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Genetic manipulation of teleost endocrine systems started with transgenic

overexpression of pituitary growth hormone. Such strategies enhance growth and

reduce fertility, but the fish still breed. Genome editing using transcription activator-like

effector nuclease in zebrafish and medaka has established the role of follicle stimulating

hormone for gonadal development and luteinizing hormone for ovulation. Attempts

to genetically manipulate the hypophysiotropic neuropeptidergic systems have been

less successful. Overexpression of a gonadotropin-releasing hormone (gnrh) antisense

in common carp delays puberty but does not block reproduction. Knockout of Gnrh

in zebrafish does not impact either sex, while in medaka this blocks ovulation in

females without affecting males. Spawning success is not reduced by knockout of the

kisspeptins and receptors, agouti-related protein, agouti signaling peptide or spexin.

Hypotheses for the lack of effect of these genome edits are presented. Over evolutionary

time, teleosts have lost the median eminence typical of mammals. There is consequently

direct innervation of gonadotrophs, with the possibility of independent regulation by

>20 neurohormones. Removal of a few may have minimal impact. Neuropeptide

knockout could leave co-expressed stimulators of gonadotropins functionally intact.

Genetic compensation in response to loss of protein function may maintain sufficient

reproduction. The species differences in hypothalamo-hypophysial anatomy could be

an example of compensation over the evolutionary timescale as teleosts diversified and

adapted to new ecological niches. The key neuropeptidergic systems controlling teleost

reproduction remain to be uncovered. Classical neurotransmitters are also regulators

of luteinizing hormone release, but have yet to be targeted by genome editing. Their

essentiality for reproduction should also be explored.
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reproduction
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INTRODUCTION

The first transgenic teleosts were goldfish engineered to
express human growth hormone (Gh1; Zhu et al., 1985).
Overexpression of Gh disrupts reproduction in fishes, but it
does not inhibit it completely. For example, some male Gh-
transgenic tilapia have lower levels of sperm production while
the females have significantly lower ovarian size (Rahman et al.,
1998, 2001). Common carp overexpressing Gh have enhanced
growth but have delayed gonadal development (Cao et al., 2014).
Coho salmon transgenic for Gh also have reduced reproductive
success, but they can spawn with wild fish (Leggatt et al.,
2014). This presents a challenge for the aquaculture industry and
environmental regulators concerned with the potential effects
of genetically-modified organisms on native populations. The
search for strategies to produce fast-growing fish that do not
reproduce remains a significant challenge.

Attempts to manipulate follicle stimulating hormone (Fsh)
and luteinizing hormone (Lh) are yielding interesting results.
Wei Ge’s group has used transcription activator-like effector
nuclease (TALEN) to delete gonadotropin β subunits. Both
female and male fshb-deficient zebrafish were fertile, but both
ovarian and testicular development were delayed. In contrast,
lhb-deficient zebrafish showed normal gonadal growth, but
the females failed to spawn. By analysis of sex ratios and
the histological presence of intersex individuals, this group
also showed that Fsh may play a role in maintaining female
status, probably through regulation of ovarian aromatase (Zhang
et al., 2015b). Both supportive and contradictory evidence
was obtained when they disrupted gonadotropin receptor
expression (Zhang et al., 2015a). Neither Fshr nor Lhcgr
deficiency mimicked deficiencies of their ligands. This is likely
due to the fact that zebrafish Fshr can be activated by
both the Fsh and Lh proteins. They found that Fshr was
indispensable to folliculogenesis and the disruption of the fshr
gene resulted in a complete failure of follicle activation, followed
by masculinization of females into males. In contrast, Lhcgr
does not seem to be essential to zebrafish reproduction in both
sexes. It has long been known that teleost Fsh (formerly called
gonadotropin-I) and Lh (gonadotropin-II) are more similar

to each other than are the 2 tetrapod gonadotropins (Levavi-
Sivan et al., 2010). TALENs have been employed to disrupt
gonadotropin β subunit expression in medaka (Takahashi et al.,
2016). Female homozygotes for fshb and lhb null fish were
infertile but males were fertile. They established that Fshb is
required for gonadal development, whereas Lhb is required for
final gonadal maturation and is essential for ovulation inmedaka.

