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Abstract: Identification of drug–target interactions (DTIs) is vital for drug discovery. However, tradi-
tional biological approaches have some unavoidable shortcomings, such as being time consuming
and expensive. Therefore, there is an urgent need to develop novel and effective computational
methods to predict DTIs in order to shorten the development cycles of new drugs. In this study, we
present a novel computational approach to identify DTIs, which uses protein sequence information
and the dual-tree complex wavelet transform (DTCWT). More specifically, a position-specific scoring
matrix (PSSM) was performed on the target protein sequence to obtain its evolutionary information.
Then, DTCWT was used to extract representative features from the PSSM, which were then com-
bined with the drug fingerprint features to form the feature descriptors. Finally, these descriptors
were sent to the Rotation Forest (RoF) model for classification. A 5-fold cross validation (CV) was
adopted on four datasets (Enzyme, Ion Channel, GPCRs (G-protein-coupled receptors), and NRs
(Nuclear Receptors)) to validate the proposed model; our method yielded high average accuracies of
89.21%, 85.49%, 81.02%, and 74.44%, respectively. To further verify the performance of our model,
we compared the RoF classifier with two state-of-the-art algorithms: the support vector machine
(SVM) and the k-nearest neighbor (KNN) classifier. We also compared it with some other published
methods. Moreover, the prediction results for the independent dataset further indicated that our
method is effective for predicting potential DTIs. Thus, we believe that our method is suitable for
facilitating drug discovery and development.

Keywords: drug–target interaction; dual-tree complex wavelet transform; position-specific scoring
matrix; rotation forest

1. Introduction

Detecting the interactions between compounds (drugs, molecules, ligands) and pro-
teins (targets) is one of the most active parts of the genomic drug development field, as
it plays a critical role during the discovery of novel drug candidates [1]. According to
statistics from the US Food and Drug Administration (FDA), it takes at least billions of
dollars to develop a new drug [2]. However, only a few drug candidates will be allowed to
enter the market, as most of them fail in clinical trials and show uncertain side effects [3].
Furthermore, some studies have reported that the interactions between target proteins and
drugs have a significant impact on the toxic side-effects of the drug candidates [4]. This
makes the study of drug–target interactions (DTIs) very useful for detecting the toxicity
of candidate drugs. Over the past few years, numerous experimental approaches have
been introduced to identify DTIs, but few of them have been tested and detected as interac-
tive [5,6]. In addition, these traditional experimental-based methods need to address the
problem of high false-positive and false-negative rates [7]. For these reasons, there was
a strong demand for the development of novel computational approaches to shorten the
drug development cycle and reduce the time taken to detect drug–target pairs [8].
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With the rapid increase in publicly available chemical and biological data, various
types of related databases based on the relationships between drugs and proteins (targets)
have been established, such as DrugBank [9], KEGG [10], TTD [11], and SuperTarget &
Matador [12]. These public databases store a large amount of DTI information, and it is
essential for researchers to develop novel and robust computational methods for detecting
potential DTIs on a genome-wide scale.

To date, many computational approaches combining biological information and de-
scriptor information have been used, such as Docking simulation [13,14], ligand-based
methods [15], and literature text mining methods [16], which can be employed to identify
drug–target interactions. However, these methods also have some inevitable limitations.
Docking simulation is an effective molecular model which can use the dynamic simulation
to predict the positive interactions between drug molecules and target proteins. It usually
needs the information about the 3D structural data of the targets, a requirement that is
difficult to meet because this information is only available for a small fraction of all pro-
teins. Text mining is a special method in molecular biology, which is usually used to reveal
the associations between proteins or genes and their functional relationships from text
documents. It uses keywords to detect potential drug–target protein interactions, but it is
hard to make good use of them. For these drawbacks, it is more practical to develop novel
computational models to identify DTIs without the need for information about ligands and
3D target structures.

