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Abstract: Idiopathic pulmonary fibrosis is an etiologically complex interstitial lung disease 
characterized by progressive scarring of the lungs with a subsequent decline in lung function. 
While much of the pathogenesis of IPF still remains unclear, it is now understood that 
genetic variation accounts for at least one-third of the risk of developing the disease. The 
single-most validated and most significant risk factor, genetic or otherwise, is a gain-of- 
function promoter variant in the MUC5B gene. While the functional impact of these IPF risk 
variants at the cellular and tissue levels are areas of active investigation, there is a growing 
body of evidence that these genetic variants may influence disease pathogenesis through 
modulation of innate immune processes. 
Keywords: pulmonary fibrosis, interstitial lung disease, genetics, MUC5B, host defense, 
innate immunity

Introduction
Idiopathic pulmonary fibrosis (IPF) is an etiologically complex interstitial lung 
disease (ILD) characterized by progressive lung scarring with a subsequent decline 
in function.1 There have been major efforts over the past decade investigating IPF 
which have resulted in a more specific classification of the disease2 and the 
approval of two disease-specific agents, pirfenidone3 and nintedanib;4 however, 
IPF diagnosis remains challenging and disease prognosis remains poor even with 
pharmacologic intervention.

While the pathogenesis of IPF remains an area of active investigation, it is 
generally accepted that disease pathobiology results from repeated injury to the 
airway and alveolar epithelia. These injuries result in an exaggerated and cyclical 
repair response with subsequent hallmark fibroblast activation and matrix 
deposition.5–7 It is also now well understood that genetic susceptibility in addition 
to environmental risk factors, including cigarette smoking, has a major contribution 
to the risk of developing IPF.8–10 Indeed, the single-most validated and strongest 
risk factor for IPF, genetic or otherwise, is the single nucleotide polymorphism 
rs35705950 in the promoter region of the mucin 5B (MUC5B) gene.11–21

What remains more debated in IPF pathogenesis are the roles of inflammation and 
immune-driven mechanisms. Initially, IPF was thought to be a disease primarily 
driven by chronic inflammation similar to other immunologic or autoimmune lung 
diseases. With accumulating evidence that immunomodulatory therapies were inef-
fective and potentially harmful in the treatment of IPF,22 this viewpoint gradually 
shifted towards the model of aberrant tissue repair that is currently more accepted. 

Correspondence: David A Schwartz  
University of Colorado School of 
Medicine, 12631 East 17th Avenue, B178, 
Aurora, CO 80045, USA  
Tel +1 303-724-1783  
Fax +1 303-724-1799  
Email david.schwartz@ucdenver.edu

submit your manuscript | www.dovepress.com Journal of Inflammation Research 2020:13 1305–1318                                                     1305

http://doi.org/10.2147/JIR.S280958 

DovePress © 2020 Michalski and Schwartz. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress. 
com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By 

accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly 
attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Journal of Inflammation Research                                                         Dovepress
open access to scientific and medical research

Open Access Full Text Article

mailto:david.schwartz@ucdenver.edu
http://www.dovepress.com
https://www.facebook.com/DoveMedicalPress/
https://twitter.com/dovepress
https://www.linkedin.com/company/dove-medical-press
https://www.youtube.com/user/dovepress
http://www.dovepress.com/permissions.php
http://www.dovepress.com


However, there is emerging evidence that innate and adap-
tive immune processes may also contribute to pulmonary 
fibrogenesis.23–27 Understanding the interface between 
immunologic dysfunction and known genetic risk variants 
may deepen the understanding of the complexity of IPF.

In this review, we provide a brief overview of the 
intrinsic immune mechanism in the distal airway. We 
describe how MUC5B and other genetic risk variants for 
IPF may modulate host defense and innate immune 
mechanisms towards furthering IPF pathology.

Host Defense and Innate Immunity 
in the Airway
The human airway is constantly faced with threats in the 
way of inhaled pathogens and particles and thus has evolved 
a multilayered set of primary innate defenses28 (Figure 1).

Mucus Barrier
The mucus barrier is a viscoelastic gel layer designed to trap 
and remove offending agents and is composed of water, salts, 
and macromolecules held together by membrane-bound and 
secreted glycoproteins called mucins.29 Airway mucins are 
secreted onto the apical surface of the epithelial layer by 
secretory cells, and through the coordinated beating of cilia 
on multi-ciliated airway cells, the mucus layer and trapped 
pathogens are swept proximally until ultimately being cleared 

from the airway.30,31 This process of mucociliary clearance 
(MCC) requires precise regulation of factors including mucin 
production, mucus composition, and coordinated ciliary 
movements in order to maintain effective defense.