Such successes with pituitary hormones have not been
mirrored in the attempts to manipulate the neuropeptidergic
systems. Here, I present key developments and several
hypotheses about why neuropeptide knockouts have thus
far not completely inhibited reproduction in adult teleosts.

1In this review the zebrafish gene/protein nomenclature is followed for convenience.

See: https://wiki.zfin.org/display/general/ZFIN+Zebrafish+Nomenclature+

Conventions.

KNOCKOUT OF GNRH DOES NOT INHIBIT
REPRODUCTION

Following the isolation of neuropeptides in the 1970s, it was
quickly established that exogenous mammalian Gnrh could
enhance Lh secretion in fishes (Breton and Weil, 1973; Crim
and Cluett, 1974). Now we know that 3 distinct isoforms of
Gnrh usually co-exist in the modern teleosts (e.g., perch-like
fishes). There is the species-specific hypophysiotropic Gnrh1 in
the pre-optic area and regions of the hypothalamus, the near
ubiquitous (except for rodents) Gnrh2 in the midbrain, and
Gnrh3 in the terminal nerve and ventral telencephalon (Powell
et al., 1994; Coe et al., 1995; Steven et al., 2003; Spicer et al.,
2016). In salmon, goldfish and zebrafish, only Gnrh2 and Gnrh3
are present. In these fish, it appears that Gnrh3 has taken over
the role of Gnrh1 to stimulate Lh release (Tello et al., 2008;
Roch et al., 2014). Supporting this are data in Atlantic cod,
where gnrh1 is a pseudogene, gnrh2 is expressed, and gnrh3 is the
hypophysiotropic form (Hildahl et al., 2011).

The multiplicity and complexity of the neuroendocrine
control of teleost reproduction has long been recognized (Peter
et al., 1990; Trudeau, 1997; Zohar et al., 2010). This includes
the Gnrhs, many others neuropeptides, and aminergic and
amino acid neurotransmitters (Table 1). Early attempts at genetic
manipulation focused on gnrh antisense transgenes. In rainbow
trout expressing gnrh-antisense RNA under the control of the
Atlantic salmon gnrh3 promoter (Uzbekova et al., 2000), there
were no major effects on the levels of circulating Fsh and Lh
or time of maturation. Subsequent studies have revealed a more
important role for Gnrh3 in common carp (Xu et al., 2011).
Abnormal sexual development and infertility were observed in
∼40% of the carp expressing the gnrh3-antisense transgene.
The remaining 60% had normal gonads with sperm or eggs,
indicating that reproduction was still possible. Part of the reason

for partially disrupted reproduction lies in the effects of the

antisense gnrh transgene to reduce expression of gonadotropin

common α cga and fshb subunits in the pituitary. On the other

hand, lhb mRNA levels in the pituitary and serum levels of Lh

were not affected, which may explain why some carp develop and

breed normally (Xu et al., 2011).
Destruction of Gnrh3 neurons by laser ablation early in

development (4–6 days post-fertilization; dpf) negatively impacts

reproduction in adult zebrafish (Abraham et al., 2010). Mature

animals lacking Gnrh3 neurons had arrested oocyte development

and reduced average oocyte diameter. Those animals with

confirmed total ablation of Gnrh3 neurons failed to ovulate. It

was noted that when ablation of Gnrh3 cells was conducted at 2

dpf, high Gnrh3 neuronal regeneration rates were observed, but

this regeneration capacity significantly decreased when ablation

was performed at 4 or 6 dpf (Abraham et al., 2010). The same

group showed that transient Gnrh3 gene knockdown using
anti-sense morpholino oligonucleotides resulted in misguided
migration of Gnrh3 neurons during neurogenesis (Abraham
et al., 2008). Therefore, the development and migration of the
Gnrh3 neuronal system is essential to its proper functioning
in the adult zebrafish. In this sense, one can conclude that the
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TABLE 1 | Stimulatory and inhibitory neuropeptides, aminergic and amino acid

neurotransmitters shown to regulate luteinizing hormone (Lh) in various teleost

species.