Recently, various approaches have been reported for detecting novel DTIs. Yamanishi
et al. [17] developed a new statistical method that uses genomic sequence information and
chemical structure to predict unknown DTI networks. Wang et al. [18] reported a com-
putational model, which utilized a stacked auto encoder based on deep learning that can
effectively extract raw data information to identify drug–target interactions. Hao et al. [19]
introduced a useful algorithm, called dual-network integrated logistic matrix factorization
(DNILMF), which consists of four steps to detect potential drug–target interactions. Wen
et al. [20] suggested a deep-learning based algorithm called DeepDTIs. DeepDTIs utilized
unsupervised pretraining to abstract representations from raw input descriptors. It can be
applied to detect whether a new target interacts with some existing drugs. Ezzat et al. [21]
presented a framework that combined feature dimensionality reduction and the ensemble
learning model for predicting DTIs. Huang et al. [22] developed a method called MolTrans
(Molecular Interaction Transformer) to predict DTIs that combined the interaction model-
ing module and sub-structural pattern mining algorithm. Zhang et al. [23] developed a
method called SPVes that combined SMILES2Vec and ProtVec to convert SMILES strings of
drug compounds and sequences of target proteins as feature vectors to predict DTIs. Wang
et al. [24] built a heterogeneous drug–target graph to detect DTIs. It used known DTIs,
drug–drug, and target–target similarities. Redkar et al. [25] used dipeptide composition
and drugs with a molecular descriptor to encode the target protein sequence, and then
a machine learning method that combined wrapper feature extraction and the synthetic
minority oversampling technique (SMOTE) was adopted to predict DTIs. Although these
methods have accelerated discoveries concerning drug–target interactions, there is still
room for improvement.

In this study, we present a computational approach to identify potential DTIs based
on the information of chemical fingerprints and target protein sequences. The prediction
process is divided into three stages. Firstly, the target protein sequences were transformed
into position-specific score matrices (PSSMs) to obtain their evolutionary information.
Secondly, an effective feature extraction method, dual-tree complex wavelet transform
(DTCWT), was performed to extract feature vectors from the PSSMs. Finally, we combined
the drug molecule fingerprint information with these vectors to construct feature descrip-
tors and fed them into the Rotation Forest (RoF) classifier. From the voting results of these
decision trees, we can observe whether these drugs and target proteins are most likely
to interact with each other. To verify the predictive ability of the proposed method, we
applied a 5-fold cross-validation (CV) on four benchmark datasets: Enzyme, Ion Channel,
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GPCRs (G-protein-coupled receptors), and NRs (Nuclear Receptors). Furthermore, we
compared the predictive performance of the proposed model with state-of-art SVM and
KNN classifier and applied our method on an independent dataset. The comprehensive
results demonstrated that our approach is efficient and reliable for predicting potential
DTIs.

2. Results
2.1. Evaluation Metrics

In this work, to access the predictive capacity of the proposed approach, we em-
ployed four evaluation metrics: accuracy (ACC.), precision (PR.), sensitivity (Sen.), and the
Matthews correlation coefficient (MCC). These conventional evaluation indicators can be
defined as follows:

ACC. =
TN + TP

TP + TN + FP + FN
(1)

PR. =
TP

TP + FP
(2)

Sen. =
TP

FN + TP
(3)

MCC =
TP · TN − FN · FP√

(TN + FN)(FN + TP)(TP + FP)(FP + TN)
(4)

where true positive (TP) represents the number of interacting drug–target pairs predicted
correctly, false positive (FP) represents the number of non-interacting pairs predicted to be
interacting, true negative (TN) represents the number of non-interacting pairs predicted
correctly, and false negative (FN) represents the number of interacting pairs predicted
to be non-interacting. Receiver Operating Characteristic (ROC) curves [26] were plotted
based on these parameters, and the area under the ROC curves (AUC) was calculated
to summarize the ROC curves numerically. In this way, we were able to provide a more
comprehensive measure than other evaluation metrics. The flowchart of the proposed
approach for identifying potential DTIs is shown in Figure 1.
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2.2. Parameter Discussion

To achieve better prediction results, it is important to optimize the best parameters
K and L for the Rotation Forest (RoF) model. Here, K represents the number of feature
subsets and L represents the total number of decision trees in the RoF classifier. In this part,
we used the grid research for the optimal parameters of RoF. Figure 2 shows the accuracy
surface, which was generated by the RoF model and influenced by the parameters K and
L. It can be observed that when K = 30 and L = 17, the model obtained the best predictive
performance. In this work, we set the K value and the L value to be 30 and 17, respectively.
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2.3. Performance Evaluations on Four Golden Standard Datasets

To further test the reliability of our method and avoid over-fitting, we performed
5-fold cross-validation (CV) on four datasets (Enzyme, Ion Channel, GPCRs, and NRs).
More specifically, the DTI datasets were split into five parts; four of them were used as the
training set and the remaining one was employed to test the model. In this way, the CV
process was repeated for five rounds to generate five models. For the sake of consistency,
all the parameters of these experiments have been kept identical in this study. Tables 1–4
present the results of the proposed model when adopting the 5-fold CV on four collection
datasets.