Additionally, airway cells secrete products with antimi-
crobial properties,32 such as lactoferrin, lysozyme, defensins, 
and surfactant proteins, into the lumen which remain in the 
mucus layer to combat potential pathogens during clearance.

Epithelial Barrier
Beneath the mucus barrier, the airway and alveolar epithelial 
cells themselves participate in the innate airway defense by 
forming a physical barrier against harmful external 
substances.33 The epithelial layer accomplishes this selective 
permeability through the expression and regulation of multi-
ple cell-cell adhesion complexes.33–35 Tight junctions are 
composed of claudins and occludins and are most involved 
in preventing paracellular passage of luminal material. 
Adherens junctions and desmosomes are involved in linking 
the actin cytoskeleton and intermediate filaments, respec-
tively, on neighboring cells allowing the epithelium to remain 
intact. Loss or dysregulation of any of these complexes can 
result in disintegrity of the protective epithelial barrier.

In addition to serving as a physical barrier, epithelial 
cells are closely involved in the innate response through 
recognition of uncleared pathogens via the expression of 

Figure 1 Innate immune and host defense mechanisms in the distal airway and alveolus are multi-tiered.
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pattern recognition receptors (PRRs).28,36–39 These PRRs, 
including Toll-like receptors (TLRs), are involved in sur-
veying the environment for the presence of pathogens or 
dying cells by binding so-called pathogen-associated 
molecular patterns (PAMPs) or damage-associated mole-
cular patterns (DAMPs) respectively. This vast diversity of 
PRRs allows the lung to recognize and differentially 
respond to innumerous environmental cues.

Macrophages and Immune Cell 
Recruitment
Macrophages are the most predominant immune cells in the 
healthy lung and organize immune defense through a variety 
of mechanisms including direct antimicrobial and phagocytic 
activity.38–40 Like other macrophage populations, AMs are 
traditionally classified as one of the two phenotypic states, 
classically activated (M1 macrophages) and alternatively 
activated (M2 macrophages), which are a result of their 
exposure to a milieu of cytokines, growth factors, and other 
signals. M1 macrophages are polarized by Th1 pro- 
inflammatory cytokines (TNF, IL-2, IFN-γ) and generally 
induce further inflammatory cytokine signaling and immune 
cell recruitment. M2 macrophages are induced by Th2 cyto-
kines (IL-4, IL-5, IL-13) and are thought to have anti- 
inflammatory characteristics seen in chronic repair processes. 
AMs serve as scavengers in the airways that endocytose 
inhaled particles, cellular debris, and pathogens that cannot 
be cleared by the mucociliary escalator. AMs then play 
a major role in coordinating the subsequent immune response 
through the secretion of cytokines and chemokines to differ-
entially activate or recruit immune cells. Additionally, AMs 
can bridge innate and adaptive responses through their role as 
antigen-presenting cells in the lung periphery.

Genetic Variants Associated with 
IPF
Numerous familial studies and several larger genome-wide 
linkage and association studies have identified rare and 
common genetic variants associated with both familial inter-
stitial pneumonia (FIP), which is characterized by familial 
clustering of IPF, and sporadic IPF risk (Table 1). These 
variants include the single nucleotide polymorphism (SNP) 
in the MUC5B gene11–17,19–21 described in detail below as 
well as genes related to innate immune function (TOLLIP, 
TLR3, IL1RN, IL8, TGFB1), and epithelial barrier function 
(DSP, DPP9). Additional gene ontologies represented in 
those identified variants include telomere maintenance 

(TERT, TERC, OBFC1, TINF2, DKC1, RTEL1, PARN), 
surfactant production (SFTPC, SFTPA2, ABCA3), and cell 
cycle regulation (KIF15, MAD1L1, CDKN1A).