Neuroendocrine regulators

of Lh in teleosts

Associated genes* Key citation

1. STIMULATORY NEUROPEPTIDES

(a) agouti-related peptide agrp Zhang et al., 2012

(b) cholecystokinin 8S ccka, cckb Trudeau, 1997

(c) galanin galn Pinto et al., 2017

(d) gonadotropin-releasing

hormone

gnrh1, gnrh2, gnrh3 Zohar et al., 2010

(e) isotocin oxt Popesku et al., 2008

(f) kisspeptin kiss1, kiss2 Li et al., 2009

(g) melanocortin pomca, pomcb Jiang et al., 2017

(h) neurokinin B tac3a, tac3b Biran et al., 2012

(i) neuropeptide Y npy Zohar et al., 2010

(k) pituitary adenylate cyclase

activating peptide

adcyap1a, adcyap1b Chang et al., 2009

(k) secretoneurin scg2a, scg2b Trudeau et al., 2012

2. INHIBITORY NEUROPEPTIDES

(a) ghrelin ghrl Chang et al., 2009

(b) growth hormone-releasing

hormone

ghrh Grey and Chang,

2013

(c) gonadotropin-release

inhibiting hormone (− and +)

npfv Muñoz-Cueto et al.,

2017

(d) spexin spx Zheng et al., 2017

3. AMINES

(a) dopamine (−) th1, th2 Popesku et al., 2008

(b) norepinephrine (+) dbh Trudeau, 1997

(c) serotonin (+) tph1a, tph1b Popesku et al., 2008

4. AMINO ACIDS

(a) γ-aminobutyric acid (+) gad1, gad2, gad3 Trudeau et al., 2000

(b) glutamate (+) gsla, gslb Trudeau et al., 2000

(c) taurine (+) csad, gadl1 Trudeau, 1997

The + and − indicate stimulation and inhibition, respectively. Also shown are the principle

genes involved in the synthesis of the listed regulatory factors. Key references are given,

acknowledging that there are many other excellent papers that have not been cited due

to space limitations. *Gene names are taken from http://useast.ensembl.org/Danio_rerio/

Info/Index.

hypophysiotropic Gnrh plays an important role in zebrafish,
mirroring some aspects of the situation in mammals (e.g.,
Kallman’s syndrome in humans; Soussi-Yanicostas et al., 1998).

Zohar’s group subsequently targeted zebrafish Gnrh3 neurons
formutagenesis using TALENmethodologies (Spicer et al., 2016).
Surprisingly, they observed no effects on reproduction. Early
dynamic alterations in the expression of fshb, lhb and cga in
the developing mutants returned to normal in the adults. The
authors postulated that a compensatory mechanism must exist
to account for the lack of effect of the Gnrh3 knockout. This
could involve upregulation of the Gnrh2 system, yet even the
Gnrh3/Gnrh2 double knockout animals were fertile (Spicer et al.,
2016). These observations challenge the notion that Gnrh is
essential to reproduction. It is clear however, that the method of
elimination of Gnrh has a major impact on the results- ranging
from infertility in the laser ablation studies to no observable
effects in the knockout zebrafish.

Mutation of the hypophysiotropic Gnrh1 using TALEN in
medaka revealed an important role in ovulation (Takahashi et al.,
2016). Females had well-developed ovaries but failed to ovulate.

Ovulation could be partially rescued by injection of Lh. This
can be partly explained by the effects of Gnrh1 knockout on
gonadotropin gene expression. In females, mutation of gnrh1
did not affect fshb, but had a minor suppressive effect on lhb so
gonadal development is maintained. It is puzzling that Gnrh1
knockout males remain fertile and no effects on gonadotropin
gene expression were observed (Takahashi et al., 2016).

