas in Serbia, Spain and the Czech Republic. This seroprevalence varied
from 2% to 13% in wild boar [31,35,42–44], and from 4% to 15% in roe deer [42–44].

In our study, wild boar showed higher seroprevalence for USUV than roe deer. Among the
seropositive animals by cELISA, the confirmatory rate by MNT and MIA was higher and the mean
% S/N of cELISA was lower for wild boar, suggesting higher antibody titrer in wild boar. Similar
differences in the seroprevalence of flavivirus infections (as regards WNV) were found between wild
boar and cervids (roe deer and red deer) in Spain [28,31,35]. These results may suggest lower antibody
response in roe deer to infections by flaviviruses of the Japanese encephalitis antigenic complex.
Alternatively, the observed difference may arise from lower exposure of roe deer to mosquito vector
bites related to a difference in terms of animal size, habitat or feeding preferences of Culex mosquitoes
between wild boar and roe deer.

Surprisingly, USUV was not detected in other departments of eastern and central France in our
study, whereas USUV has frequently been detected in these areas from 2015 to 2018, mainly after
unusual and grouped bird fatalities [13,16–18]. The year 2018 was marked by a sudden increase in the
reporting of USUV outbreaks, with a massive die-off of blackbirds (Turdus merula) and captive owls
(Strix nebulosa and Bubo scandiacus) in most parts of France [13,18]. From 2015 to 2018, three lineages of
USUV were detected, suggesting multiple introductions in France [13,16,17,19]. A Europe 3 strain,
genetically close to strains circulating in Eastern Europe since 2011 (Germany, Czech Republic), was
detected in dead birds from 2015 to 2017 in northeastern France (Alsace-Lorraine) [16]. Strains from
the Africa 3 lineage, genetically close to the strain circulating in Germany in 2014 and in Belgium
and the Netherlands in 2016 [9], were detected in central and southern France from mosquito pools
in 2015 [17] and from birds in 2018 (Lecollinet, pers. comm). The Africa 2 lineage was detected on
several occasions in 2015–2016 in central France (Rhône department) after bird mortalities, as well
as in southern France on mosquito pools, and from a human patient suffering from a neurological
disorder [16,17,19]. This lineage was previously identified on two occasions in Spain, in 2006 and 2009,
from Culex mosquito samples, but was not associated with bird morbidity before its identification
in European countries further east, such as France and Germany in 2015 [16,45–48]. It is impossible
to infer from our results which USUV strains were circulating from 2009 to 2014 in southern France.
Importantly, USUV circulation remained undetected by the French event-based surveillance network
SAGIR [49] that monitors abnormal wild bird mortalities. Since their first detection in Europe, the
USUV Europe 3 and Africa 3 lineages have been responsible for massive die-offs of song birds in
several countries [9,16,43,50–54]. On the contrary, given that limited cases of bird mortality due to the
Africa 2 lineage have been reported, this lineage appears to be less pathogenic for birds. Therefore,
we hypothesize that USUV circulating in southern France from 2009 to 2014 may belong to the
Africa 2 lineage, close to the strains found in Spain in 2006 and 2009 and in southeastern France
(Bouches-du-Rhône) in 2015 [17,47,48]. The absence of detection of USUV antibodies in eastern and
central France in our study suggests that both USUV lineages Europe 3 and Africa 3 were introduced
more recently than 2014.
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4.2. No Detection of WNV and BAGV Antibodies

No WNV antibodies were detected in wild ungulates sampled from the known endemic areas for
WNV in southeastern France, the two departments Bouches-du-Rhône (department 13, Figure 1C) and
Hérault (department 34, Figure 1C), whereas Vittecoq et al. [15] found WNV antibodies in a second-year
common magpie in 2010 in the Bouches-du-Rhône, suggesting recent WNV infection (in 2009 or 2010)
in the area. In southeastern France, WNV has been reported irregularly and is generally detected
when the virus circulation is high and causes clinical outbreaks in humans and horses. Such epizootics
in the Camargue area have been observed in 2000, 2004, 2015 and 2018 [11,13,55,56]. Between two
epizootics, the virus could be silently maintained, as suggested by the detection of WNV antibodies in
wild birds [15,57]. In our study, few animals were sampled in areas located close to the wetlands of
the Hérault and Bouches-du-Rhône departments, where WNV cases were mostly detected during the
outbreaks. This may have limited the detection of WNV circulation in our study. This result confirms
that the virus, if present, probably circulates very locally close to wetland areas that provide sustainable
habitats for the nesting of many wild resident or migrating birds, and for the multiplication of Culex
vectors [58].

Bagaza virus antibodies were not detected. In Europe, this virus was only detected in southern
Spain in 2010 and 2011, associated with high mortality of red-legged partridges (Alectoris rufa) and
ring-necked pheasants (Phasianus colchicus) [59,60]. The main hosts of BAGV are birds and there is
little evidence of BAGV antibodies in mammals. Neutralizing antibodies to BAGV have been found in
serum samples from encephalitis cases in humans in India, and in experimentally infected mice [61,62].