MUC5B Promoter Variant
The rs35705950 variant in the promoter region of the mucin 
5B (MUC5B) gene was first identified in a 2011 genome- 
wide linkage study and is associated with an approximately 
7-fold increased risk of developing IPF.11 Since then this 
MUC5B variant has been validated in multiple independent 
studies and is still considered to be the most significant risk, 
genetic or otherwise, for IPF.12–17,19–21 In addition to its 
being the strongest risk factor for disease, the rs35705950 
risk allele is also strikingly common in both healthy and IPF 
populations (mean allele frequency of 9% and 38%, respec-
tively). Interestingly, IPF patients who are heterozygous car-
riers of the minor allele have been reported to have 
a paradoxical survival benefit compared to noncarriers,41,42 

although this result has not been unanimously confirmed.43,44 

In other ILD populations, the rs35705950 variant has also 
been demonstrated to confer worse survival in interstitial 
pneumonia with autoimmune features45 and a trend towards 
worse survival in connective tissue disease associated-ILD45 

and chronic hypersensitivity pneumonitis.46 The interplay 
between MUC5B variant and transplant-free survival across 
ILDs and how these differences are specific to the IPF- 
related disease processes remains to be investigated.

The minor, disease-associated T allele at rs35705950 is 
a gain-of-function variant has been suggested to drive differ-
ential methylation of and transcription factor binding to the 
MUC5B leading to increased MUC5B expression.11,47 

Interestingly, this variant-dependent increase in MUC5B 
production has been demonstrated to be specific to IPF48 

and localized to the distal airway regions including terminal 
airways49,50 and honeycomb cysts,51 which are thought to be 
the end result of chronic airway. Examining the influences of 
a multitude of factors, including epigenetic and environmen-
tal factors, on the rs35705950 variant and MUC5B expres-
sion continues to be a focus of ongoing studies.

Relationship Between Genetic 
Variants and IPF 
Immunopathogenesis
Altered Mucociliary Clearance and Host 
Defense
As one of the two human primary mucins secreted in the 
airway, along with mucin 5AC (MUC5AC), MUC5B 
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plays a critical role in maintaining effective mucociliary 
clearance (MCC) which serves in removing inhaled debris 
and pathogens.29,52,53 Effective MCC involves the coordi-
nated actions of mucus secretion and ciliary beating. This 
process is critical for the maintenance of normal lung 

physiology by acting as the first-line innate defense 
mechanism in the airway. MCC dysfunction is seen in 
many chronic lung diseases including chronic obstructive 
pulmonary disease (COPD),54,55 cystic fibrosis (CF),55–57 

and asthma.52

Table 1 Common and Rare Genetic Variants Associated with IPF

Common variants associated with IPF Gene Function Gene Risk Allele(s) Reference(s)

Airway mucin 

production

MUC5B rs35705950 [11–17,19–21]

MUC2 rs7934606 [13,20]

Cell-cell adhesion DSP rs2076295 [13,20,21,67]

DPP9 rs12610495 [13,20,21]

Toll-like receptor 
signaling

TOLLIP rs111521887, rs5743894 
rs2743890

[13,14]

TLR3 rs3775291 (L412F) [97]

ATP11A rs1278769 [13,20,21]

Cytokine/growth 

factor signaling

IL1RN VNTR*2 haplotype block [89]

IL8 rs4073, rs2227307 [124]

IL4 rs2243250 [125,126]

TGFB1 rs1800470 [127]

Telomere maintenance TERT rs2736100 [13,20,21,128]

OBFC1 rs11191865 [13]

Cell cycle regulation KIF15 rs78238620 [21]

MAD1L1 rs12699415 [21]

CDKN1A rs2395655 [129]

TP53 rs12951053, rs12602273 [129]

Rare variants associated with IPF Gene Function Gene Mutation(s) Reference(s)

Surfactant production/ 
secretion

SFTPA1 T622C, W211R [113,114]

SFTPA2 G231V, F198S [115]

SFTPC I73T, M71V, multiple others [130,131]

ABCA3 S1261G, R288K [132]

Telomere maintenance TERT L55Q, R901W, T1110M, multiple 

others

[133–135]

TERC 98G>A, 37A>G, multiple others [133–135]

TINF2 K280E, R282H, R282S [136]

DKC1 T405A, multiple others [137]

RTEL1 R213W, T49M, F964L [138,139]

PARN A383V, multiple others [140]
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Genetic manipulation of Muc5b expression in mice has 
revealed pathologic consequences of both deficient and 
excessive Muc5b in the airways. Complete knockout of 
Muc5b in mice (Muc5b−/-) results in impaired MCC and 
chronic lower respiratory infections. Muc5b−/- mice also 
demonstrate dramatic changes in resident alveolar macro-
phage (AM) populations with increased AM apoptosis, 
reduced activation, and impaired phagocytosis.53 

Conversely, transgenic Muc5b overexpression, specifically 
when localized to the distal airway, results in diminished 
MCC and enhanced fibrosis after intra-tracheal bleomycin 
instillation.58 Collectively these results demonstrate that 
host defense and MCC rely on the well-regulated expres-
sion of MUC5B and that disturbances can lead to significant 
pathologic sequela including increased fibroproliferative 
responses to injury.