KISSPEPTINERGIC SYSTEMS ARE NOT
ESSENTIAL IN SMALL MODEL TELEOST
SPECIES

Since the discovery of the link between mutations in the human
gpr54 and isolated hypogonadotropic hypogonadism (de Roux
et al., 2003; de Roux, 2006), the kisspeptins have become a
key to the central dogma of neuroendocrine regulation of
mammalian reproduction (Figure 1). Critical work in several
mammalian species has now established that specific kisspeptin
neuronal populations directly control Gnrh neurons to regulate
Lh release (Clarkson and Herbison, 2009; Fabre-Nys et al., 2017).
In vivo and in vitro studies in fish showed that exogenous
kisspeptin peptides could variably enhance Lh release, depending
on form and species (Espigares et al., 2015; Zmora et al., 2015).
Around the same time he TALEN strategy was employed in
zebrafish to knockout kisspeptin 1 and kisspeptin 2 along with
their receptors (Tang et al., 2015). Following rigorous analysis,
they concluded that the kisspeptin system is dispensable for
reproduction. This was surprising, given the close relationship
between GnRH3 and kisspeptin nerve fibers in the pars distalis
of the zebrafish pituitary (Song et al., 2015). Knockout studies in
medaka provides more evidence that kisspeptins are dispensible
in teleosts (Nakajo et al., 2018). The same group also show
that in vivo kisspeptin administration in goldfish does not
induce ovulation or increase in serum Lh. This is in clear
contrast to earlier work in goldfish showing effects of the
kisspeptins on Lh in vivo (Li et al., 2009) and from cultured
pituitary cells in vitro (Chang et al., 2012). Teleost Gnrh
neurons lack Gpr54 (Nakajo et al., 2018). These observations
are significant for two main reasons: (1) Within the few species
studied, there are differences in the importance and action
of the kisspeptins; (2) If the kisspeptins have a role, then
they must be acting via non-Gnrh systems or directly on
gonadotrophs. This implies that the nature of the neuronal
circuitry is very different in fishes and is in clear contrast to
the kisspeptin-Gnrh link observed in mammalian species so far
investigated (Figure 1). Hope for kisspeptin as a reproductive
regulator in teleosts is not lost. Some gpr54-expressing neurons
in key regions (ventral telencephalon and preoptic area)
controlling teleost sexual behaviors are the neurons producing
neuropeptide b (Npb) (Nakajo et al., 2018). They also show
that hypophysiotropic Kiss1-Npb neuronal pathway impinges on
isotocin (fish oxytocin) and vasotocin (fish vasopressin) neurons
in the preoptic area. This discovery reinforces the idea that the
brain circuitry linked to reproduction is likely different between
the diverse teleost species.
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FIGURE 1 | Simplified models depicting the roles of gonadotropin-release

hormone (Gnrh) and the kisspeptins (Kiss) in the control of vertebrate

reproduction. (A) In rodent model species, the Gnrh neuronal system is

typically viewed as the key integrator of multiple stimulatory and inhibitory

inputs that control Gnrh pulsatility, Lh synthesis and the Lh surge in females.

Gnrh neurons project to and release the Gnrh peptide into the median

eminence (ME). The hypothalamo-hypophysial portal blood transports Gnrh

(and other neuropeptides and neurotransmitters) to the anterior pituitary where

gonadotrophs are randomly distributed. Specific populations of

Kiss-expressing neurons control specific populations of Gnrh neurons. The

Kiss-Gnrh pathway is shown as a functional unit framed with a box. In this

context, the Kiss and Gnrh systems are in series. Numerous other

neuropeptides and neurotransmitters (Nx; for simplicity, depicted as a single

input) are important for the control of Gnrh, kisspeptin and, ultimately Lh

release and gonadal function. Gonadal steroids such as estradiol-17β (E2)

exert both positive and negative feedback at the levels of hypothalamus and

pituitary. Elimination of either Gnrh or Kiss blocks reproduction in a mammal.