Table 1. 5-fold CV results yielded when predicting DTIs for the Enzyme dataset.

Test Set ACC. (%) PR. (%) Sen. (%) MCC (%) AUC

1 89.40 89.80 87.88 81.00 0.9452
2 88.72 89.02 88.72 79.98 0.9516
3 88.80 90.84 85.96 80.07 0.9499
4 88.80 91.68 85.22 80.06 0.9435
5 90.34 92.49 88.71 82.53 0.9585

Average 89.21 ± 0.69 90.77 ± 1.40 87.30 ± 1.62 80.73 ± 1.09 0.9498 ± 0.0059
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Table 2. 5-fold CV results yielded when predicting DTIs for the Ion Channel dataset.

Test Set ACC. (%) PR. (%) Sen. (%) MCC (%) AUC

1 85.08 85.08 85.08 74.62 0.9324
2 84.41 86.26 80.14 73.49 0.9154
3 84.92 87.06 84.59 74.27 0.9233
4 85.59 83.59 89.40 75.22 0.9200
5 87.46 85.92 87.77 78.01 0.9440

Average 85.49 ± 1.18 85.58 ± 1.32 85.40 ± 3.54 75.12 ± 1.73 0.9270 ± 0.0113

Table 3. 5-fold CV results yielded when predicting DTIs for the GPCRs dataset.

Test Set ACC. (%) PR. (%) Sen. (%) MCC (%) AUC

1 79.13 81.06 79.26 66.88 0.8581
2 76.77 77.60 75.78 64.33 0.8388
3 79.53 80.16 78.91 67.44 0.8734
4 83.46 84.35 80.17 72.24 0.8914
5 86.22 84.38 87.80 76.23 0.9258

Average 81.02 ± 3.77 81.51 ± 2.90 80.38 ± 4.47 69.42 ± 4.76 0.8775 ± 0.0332

Table 4. 5-fold CV results yielded when predicting DTIs for the NRs dataset.

Test Set ACC. (%) PR. (%) Sen. (%) MCC (%) AUC

1 72.22 60.00 59.23 57.67 0.7642
2 77.78 72.73 88.89 64.58 0.7963
3 80.56 73.69 87.50 68.43 0.8109
4 66.67 78.95 65.22 53.74 0.7609
5 75.00 76.19 80.00 61.73 0.7453

Average 74.44 ± 5.34 72.31 ± 7.29 78.17 ± 10.64 61.23 ± 5.75 0.7755 ± 0.0271

When predicting DTIs for the Enzyme dataset, we yielded average ACC., PR., Sen.,
MCC, and AUC values of 89.21%, 90.77%, 87.30%, 80.73%, and 0.9498, with corresponding
standard deviations of 0.69%, 1.40%, 1.62%, 1.09%, and 0.0059, respectively. When predict-
ing DTIs for the Ion Channel dataset, we yielded average ACC., PR., Sen., MCC, and AUC
values of 85.49%, 85.58%, 85.40%, 75.12%, and 0.9270, with corresponding standard devi-
ations of 1.18%, 1.32%, 3.54%, 1.73%, and 0.0113, respectively. When predicting DTIs for
the GPCRs dataset, we yielded average ACC., PR., Sen., MCC, and AUC values of 81.02%,
81.51%, 80.38%, 69.42% and 0.8775, with corresponding standard deviations of 3.77%,
2.90%, 4.47%, 4.76% and 0.0332, respectively. When predicting DTIs for the NRs dataset, we
yielded average ACC., PR., Sen., MCC, and AUC values of 74.44%, 72.31%, 78.17%, 61.23%,
and 0.7755, with corresponding standard deviations of 5.34%, 7.29%, 10.64%, 5.75%, and
0.0271, respectively. The ROC curves of the RoF classifier obtained for the four datasets are
shown in Figures 3–6.
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To prove that the predictive performance of our model is not dependent on the
selection of negative samples, we applied our method to five different GPCRs negative
samples, which were randomly selected from the non-interacting drug–target pairs. The
predictive results of the five different negative samples are listed in Table 5. It can be
observed that the experimental results of these five samples were not significantly different.
The average ACC., PR., Sen., MCC, and AUC values are higher than 81%, 82%, 79%, 69%
and 0.88, respectively. These results further indicate that our method for constructing the
negative samples in this work is effective for predicting potential DTIs. The remarkable
prediction performance can be attributed to the robust feature descriptors and powerful
RoF classifier. The application of DTCWT to extract feature vectors is novel and effective.
As a sequence encoding method, PSSM can retain the useful information of amino acid
sequences. The excellent results suggested that the RoF algorithm is suitable for detecting
potential drug–target proteins.