As the rs35705950 SNP leads to increases in MUC5B 
accumulation and presumably mucociliary stasis, this 
could result in chronic exposure of the distal airway to 
inhaled particles and pathogens. Environmental and occu-
pational factors including cigarette smoke, silica, and 
metal dusts have repeatedly been shown to be associated 
with IPF and other ILDs strongly suggesting that repeated 
exposure of the airway to inhaled particles is implicated in 
fibrotic lung diseases.59–61 In genetically susceptible indi-
viduals with impaired MCC, it might be expected that 
exposure to inhaled pro-fibrotic particles could have an 
even more drastic effect in initiating epithelial cell injury 
and the fibroproliferative response.

In addition to the clearance of particulate matter, 
MCC is essential for effectively removing pathogens 
from distal airspaces. Recent evidence has implicated 
the lung microbiome in IPF pathogenesis.62–64 Lung 
dysbiosis characterized by increased bacterial burden 
and loss of microbiotic diversity has been reported in 
bronchoalveolar lavage (BAL) specimens from both IPF 
patients and bleomycin-treated mice.62,64,65 Interestingly, 
IPF patients with the MUC5B variant had a lower bac-
terial burden than noncarriers. This may in part help to 
explain the paradoxical survival benefit that MUC5B 
variant carriers have, as a bacterial burden has been 
shown to have an independent correlation with mortality 
in IPF patients.66

Disrupted Epithelial Barrier Function
In conjunction with the mucous layer, the airway and 
alveolar epithelial cells themselves serve as a key 
defense mechanism in the lung by forming a protective 

barrier from luminal pathogens, cellular debris, and 
inhaled particles.

A 2013 genome-wide association study (GWAS) iden-
tified variants in two cell-cell adhesion-related genes, DSP 
(desmoplakin) and DPP9 (dipeptidyl peptidase 9), asso-
ciated with IPF.13 The DSP variant rs2076395 has been 
further shown to cause a reduction in desmoplakin expres-
sion in epithelial cells.67,68 Furthermore, complete knock-
out of DSP in an airway epithelial cell line was associated 
with impaired epithelial barrier function and an aberrantly 
increased wound repair response.68

While the in vivo consequences of DSP loss are areas 
of active investigation, loss-of-function mutations in 
other desmosomal genes including DSG1 have been 
shown to upregulate NF-κB signaling with increased 
production of pro-inflammatory cytokines and phagocyte 
recruitment.69 Cytokines including IL-1β, IL-6, and IL-8, 
which are produced by both injured epithelial cells and 
activated alveolar macrophages, have been shown to 
further disrupt epithelial barrier integrity potentiating 
this process of cyclic damage.70,71 Additionally, as the 
epithelial layer loses its ability to maintain a barrier either 
through genetic predisposition or inflammatory signals, 
innate immune receptors that are normally localized to 
the protected basolateral membrane, such as TLR2 and 
TLR6, are exposed to PAMPs and DAMPs.72 Active 
TLR2 signaling in mouse airway cells has been shown 
to induce TGF-β expression, which is the most well- 
studied pro-fibrotic mediator.73

Collectively, these associations between epithelial dis-
integrity as a consequence of genetic variants and the pro- 
inflammatory and fibroproliferative environment created 
by impaired epithelial barriers could reveal important 
insights into IPF pathobiology.

Autoinflammatory Toll-Like Receptor 
Family Signaling
As a link between innate and adaptive immune responses, 
TLR signaling dysregulation has been described in IPF 
patients74,75 though the exact contribution of these signal-
ing cascades to the fibroproliferative response remains 
mostly undefined.