Experimental data have delineated this essentiality of Gnrh and Kiss in the

control of Lh release in mammalian species. (B) In teleost fish, the ME has

been lost to varying degrees during the course of evolution, and alternatively

there is extensive direct innervation of gonadotrophs in the highly regionalized

pars distalis of the anterior pituitary. The hypophysiotropic Gnrh neuronal

system in teleosts is considered as a key element in the multifactorial direct

control of Lh synthesis and release. The role of Kiss is less clear. There is little

anatomical evidence supporting the existence of Kiss projections to Gnrh

neuronal cell bodies, and Gnrh neurons in teleosts do not express Gpr54. On

the other hand, Kiss fibers and Gnrh fibers share a close relationship in the

pars distalis. In this context, the Kiss and Gnrh systems (and many others) are

in parallel. Gonadal steroids such as E2 exert both positive and negative

feedback at the levels of telencephalic preoptic area-hypothalamus and

pituitary. Knockout of either Gnrh or Kiss does not block reproduction in a fish.

Experimental data have delineated that Gnrh and Kiss are therefore

dispensible for reproductive control in zebrafish. Numerous other neurons

producing neuropeptides and neurotransmitters (Nx; depicted as multiple

inputs. See also Table 1) are important for the control of Gnrh, Kiss and

additionally, project to the anterior pituitary for the direct control of Lh and, in

turn, gonadal function.

GENETIC MODIFICATIONS OF OTHER
NEUROPEPTIDES DO NOT INHIBIT
REPRODUCTION IN ZEBRAFISH

The importance of agouti-related peptide (Agrp) and
melanocortin receptors (mcr4) in the stimulation of larval
zebrafish growth has been established (Zhang et al., 2012). The
Agrp neurons in the lateral tuberal nucleus are hypophysiotropic
and treatment with agrp morpholinos in embryos reduced

the expression of gh, fshb and lhb in whole zebrafish larvae
at 4 dpf (Zhang et al., 2012). However, the authors did not
uncover effects on reproduction in adults of the mcr4-/- mutant
strain. Overexpression of the melanocortin receptor antagonist
agouti signaling peptide (ASIP) had major effects on food
intake and growth in zebrafish (Guillot et al., 2016). While
no data are presented, the authors state that “preliminary
data support modifications in the puberty timing of ASIP
zebrafish.” Spexin (Spx, neuropeptide Q) suppresses Lh release
in vivo and in vitro in goldfish (Liu et al., 2013). Spexin
acts via galanin receptors. While Spx1 knockout increased
food intake, it did not affect growth rate in zebrafish (Zheng
et al., 2017). The authors concluded that Spx1 may be a
satiety signal for feeding control by reducing the expression
of orexigenic Agrp1. Regardless, it is clear that none of
agrp, mcr4 or spx1 modifications prevent breeding in adults,
and thus they are not essential for reproduction, at least in
zebrafish.