Table 5. 5-fold CV results obtained from our method from five different negative samples from the GPCRs dataset.

Negative Samples ACC. (%) PR. (%) Sen. (%) MCC (%) AUC

Sample 1 81.73 ± 2.18 82.47 ± 2.48 80.65 ± 3.93 70.03 ± 2.94 0.8882 ± 0.0126
Sample 2 81.13 ± 1.80 83.04 ± 2.49 80.59 ± 4.64 70.51 ± 2.36 0.8904 ± 0.0167
Sample 3 81.97 ± 1.06 82.19 ± 1.79 81.59 ± 3.39 70.29 ± 1.48 0.8876 ± 0.0046
Sample 4 81.10 ± 1.18 82.04 ± 1.61 79.53 ± 4.17 69.18 ± 1.65 0.8881 ± 0.0162
Sample 5 81.57 ± 1.53 82.79 ± 2.66 81.23 ± 4.59 69.76 ± 2.06 0.8900 ± 0.0124

2.4. Comparison Results between LPQ-Based Model and the Proposed Method

Many describers have been introduced to detect DTIs, with local phase quantization
(LPQ) [27] being one of the most popular algorithms. To verify the performance of the
DTCWT descriptor, we compared it with the LPQ method. The cross-validation results
of the LPQ descriptor combined with the RoF classifier are summarized in Table 6. It can
be observed that the proposed approach generated the best results in terms of ACC, PR,
MCC, and AUC values. For the sake of consistency, the same parameters were used in the
comparison experiment. From the comparison results, we can observe that the DTCWT
descriptor combined with the RoF classifier can improve the prediction performance of
the model. The detailed 5-fold CV results performed by the LPQ algorithm on the four
datasets are summarized in the Supplementary Materials, Tables S1–S4.
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Table 6. Comparison of experimental results of LPQ and DTCWT with Rotation Forest classifier on four golden standard
datasets.

Dataset Descriptor ACC. (%) PR. (%) Sen. (%) MCC (%) AUC

Enzyme LPQ 87.45 ± 3.87 88.62 ± 5.32 86.20 ± 2.02 78.24 ± 5.49 0.9329 ± 0.0358
DTCWT 89.21 ± 0.69 90.77 ± 1.40 87.30 ± 1.62 80.73 ± 1.09 0.9498 ± 0.0059

Ion
Channel

LPQ 84.07 ± 3.59 83.10 ± 3.98 85.49 ± 4.85 73.43 ± 5.03 0.9008 ± 0.0404
DTCWT 85.49 ± 1.18 85.58 ± 1.32 85.40 ± 3.54 75.12 ± 1.73 0.9270 ± 0.0113