In humans, 10 functional TLRs have been identified 
which have distinct receptor-ligand associations.76 TLRs 
are either localized to the cell membrane (TLR1, 2, 4, 5, 6) 
or endosomal compartments (TLR3, 7, 8, 9) in order to 
recognize various extracellular and intracellular signals, 
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respectively. The majority of TLRs signaling through 
a MyD88-dependent pathway with the ultimate result of 
NF-κB activation and proinflammatory cytokine gene tran-
scription. TLR3 signaling, as well as alternative TLR4 
signaling, occurs through a MyD88-independent mechan-
ism whereby recruitment of TRIF subsequently leads to 
transcription of type I interferon (IFN) genes by IRF3 or 
IRF7.76

The genetic risk variants affecting TLR family signal-
ing which are associated with IPF are described below 
(Figure 2).

Pro-Fibrotic TLR Signaling
A 2013 genome-wide association study (GWAS) identified 
three common variants (rs111521887, rs5743894, rs574389) 
in the Toll-interacting protein (TOLLIP) gene which were 
associated with IPF and one of which (rs5743894) is asso-
ciated with decreased risk of IPF but increased mortality in 
those with the disease.14 Expression of TOLLIP occurs pri-
marily in lung macrophages and epithelial cells,77 and each 

of these variants is associated with a 20–50% reduction in 
TOLLIP mRNA expression.14 Since TOLLIP and MUC5B 
are adjacent genes at the chromosome 11p15.5 region, there 
has been conflicting evidence as to whether variants in these 
are in linkage disequilibrium or provide independent associa-
tions with IPF.20,21 Regardless, TOLLIP has been shown to 
suppress TLR activation, particularly TLR2 and TLR4, by 
inhibiting IL-1 receptor-associated kinase (IRAK) 
phosphorylation.77–80 Both TLR2 and TLR4 activation 
occur in response to many different microbial signals and 
have been shown to be elevated in IPF epithelia, possibly due 
to chronic exposure to pathogenic microbes.81 Reduced 
TOLLIP expression has been shown to increase pro- 
inflammatory cytokine (IL-6 and TNF) production by macro-
phages after TLR stimulation.79 TOLLIP induces the produc-
tion of IL-10,80 which has protective effects against 
a bleomycin-induced fibrosis model in mice via TLR4- 
dependent signaling.82 Additionally, TOLLIP antagonizes 
TGF-β signaling by degrading TGF-β1 receptors through 

Figure 2 Genetic variants disrupt TLR/IL-1R family signaling in IPF.
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SMAD7-dependent interactions.83 Together, these data sug-
gest that TOLLIP expression may be protective against IPF 
through dampening of pro-inflammatory, pro-fibrotic 
cascades.

While less functionally defined, the rs1278769 variant 
in ATP11A identified in the 2013 GWAS may impact 
TLR4 signaling.13 ATP11A codes for a phospholipid flip-
pase and has been shown to enhance MyD88-dependent 
NF-kB activation and production of proinflammatory cyto-
kines through inhibition of TLR4 endocytosis.84 It remains 
unclear if this IPF-associated variant enhances this signal-
ing cascade.

While not specifically associated with any genetic var-
iant, dysregulated TLR9 activation drives fibroblast-to- 
myofibroblast differentiation and has been associated 
with a more aggressive IPF phenotype.85 TLR9 recognizes 
hypomethylated CpG nucleotides typically from microbial 
genomic material.76,86 As mitochondrial DNA released 
from injured cells is also recognized through TLR9, it is 
possible that cell injury and non-apoptotic cell death that is 
seen in the IPF distal airway could also be a potent driver 
of TLR9-mediated fibrosis. Understanding the full extent 
of these associations between irregular TLR signaling and 
etiology and progression of IPF will undoubtedly be pivo-
tal in understanding the overlap between innate immunity 
and fibroproliferation.

The IL-1 receptor (IL-1R) is a member of the same 
receptor family as TLRs with a shared intracellular Toll/IL- 
1R (TIR) domain that activates MyD88-dependent 
signaling.87,88 IL-1R is activated by multiple ligands, of 
which IL-1α and IL-1β are the best studied, and competi-
tively inhibited by IL-1 receptor antagonist (IL-1Ra). While 
several variants in the IL-1Ra (IL1RN) gene have been 
investigated, the most convincing evidence from a meta- 
analysis demonstrated that a haplotype block of a variable 
number tandem repeat (VNTR*2) and two minor alleles 
(rs408392 and rs419598) in IL1RN gene was significantly 
associated with IPF disease.89 These risk alleles result in 
a reduction in IL-1Ra expression, leading to unrestricted 
IL-1R activation in airway/alveolar epithelial cells and innate 
immune cells. IL-1R signaling has a well-established role in 
animal models of pulmonary fibrosis with adenoviral- 
mediated IL-1β overexpression being used as 
a comparative model to the traditional bleomycin model.90 