REASONS WHY GENETIC MODIFICATIONS
IN NEUROENDOCRINE SYSTEMS
MINIMALLY IMPACT REPRODUCTION IN
TELEOSTS

Anatomical Considerations
Amongst several possibilities, it is important to consider the
particular anatomical features of the teleost hypothalamo-
hypophysial system. A plausible proposal for the evolution
of hypothalamic-pituitary communication has been presented
(Ball, 1981; Peter et al., 1990; Gorbman, 1995). Elaborate
pituitary vasculature and median eminence-like arrangements
appeared early in elasmobranchs (e.g., sharks and rays)
∼450 million years ago. The median eminence, typical
of tetrapods, is found in numerous classes of the so-
called “primitive” fishes, for example, sturgeons, lungfish and
coelacanth, with the notable exception being the teleosts.
With varying degrees, teleosts have lost the hypothalamo-
hypophyseal portal system typical of mammals, and the
neurohypophyis has interdigitated with the anterior pituitary.
Hypophysiotropic neurons thus terminate in close proximity
to the highly regionalized anterior pituitary cells they control
(Figure 1). In many cases, there are synapse-like direct contacts
with gonadotrophs and somatotrophs in the pars distalis.
This relationship is considered derived, and likely arose with
the diversification of the teleosts ∼250 million years ago.
This direct innervation is impressive, with the possibility of
independent regulation of gonadotrophs by >20 neuropeptides
and neurotransmitters (Peter et al., 1990; Trudeau et al.,
2000; Popesku et al., 2008; Zohar et al., 2010). A single
gonadotroph in vitro can respond to several neuropeptides
and neurotransmitters (Chang et al., 2009). Thus, one could
alternatively hypothesize that knockout of a single stimulatory or
inhibitory neuropeptidergic system would have minimal impact
on gonadotropin synthesis and release, and thus reproductive
success. Nevertheless, important questions remain- which of
the numerous hypophysiotropic factors (Table 1) are essential
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for reproduction, and which among them are evolutionary
conserved?

Knockout May Leave Neuronal Function
Intact
It has long been known that certain hypophysiotropic neurons
in mammalian model species co-express other neuropeptides
or neurotransmitters. This concept has not been well-studied
in teleosts, but is likely to exist. All Gnrh neurons in the
ovine brain colocalize with galanin (Dufourny et al., 2003). A
subpopulation of kisspeptin neurons in the rostral periventricular
area expressing dopamine innervate Gnrh neurons in the
rostral preoptic area of mice (Clarkson and Herbison, 2011).
Double- and triple- labeling experiments have demonstrated
that neurons in the arcuate nucleus of the goat co-expressed
kisspeptin, neurokinin B, and dynorphin A, and are involved
in the control of pulsatile Lh secretion (Wakabayashi et al.,
2010). It is thus hypothesized here that knockout of a
single neuropeptide in one of these neuronal systems may
leave the other co-localized neuropeptide or neurotransmitter
intact. Hypothetically, a single gene knockout could turn a
stimulatory system (e.g., kisspeptin or Gnrh neurons) into
another stimulatory/compensatory neuron (e.g., galanin) or even
an inhibitory one (e.g., dopamine). This proposal requires
extensive experimental verification in teleosts. In the case of
total destruction of a specific stimulatory hypophysiotropic
neuronal system would eliminate all neurosecretory material.
This would eliminate a key stimulatory pathway, potentially
containing multiple activators and result in failed reproduction,
as observed with the early developmental elimination of
zebrafish Gnrh3 neurons by laser ablation (Abraham et al.,
2010).

Compensatory Responses May Maintain
Sufficient Reproduction
Knockout and knockdown experiments manipulating egfl7, an
endothelial extracellular matrix gene, provide direct evidence
for activation of a compensatory network to buffer against
deleterious mutations in the developing vascular system in
the zebrafish (Rossi et al., 2015). Such genetic compensation
in response to gene knockout is a widespread phenomenon
(El-Brolosy and Stainier, 2017). Upregulation of related genes
following a knockout may be a direct consequence of the loss of
protein function.

What about compensation in teleost neuroedocrine systems?
While conclusive evidence is still lacking, this is a distinct
possibility. Knockout of Gnrh3 and the 2 kisspeptin genes
in zebrafish undergo normal gonadal maturation (Liu et al.,
2017). These fish breed and exhibit normal fertility. Expression
of fshb and lhb in the pituitary was not significantly altered.
Expression of neuropeptide Y (npy), tachykinin 3 (tac3, the
neurokinin B encoding gene), and secretogranin-IIa (scgIIa) were
increased in whole brain extracts in the triple knockout fish.
In males, the respective fold increases were 1.3, 1.3, and 1.4
for npy, tac3 and scgIIa. Similarly, in females, the increases
were 1.3, 1.2, 2.7-fold for npy, tac3 and scgIIa. As these 3