4.3. TBEV Serocomplex Distribution

We detected TBEV/LIV antibodies in three departments of eastern France (Savoie department
73, Marne department 51, and Jura department 39 in Figure 1C), in one department in the south
(Hautes-Pyrénées, department 65) and one department in northern France (Yvelines, department 78).
Given the genetic and antigenic relatedness between TBEV and LIV, serological responses induced after
TBEV and LIV infection could not be differentiated by MNT and MIA. Although the distribution of
TBEV in France is not known precisely and clinical cases have mainly been reported in the far eastern
parts of France (Alsace-Lorraine and Alpine regions), the virus is thought to be broadly distributed in
the east of France. We detected TBEV/LIV antibodies in wild ungulates in one department (Savoie),
where TBE clinical cases in humans have been reported [20], and in two departments (Marne and Jura),
where forest workers were previously found to be seropositive to TBEV [22]. It is therefore likely that
seropositive wild ungulates observed in our study in eastern France have been exposed to TBEV.

The wild boar found to be TBEV/LIV-seropositive in the Hautes-Pyrénées department by MIA
was not confirmed by MNT, whereas the serum was strongly positive in cELISA (low mean % S/N).
For the wild boar in the Yvelines department, the serum was too hemolysed and the result could not
be confirmed by MNT. The result obtained by MIA could be interpreted, with caution, as an indicator
of a tick-borne flavivirus infection. TBEV/LIV seropositivity in Hautes-Pyrénées could originate from
an infection with LIV or LI-like virus, since these viruses have been reported in sheep, goats and
Cantabrian chamois (Rupicapra pyrenaica parva) in close geographical areas in Spain: In the Basque
and Asturias regions [23,25,63]. The presence of a virus from the TBEV-serocomplex was found at a
broader scale in Spain by serology, with antibodies neutralizing TBEV reported in southern Spain and
on the island of Mallorca [28,29]. The positive serum in the Yvelines might also reveal the western
limit of distribution of TBEV in France. Interestingly, TBEV was recently detected in ticks in the United
Kingdom, which represents the western-most distribution limit for TBEV [64]. Finally, in both cases, we
cannot rule of the hypothesis that this might be due to another tick-borne flavivirus. The diversity and
distribution of tick-borne flaviviruses are not well known, and new species are regularly discovered in
ticks [65]. Further investigations are needed to confirm the circulation of another tick-borne flavivirus
in France and to isolate this virus.
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The overall TBEV seroprevalence found in wild boar and roe deer in the eastern departments
(2.9% in wild boar and 0.3% in roe deer) was much lower than that found in TBEV endemic areas
in Germany, Poland, Slovakia, the Czech Republic and the south of Sweden, varying from 10% to
40% [32,36,44,66–69]. However, it was similar to the seroprevalences found in areas with the same
epidemiological situation as eastern France, with no or very few human clinical cases: From 2% to 6%
seropositive wild boar and roe deer have been reported in Belgium, in some areas of Germany, and in
the south of Denmark [66,70–73]. We did not find any significant difference in TBEV seroprevalence
between wild boar and roe deer, which is consistent with previous observations [44,66,69,71,72]. These
results are unexpected as roe deer are considered to be the main hosts for the nymphs and adults of
Ixodes ricinus, the main tick vector for TBEV in Western Europe [74]. However, there is a lack of data on
the role of wild boar as a feeding host for this tick or for other potential vector tick species of TBEV,
such as Dermacentor spp. [75]

4.4. Unidentified Flaviviruses

Twenty-seven samples were positive or doubtful according to cELISA and negative according to
MNT and MIA for WNV, USUV, TBEV, LIV and BAGV, or negative according to MIA and not tested by
MNT. All but four samples were located in departments where USUV or TBEV/LIV antibodies had
been detected in our study. The four other samples were located in two eastern departments, where
TBEV antibodies had previously been detected in forest workers [22]. Three samples were located in
the Yvelines (department 78), where antibodies against TBEV/LIV were detected in one serum sample.
We cannot exclude the possibility that another flavivirus may be circulating. However, given their
localization, it is more likely that the animals were exposed to USUV or TBEV. Most probably, ELISA
positive or doubtful results could not be confirmed by MNT or MIA due to serum quality or the lower
analytical sensitivity of these tests, which is consistent with the low antibody titres (high % S/N) found
by cELISA for most of these serum samples.

5. Conclusions

The results obtained in this study documented the distribution and spatiotemporal dynamics of
flaviviruses in France from 2009 to 2014. They indicate silent and probable continuous circulation of
USUV in southwestern and southeastern France from 2009 to 2014. Antibodies against TBEV/LIV were
detected in two eastern departments, where no TBE clinical cases have been reported so far, a finding that
confirms the wider distribution of the TBE virus in the east of France. The serum samples with TBEV/LIV
antibodies found in southwestern and northern France warrant further exploration to determine the
virus responsible for the seroconversion. This study shows the usefulness of serum banking by hunters
concerning wildlife for retrospective epidemiological surveys of pathogen circulation.
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