Alveolar macrophages from IPF patients have an elevated 
IL-1β:IL-1Ra ratio indicative of this proinflammatory state.91 

Both genetic and pharmacologic targeting of the IL-1R/ 

MyD88 axis has been shown to attenuate fibrosis in bleomy-
cin- and silica-induced fibrosis.92,93

Many of these overactive TLR signaling pathways, 
including TLR2 and TLR4, are directly responsive to 
both nonpathogenic and pathogenic bacterial signals. As 
discussed previously, dysregulation of commensal bacter-
ial populations has been suspected to play a contributing 
role in IPF pathogenesis.62–64,66 TLR-dependent signaling 
has been shown across multiple systems to tightly main-
tain homeostasis between host and commensal organisms, 
and disruption of these signaling pathways can drive dis-
ease processes.94,95 In the mouse lung, in particular, it has 
been demonstrated that dysregulation of commensal bac-
terial populations can promote fibrosis through TLR2- and 
TLR4-dependent production of IL-17B; however, this pro- 
fibrotic phenotype can be diminished through genetic abla-
tion of these pathways.96 The full spectrum of these rela-
tionships between pathogen-induced TLR signaling 
remains unstudied in the context of pulmonary fibrosis.

Taken together these genetic variants along with the 
general environment in the IPF distal airway may create 
a pro-inflammatory environment that disrupts the normal 
homeostasis necessary for repair through hyper- 
responsiveness to small chronic insults.

Anti-Fibrotic TLR Signaling
A loss-of-function variant in the TLR3 gene (L412F) has 
been associated with more rapid lung function decline and 
greater mortality in IPF patients.97 This variant was shown 
to increase human lung fibroblast proliferation and resis-
tance to apoptosis in culture. Additionally, a TLR3- 
knockout mouse (TLR3-/-) model of pulmonary fibrosis 
demonstrated an increase in TGF-β and pro-inflammatory 
cytokine production.

A TLR3-related gene ELMOD2 has also been identified 
as a potential candidate gene in FIP and IPF pathobiology 
with decreased gene and protein expression seen in alveo-
lar epithelial tissue and pulmonary macrophages in IPF 
patients.98,99 ELMOD2 is necessary for TLR3 signal trans-
duction with targeted knockdown of ELMOD2 resulting in 
a decreased IFN-dependent response.99 IFNs have been 
shown to have strong anti-fibrotic characteristics in animal 
models,100 yet these results have not been observed in 
patients with established IPF,101 thus suggesting their 
role in affecting the initiation of the fibrotic cascade rather 
than reversing established fibrosis.

TLR3 is classically associated as a receptor for viral 
dsRNA, and conflicting evidence exists as to the role of 
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viral infections, including Epstein-Barr virus (EBV),102,103 

herpes simplex virus 1 (HSV-1),104 and cytomegalovirus 
(CMV)105 as a contributing source driving the progressive 
fibrosis. A multitude of viruses have been shown to 
increase fibroproliferative responses both in vitro and 
in vivo models, particularly in the setting of absent IFN- 
dependent responses.106–110 Therefore, viral-related TLR 
signaling likely acts as a blockade to fibroproliferation, 
and underlying TL3-signaling deficiencies could prime 
the airway for deficient responses to viral pathogens prim-
ing the distal lung for chronic injury-repair cycles that are 
thought to be central to IPF pathology.

Surfactant Protein Changes
Pulmonary surfactant is a phospholipid-rich substrate pro-
duced in the distal airway and alveolus which provides 
essential roles in preventing alveolar collapse and host 
defense.111,112 Approximately 10% of surfactant is com-
posed of surfactant proteins which are produced and 
secreted by alveolar epithelial type II (AE2) cells and 
terminal airway secretory cells. Of the four surfactant 
proteins, surfactant proteins A (SP-A) and D (SP-D) are 
members of a specific family of innate immune protein 
termed collectins, named for calcium-binding C-terminal 
lectin domain that recognizes motifs on microbial 
surfaces.111,112 SP-A and SP-D have both been shown to 
opsonize common bacterial and viral pathogens and 
enhance phagocytic-killing by innate immune cells includ-
ing macrophages and neutrophils.