neuropeptidergic systems have been identified as stimulators
of Lh in some teleost species (Popesku et al., 2008; Biran
et al., 2012), this is suggestive of a type of compensation
to maintain reproduction following multiple gene knockout.
However, this does not fully explain the mechanism underlying
a potential compensation. These changes are relatively minor
and on the scale of a whole brain homogenate. Independent
knockout of Gnrh and the kisspeptins does not change
gonadotropin expression. Similarly, expression of fshb and lhb,
and gnih and gnrh2 did not change in either sex of the
triple knockout line (Liu et al., 2017). I hypothesize that
multiple neuronal systems in teleosts are functioning in parallel
(Figure 1) to maintain appropriate patterns of Lh release. To
completely disrupt this, 3 or more separate systems (i.e., Gnrh,
kisspeptin plus a different neuropeptide or neurotransmitter
represented by Nx in Figure 1) would have to be genetically
modified.

CONCLUDING REMARKS

Experimentalists are attracted to fish for numerous reasons.
These include their commercial importance and the ease of
genetic modification to understand development or to model
human diseases. Teleost fishes are also fascinating because they
exhibit the greatest diversity of reproductive patterns among
the vertebrates (Wootton and Smith, 2014). This ranges from
the typical gonochoristic species with separate sexes, to the sex-
changers and hermaphrodites. Currently, >33,000 fish species
are recognized. This is close to 50% of all known vertebrate
species. Of these, the Teleostei are themajority (∼27,000 species).
The main subjects of genetic modification (overexpression
or knockout) to date have been but a few gonochoristic
species.

Even within the few species investigated, significant diversity
is evident. Differences in the progression of ovarian and testicular
differentiation and of spawning tactics (daily versus annual)
could be linked to different control mechanisms compared
to mammals. It has been assumed by some investigators
that teleosts and other non-mammalian vertebrates do not
exhibit pulsatility in pituitary hormone section as observed
in mammals, and that this may be the reason control
mechanisms appear different. Yet, there is very good evidence
to the contrary, so this cannot be the reason. Daily cycles
of Lh secretion in goldfish represents low frequency diurnal
activation of the hypothalamo-hypophysial axis (Hontela and
Peter, 1978). Clear pulsatile Lh secretion in trout (Zohar,
1980; Zohar et al., 1986a,b) and chicken (Vizcarra et al.,
2004) indicates that gonadotropin pulsatility is a common
neuroendocrine feature. Fish also have a timed preovulatory
Lh surge, like the tetrapods. Thus, it is probable that the
multitude of interacting stimulatory and inhibitory inputs fine-
tune basal secretion and drive pulses and surges of Lh in
teleosts as they do in mammals. Alternatively, the multiplicity
and differential appearance/disappearance of the 3 Gnrhs (or
other peptides), through gene duplication and loss events,
may have led to species-specific rewiring of neuroendocrine
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circuits as the teleosts diversified and adapted to new ecological
niches. It is worthy to note that medaka (Order Beloniformes)
and zebrafish (Order Cypriniformes) lineages diverged 115–
200 Myr ago, providing ample time for genetic changes to
occur (Signore et al., 2009).

Recent investigations have focused on the role of
neuropeptides in teleost reproduction. This appears to
be accompanied by reduced scientific interest in classical
neurotransmitters. Dopamine is a major inhibitor of Lh in
many species. In vivo and in vitro pharmacology has firmly
established that glutamate, γ-aminobutyric acid, norepinephrine
and serotonin have significant effects on hypothalamo-pituitary
function in teleosts (Trudeau, 1997; Popesku et al., 2008; Zohar
et al., 2010). Their essentiality for successful reproduction should
also be explored through genetic manipulation of synthesis
enzymes, receptors and membrane transporters. As with the
multiplicity of neuropeptides, the study of non-peptidergic
neuroendocrine systems will also be challenging. This will be
worthwhile, however, since neurotransmitters are key regulators
of neuropeptidergic systems controlling teleost reproduction

(Trudeau et al., 2000; Hasebe and Oka, 2017; Song et al.,
2017).
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