GPCRs
LPQ 79.61 ± 4.26 78.69 ± 6.04 81.07 ± 3.76 67.71 ± 4.69 0.8474 ± 0.0402

DTCWT 81.02 ± 3.77 81.51 ± 2.90 80.38 ± 4.47 69.42 ± 4.76 0.8775 ± 0.0332

NRs
LPQ 71.11 ± 3.17 70.03 ± 10.36 75.55 ± 13.97 56.53 ± 3.54 0.7403 ± 0.0667

DTCWT 74.44 ± 5.34 72.31 ± 7.29 78.17 ± 10.64 61.23 ± 5.75 0.7755 ± 0.0271

2.5. Comparison with SVM and KNN Classifier

Various machine learning algorithms have previously been used to identify DTIs [28,29].
To further evaluate the predictive capacity of our method, we used the same feature
descriptors in the SVM and KNN classifiers and compared the predictive performance
using the same four datasets. The main idea of the SVM algorithm is that it can perform
both linear classification and non-linear classification problems. KNN is a supervised
machine learning technique which can solve the classification task. The LIBSVM tool [30]
was used in this paper to train the SVM model. There are two parameters of SVM that
need to be optimized: c (penalty parameters) and g (kernel function parameters). The
parameters c and g from the SVM classifier were optimized by a grid search method, with c
values from 1 to 25 and g values from 0.1 to 5. In the experiments for the Enzyme and Ion
Channel datasets, we set c = 7, g = 0.2 and c = 3, g = 4, respectively. When exploring the
proposed method for the GPCRs and NRs datasets, we set c = 7, g = 1.3 and c = 23, g = 0.1,
respectively. The KNN model needs to choose the neighbor k and distance measuring
function. Here, we optimized K from 1 to 10 to train the KNN model. In this paper, K has
been set as 5 and the distance measuring function as L1.

Table 7 lists all the experimental results of RoF, SVM, and KNN models on the four
DTIs datasets. From these results, we can see that our method achieves better prediction
results than SVM- and KNN-based methods. For example, the AUC gaps between SVM
and RoF on the four datasets were 0.1486, 0.1587, 0.2123, and 0.1535, respectively. Similarly,
the ACC gaps between KNN and RoF were 8.68%, 6.47%, 17.16%, and 26.11%, respectively.
The ROC curves and comparison results yielded by the SVM and KNN models are shown
in the Supplementary Materials, Figures S1–S5.

Table 7. Comparing results from RoF with SVM and KNN models on the four datasets.

Dataset Model ACC. (%) PR. (%) Sen. (%) MCC (%) AUC

Enzyme
SVM 77.25 ± 0.73 79.84 ± 1.31 72.86 ± 2.45 64.67 ± 0.89 0.8012 ± 0.0191
KNN 80.53 ± 1.85 77.42 ± 2.20 86.06 ± 3.17 68.46 ± 2.17 0.8050 ± 0.0168
RoF 89.21 ± 0.69 90.77 ± 1.40 87.30 ± 1.62 80.73 ± 1.09 0.9498 ± 0.0059

Ion
Channel

SVM 71.08 ± 1.93 70.28 ± 1.56 73.21 ± 4.58 58.77 ± 1.61 0.7683 ± 0.0224
KNN 79.02 ± 2.28 75.11 ± 3.60 86.72 ± 3.89 66.41 ± 2.68 0.7901 ± 0.0204
RoF 85.49 ± 1.18 85.58 ± 1.32 85.40 ± 3.54 75.12 ± 1.73 0.9270 ± 0.0113

GPCRs
SVM 61.65 ± 2.44 62.26 ± 4.33 59.53 ± 1.50 52.72 ± 1.09 0.6652 ± 0.0252
KNN 63.86 ± 3.83 61.47 ± 3.05 74.65 ± 2.21 52.86 ± 2.61 0.6379 ± 0.0408
RoF 81.02 ± 3.77 81.51 ± 2.90 80.38 ± 4.47 69.42 ± 4.76 0.8775 ± 0.0332

NRs
SVM 62.22 ± 5.41 61.99 ± 11.70 60.90 ± 9.47 52.22 ± 3.51 0.6220 ± 0.0611
KNN 48.33 ± 6.97 48.65 ± 9.71 46.68 ± 2.26 49.58 ± 0.77 0.4775 ± 0.0728
RoF 74.44 ± 5.34 72.31 ± 7.29 78.17 ± 10.64 61.23 ± 5.75 0.7755 ± 0.0271
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2.6. Comparison with Different Methods on the Same Dataset

In recent years, many different kinds of excellent computational approaches have
been put forward to predict DTIs. To further confirm the effectiveness of our method,
we compared it with some previous prediction studies, which used the same benchmark
datasets, including Yamanishi et al. [31], KBMF2K [32], MLCLE [33], AM-PSSM [34],
SIMCOMP [35], DBSI [36], and NETCBP [37]. The average AUC values of these approaches
are summarized in Table 8. It can be observed that our method performed better than other
methods on the Enzyme, Ion Channel, and GPCRs datasets. However, it did not work very
well on he NRs dataset, perhaps because the NRs dataset was too small to optimally train
the RoF model.

Table 8. Comparison results of different approaches on the four datasets in terms of AUC values.