Rare variants in the two adjacent SP-A coding genes, 
SFTPA1 and SFTPA2, have been described in several cases 
of FIP.113–115 While the role that these and other surfac-
tant-related variants play in contribution to sporadic IPF 
remains less clear, IPF patients have been reported to have 
reduced BAL concentrations of SP-A compared to healthy 
patients, and SP-A levels are inversely correlated with 
survival.116,117 Mice deficient in SP-A (SP-A−/-) show 
dramatically decreased bacterial clearance, impaired 
macrophage phagocytosis, and increased production of 
pro-inflammatory cytokines IL-1β, IL-6, and TNF which 
are also associated with fibroblast activation.118 SP-A−/- 

mice have also increased mortality and collagen deposition 
after induction of fibrosis with intratracheal bleomycin, 
suggesting a direct link between the pro-inflammatory 
state created by SP-A deficiency and subsequent fibropro-
liferative remodeling.119 Additionally, it has been shown 
that an FIP-associated loss-of-function mutation in 
SFTPA1 leads to increased necroptosis in AE2 cells in 

mice.113 Necroptotic cell death leads to the release of 
highly immunogenic intracellular proteins and has been 
increasingly been implicated in IPF pathogenesis.120,121 

Treatment of mice with exogenous SP-A has been shown 
to reduce the expression of Th2 cytokines including IL-4 
and IL-5, which are involved in chronic tissue repair 
responses and are linked to the development of 
fibrosis.122,123 Taken together these findings suggest that 
the defective host defense and highly inflammatory state 
created by a lack of SP-A, either due to SPFTA2 variants 
or generally in IPF, may directly contribute to pro-fibrotic 
environment in the alveolar space.

Other rare variants in surfactant-related genes, includ-
ing genes encoding surfactant protein C (SFTPC) and 
surfactant transporters (ABCA3), are linked to FIP and 
IPF and are extensively reviewed elsewhere.9,10

MUC5B has been shown to be present at increased 
levels in the distal airway in IPF patients and at even 
more significant levels with the presence of the 
rs35705950 variant. Additionally, it has been reported 
that MUC5B is co-expressed with other surfactant proteins 
in AE2 cells to some degree in IPF lungs.58 These data 
suggest that mucin-surfactant mixing is nearly inevitable 
in the IPF alveolus, and consequently may interfere with 
the normal antimicrobial effects of SP-A and SP-D. 
Furthermore, as MUC5B expression has been shown to 
occur in both surfactant-producing cell populations in the 
airway, AE2 cells and club cells, it remains unexplored 
whether the MUC5B variant negatively impacts the ability 
of these cells to produce surfactant proteins leaving the 
airway more susceptible to pathogen-related damage.

Summary
Our working model of IPF pathogenesis involves chronic 
epithelial injury in the terminal airway which ultimately 
leads to an uncontrolled response that overwhelms the 
repair mechanisms of the distal lung. The interplay 
between inflammation, immune mechanisms, and this 
aberrant cascade of epithelial–mesenchymal crosstalk 
remains elusive, yet genetic variants clearly suggest 
a role of impaired innate defense in this process. While 
innate immune responses are a critical component to the 
lung’s defense against offending agents and some level of 
the inflammatory response is necessary for many repair 
mechanisms, these processes need to be tightly regulated 
in order to restore the lung to homeostatic conditions. We 
suggest that these genetic variants associated with IPF 
which cause mucociliary dysfunction, impaired removal 
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of pathogenic substances, and persistent inflammatory sig-
naling create an environment in which proper repair 
becomes impossible (Figure 3).

Genetic variants, such as the rs35705950 MUC5B 
variant, almost certainly interplay with other features 
of IPF pathobiology aside from impacts on innate host 
defense including distal airway cell homeostasis and 
repair, yet these exact relationships continued to be 
explored and are outside of the scope of this review. 
Additionally, studying the interactions between these 
genetic variants and both other genetic and environ-
mental factors remains a key step in understanding IPF. 
Importantly, little is understood about the impact these 
genetic risk variants have on each other and how the 

presence of multiple genetic variants influences disease 
pathogenesis.

Together, our current understanding of IPF as a disease 
driven by environment injuries to a genetically susceptible 
lung raises the possible role of clinical genetic testing. 
While there are no current recommendations for the role 
of genome sequencing for sporadic IPF patients, further 
research into the relationship that genetic variants play on 
clinical outcomes is certainly necessary.
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Figure 3 Genetic-driven innate immunity changes contribute to IPF pathogenesis.
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