Method Enzyme GPCRs Ion Channel NRs

Yamanishi et al. 0.845 0.812 0.731 0.830

KBMF2K 0.832 0.857 0.799 0.824

MLCLE 0.842 0.850 0.795 0.790

AM-PSSM 0.843 0.839 0.722 0.767

SIMCOMP 0.863 0.867 0.776 0.856

DBSI 0.8075 0.8022 0.8029 0.7578

NETCBP 0.8251 0.8235 0.8034 0.8394

Our Method 0.9498 0.8775 0.9270 0.7755

2.7. Performance on the Independent Dataset

To demonstrate the generalizability of our model, we performed it on an independent
dataset. The Enzyme dataset was used as the training set and the Drugbank-approved
dataset was employed as the testing dataset. For fairness, we set the same parameters as
for the RoF model (K = 30, L = 17). When applying our model on the Drugbank-approved
dataset, it yielded a high accuracy of 72.37%, PR. of 69.23%, Sen. of 74.46%, MCC of 59.94%,
and AUC of 0.7833. The predictive results on the independent dataset further indicate that
our method is useful for predicting unknown DTI pairs.

3. Materials and Methods
3.1. Data Collection

In this work, we selected four DTI datasets: Enzyme, Ion Channel, GPCRs and Nuclear
Receptors (NRs). These data can be collected from BRENDA [38], KEGG [39], SuperTarget
database [40], and DrugBank [41]. The numbers of drug compounds, target proteins, and
known interactions are summarized in Table 9. We constructed a bipartite graph to present
the relations between drugs and proteins, where the nodes represent the target proteins
or drug compounds, and the links represent the interactions between them. Here, we
set the Ion Channel dataset as an example, for which the total number of interactions is
42840 (204 × 210) in the corresponding bipartite. However, only 1476 pairs have been
shown to have interactions. Thus, the possible number of negative Ion Channel DTI pairs
is 41364 (42840−1476), which is significantly more than the positive samples. To deal with
this bias problem, we randomly collectedly 1476 non-interacting DTI pairs as the negative
samples. The negative samples that we obtained from this method may contain some
truly interacting pairs. However, given the size of the DTI datasets, the probability of this
situation is very small.
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Table 9. Statistical data information for the five datasets.

Dataset Drug Target Protein Interactions

Enzyme 445 664 2926
Ion Channel 210 204 1476

NRs 54 26 90
GPCRs 223 95 635

Drugbank-approved 1555 1591 5831

We also used a dataset called Drugbank-approved [42] as the independent dataset to
further verify the predictive ability of our model. The drugs and proteins in this dataset
are all approved by the FDA and DrugBank database [41]. After removing the non-existing
drugs and proteins, we obtained 1555 drugs, 1591 target proteins, and 5831 interactions.

3.2. Characterization of Drug Molecules

From previous research, many descriptors have been proposed to represent the prop-
erties of drug molecules, such as the topological, geometric, constitutional, and quantum
chemical descriptors. Recently, some studies found that molecular substructure finger-
prints can be used to represent drug compound structures [43]. By encoding the drugs as
Boolean substructure vectors, the substructure fingerprints can directly indicate whether
each compound has a specific chemical substructure of the drug molecule. It proves that
after being separated into fragments, its substructure remains. In a binary fingerprint
vector, each bit position will correspond to a specific substructure. If the corresponding
substructure of a given drug molecule is present, the corresponding bit will be set to 1;
otherwise, it will be assigned to 0. In this way, the complex structures of drug molecules
can be represented by the substructure fingerprints. Although the fingerprint splits the
whole molecule into many fragments, it can still provide structural information for drug
molecules. Moreover, substructure fingerprints do not need 3D structural data for the
target, so it will not cause error accumulation.

The substructure fingerprint sets employed in this work were downloaded from the
PubChem System (available at https://pubchem.ncbi.nlm.nih.gov/, accessed on 4 June
2009). It defines 881 chemical substructures, which have each been assigned to a specific
site. Therefore, each drug molecule feature has been transformed into a binary vector of
881 dimensions.

3.3. Representation of Target Proteins

The position-specific scoring matrix (PSSM) [44] was proposed for testing the distantly
related proteins. In recent years, PSSM has been widely used for mining the evolutionary
information of protein sequences [45]. The PSSM is a P× 20 matrix. The number of amino
acids in the proteins is represented by P, and the naive amino acids are represented by
20 columns. Supposing L =, then the following is a summary of each matrix:

L =



ϕ1,1 ϕ1, 2 · · · ϕ1,j · · · ϕ1, 20
ϕ2,1 ϕ2, 2 · · · ϕ2,j · · · ϕ2, 20

...
...

...
...

ϕi,1 ϕi, 2 · · · ϕi,j · · · ϕi, 20
...

...
...

...
ϕp,1 ϕp, 2 · · · ϕp,j · · · ϕp, 20


(5)

where ϕi,j in the ith row of PSSM indicates the probability of the ith residue being mutated
into the jth native amino acid.

In this article, we used the position-specific iterated BLAST (PSI-BLAST) [46] tool,
which was against the database of SwissProt, to generate the PSSM for the purpose of
extracting evolutionary information. To obtain high homologous sequences, the expectation

https://pubchem.ncbi.nlm.nih.gov/
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value (e-value) was set to 0.001, the number of iterations was set to 3, and other parameters
were maintained as the default values [47]. The SwissProt database and PSI-BLAST can be
freely obtained from http://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 1 January 2001).

3.4. Feature Extraction Method

The dual-tree complex wavelet transform (DTCWT) [48] is an enhanced version of the
discrete wavelet transform (DWT) [49]. It was developed to help improve the directional
selectivity impaired by DWT. In addition, it compensates for the fact that DWT has a
large computation volume and high complexity. Unlike conventional DWT, DTCWT is
constructed by two real DWTs [50]. The first DWT is used to generate the real part of the
transform, while the second DWT generates the imaginary part.

The DTCWT addressed the disadvantages of DWT regarding shift-invariant problems
and directional selectivity in two or more dimensions. The directional selectivity of DTCWT
can be yielded by the wavelets, which are approximately analytic. It can produce six
directionally selective sub-bands (±15◦, ±45◦ and ±75◦), with (R) and (I) describing the
real and imaginary parts, respectively. The flowchart of the DTCWT algorithm is shown in
Figure 7. In the first stage, the filters can be denoted as hi(n) and gi(n). The first filter bank
can be represented by H(p)

new(ejw) and second filter bank can be represented by H′(p)
new (ejw).

In this way, we obtain the following corollary:
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Corollary 1. Suppose we have CQF pairs {h0(m), h1(m)}, {h0
′(m), h1

′(m)}, for p > 1.

H(p)
new(ejw) = H{H′(p)

new (ejw)} (6)

if and only if
h0
′(1)(m) = h(1)0 (m− 1) (7)

A 2D image F(a, b) is formed by 2D DTCWT over the complex scaling function and a series
of expansion and translation of six wavelet functions αθ

j,l , that is,

F(a, b) = ∑
l∈Z2

sj0,lφ j′0
l(a,b) + ∑

θ∈Θ
∑
j≥j0

∑
l∈Z2

cθ
j , lαθ

j , l(a,b) (8)

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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The directionality of the complex wavelet function is provided by θ ∈ Θ = {±15◦,±45◦,
±75◦}. That said, at each decomposition level, F(a, b) is decomposed by DTCWT into
a low-pass sub-band and six complex valued high-pass sub-bands, and each high-pass
sub-bands corresponds to a specific direction θ. In this experiment, after a PSSM matrix
was performed via DTCWT, each target protein sequence was defined as a 256-dimensional
feature vector.

3.5. Rotation Forest Classifier (RoF)

Rotation Forest (RoF) is an effective and powerful ensemble learning method which
was first proposed by Rodriguez [51]. The main contribution of RoF is to establish the
ensemble classifiers that can obtain a balance between diversity and accuracy. In this algo-
rithm, the attribute set of samples is first randomly divided, and each subset is transformed
by a linear transformation to increase the diversity of samples. Then, the transformed sub-
sets are fed into different decision trees, and the final classification results can be aggregated
from the votes of all trees in the forest.

Suppose that {qi, pi} contains T samples, of which qi = (qi1, qi2, qi3, · · · , qiL) is an
L-dimensional feature vector. Let Z represent the training sample set containing T training
samples, forming a matrix of T × L. Let U represent the feature set and M the label
set. Assume the number of decision trees is S, then the decision trees can be denoted as
D1, D2, D3, · · · , DS. The rotation forest algorithm is implemented as follows.

(1) Choose a suitable parameter M for which U can be randomly split into M disjointed
subsets, with the number of features contained in the feature subset being equal to
L/M.

(2) Let Ui,j represent the jth feature subset and use it to train the classifier Di. The sample
subset Z′i,j is constructed by a non-empty subset, which is randomly selected from a
certain proportion.

(3) Apply PCA [52] on Z′i,j to order the coefficients stored in matrix λi,j.
(4) The coefficients obtained from the matrix λi,j are used to construct a sparse rotation

matrix ϕi, which can be defined as follows:

ϕi =


a(1)i,1 , · · · , a(S1)

i,1 0 · · · 0

0 a(1)i,1 , · · · , a(S1)
i,1 · · · 0

· · ·
...

. . .
...

0 0 · · · a(1)i,1 , · · · , a(SM)
i,1

 (9)

During the prediction process, given a test sample g that is generated by the classifier
Di of Ri,j(Zϕa

i ), which is introduced to indicate that g belongs to class pi. Then, the class of
confidence is calculated via the average combination; the formula can be expressed follows:

Vj(g) =
1
S

S

∑
i=1

Ri,j(Zϕa
i ) (10)

Then, assign the category with the largest Vj(g) value to g.

4. Case Study

To further demonstrate the generality of the proposed method, we applied our method
on two real-life drug–target pairs; the drug was Flurbiprofen and two target proteins were
prostaglandin-endoperoxide synthase 1-type and inhibitor of nuclear factor kappa-B kinase subunit
epsilon. The lengths of the two proteins are 599 and 716, respectively. Our method predicted
that the drug Flurbiprofen would interact with the target protein prostaglandin-endoperoxide
synthase 1-type with a probability score of 0.96, and would not interacted with the target
protein inhibitor of nuclear factor kappa-B kinase subunit epsilon with a probability score of
0.08. The interacting drug–target pairs have been confirmed by the KEGG database. The
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experimental results of these two real-life drug–target pairs further indicates that the
proposed model is effective for predicting potential DTIs.

5. Conclusions

In this article, we developed a novel computational method for identifying DTIs using
information regarding target protein sequences and the substructure fingerprints of drug
molecules. It combines the position-specific scoring matrix (PSSM), dual-tree complex
wavelet transform (DTCWT), and Rotation Forest (RoF). In order to evaluate the prediction
performance of the proposed method, we performed tests on four datasets (Enzyme, Ion
Channel, GPCRs, and Nuclear Receptors) by adopting a 5-fold cross validation (CV). The
proposed approach obtained high average accuracies of 89.21%, 85.49%, 81.02%, and
74.44%, respectively. To verify the predictive capacity of our method, we compared it with
the SVM and KNN algorithms and some existing studies. The experimental results on the
independent dataset further demonstrated that our model can be used as a valuable tool
to predict potential drug–target interactions. In the future, we need to find more efficient
feature extraction methods and reduce the computational complexity for DTI prediction.

Supplementary Materials: The following are available online, Table S1: 5-fold CV results achieved
by LPQ-based method on Enzyme dataset, Table S2: 5-fold CV results achieved by LPQ-based
method on Ion Channel dataset, Table S3: 5-fold CV results achieved by LPQ-based method on
GPCRs dataset, Table S4: 5-fold CV results achieved by LPQ-based method on Nuclear Receptor
dataset, Figure S1: Performance comparisons of five validation metrics for three models: RF (blue
bar), SVM (green bar) and KNN (yellow bar). (a) Accuracy. (b) Precision. (c) MCC. (d) AUC, Figure
S2: The ROC curves achieved on the Enzyme dataset (5-fold CV). (a) is the ROC curves generated by
SVM model. (b) is the ROC curves generated by KNN classifier, Figure S3: The ROC curves achieved
on the Ion Channel dataset (5-fold CV). (a) is the ROC curves generated by SVM model. (b) is the
ROC curves generated by KNN classifier, Figure S4: The ROC curves achieved on the GPCRs dataset
(5-fold CV). (a) is the ROC curves generated by SVM model. (b) is the ROC curves generated by
KNN classifier, Figure S5: The ROC curves achieved on the Nuclear Receptors dataset (5-fold CV). (a)
is the ROC curves of SVM model. (b) is the ROC curves of KNN classifier.
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