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Abstract

Accurate estimates of the rate of recombination are key to understanding a host of evolutionary processes as well as the evolution of the re-
combination rate itself. Model-based population genetic methods that infer recombination rates from patterns of linkage disequilibrium in
the genome have become a popular method to estimate rates of recombination. However, these linkage disequilibrium-based methods
make a variety of simplifying assumptions about the populations of interest that are often not met in natural populations. One such assump-
tion is the absence of gene flow from other populations. Here, we use forward-time population genetic simulations of isolation-with-
migration scenarios to explore how gene flow affects the accuracy of linkage disequilibrium-based estimators of recombination rate. We
find that moderate levels of gene flow can result in either the overestimation or underestimation of recombination rates by up to 20–50%
depending on the timing of divergence. We also find that these biases can affect the detection of interpopulation differences in recombi-
nation rate, causing both false positives and false negatives depending on the scenario. We discuss future possibilities for mitigating these
biases and recommend that investigators exercise caution and confirm that their study populations meet assumptions before deploying
these methods.
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Introduction
Recombination rate, the number of crossovers per unit genome
per generation, plays a key role in shaping evolutionary processes
and diversity in the genome. For example, through the action of
linked selection, local rates of recombination are a chief determi-
nant of patterns of genetic diversity throughout the genome
(Begun and Aquadro 1992; Haddrill et al. 2014; Burri 2017; Cutter
2019; Korunes et al. 2021). Genome-wide rates of recombination
also modulate diverse processes such as adaptation, speciation,
and introgression (Samuk et al. 2017; Dapper and Payseur 2017;
Stapley et al. 2017; Schumer et al. 2018). There is also a growing
appreciation that recombination rate is itself a trait that varies
and evolves (Dumont and Payseur 2008; Hunter et al. 2016;
Johnston et al. 2016; Ritz et al. 2017; Stapley et al. 2017; Samuk
et al. 2020). Accordingly, there has been great interest in efficient
and accurate methods for estimating recombination rates.

Current methods for estimating recombination rates fall into
2 broad classes of methods: direct and indirect (Pe~nalba and Wolf
2020). Of the direct measures, the 3 most popular approaches are
linkage mapping, gamete sequencing, and cytological methods.
With classical linkage mapping, map distances between genetic
markers are measured by quantifying recombinant markers in
the context of a genetic cross or pedigree (Broman 2010; Rastas
2017). The resolution of this approach is limited only by marker
density and the sample size of individuals, but larger sample

sizes can be grueling to achieve in the laboratory or unavailable
in some populations. Furthermore, identifying suitable diagnostic
mapping markers can be limiting in some cases (e.g. in a highly
homozygous population; Broman 2010). Direct sequencing of
pools of recombinant gamete genomes from single individuals
using long/linked read sequencing is a newer approach that alle-
viates many of the issues of traditional mapping, but still
requires differentiated markers to score crossover events be-
tween homologous chromosomes (Dréau et al. 2019; Rommel
Fuentes et al. 2020; Xu et al. 2020). Cytological methods bypass
this requirement by directly visualizing recombination-
associated protein complexes in cell populations undergoing mei-
osis (Peterson et al. 2019; Peterson and Payseur 2021). However,
the cytological methods are limited by the spatial resolution at
which such visualization can occur (e.g. the resolution of immu-
nostained gamete karyotypes; Peterson et al. 2019).

Because all direct methods of measuring recombination rates
are fairly laborious, there has been increased interest in indirect
measures of recombination rate that leverage readily available pop-
ulation genetic data. Chief among these are model-based methods
that infer rates of recombination from patterns of linkage disequi-
librium (LD; Auton and McVean 2007; Chan et al. 2012; Kamm et al.
2016; Spence and Song 2019). These methods attempt to estimate
recombination rates by statistically fitting recombination rates (de-
rived from population genetic models/simulations) to observed
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patterns of LD. Rather than inferring recombination rate directly,
LD-based estimators infer a population scaled recombination rate, q ¼
4 Ner, where Ne is the effective population size and r is the theoreti-
cal per-generation recombination rate. LD-based methods are at-
tractive because they (1) generally only require population-scale
genomic data and (2) are very fast, often only requiring several com-
putational hours or less (Spence and Song 2019) and (3) are infor-
mative of time-averaged population historical recombination rates
(McVean and Auton 2007). Accordingly, LD-based estimates of re-
combination rates have become extremely popular, and now vastly
outnumber direct measures in the literature (Stapley et al. 2017;
Pe~nalba and Wolf 2020). These methods have also begun to be used
to perform interpopulation comparisons of recombination rates
(Stapley et al. 2017; Pe~nalba and Wolf 2020).

Like all models, LD-based estimators of recombination rate
make a variety of simplifying assumptions about the populations of
interest. For one, they generally assume that the populations/loci of
interest are evolving largely neutrally and have reached population
genetic equilibrium in a number of ways (Stumpf and McVean
2003). In particular, most methods assume that the populations be-
ing studied have reached an equilibrium between recombination
and population scaled mutation, such that LD accurately reflects
patterns of recombination rate (McVean 2007). Furthermore, it is
generally assumed that any form of selection that might distort pat-
terns of LD (e.g. sweeps) has not recently occurred (Chan et al. 2012).
Finally, these methods make the general assumption that demo-
graphic processes that distort genome-wide patterns of LD, such as
population size changes, have not occurred (recall that q is directly
dependent on Ne; Auton and McVean 2007).

While some of these assumptions may be robust to violation,
work has shown that some violations can result in biased esti-
mates. For example, Dapper and Payseur (2018) showed that re-
combination estimates from LDhat (McVean and Auton 2007) are
highly sensitive to changes in population size. This can be ame-
liorated in some cases by incorporating known changes in popu-
lation size into the estimation procedure, such as implemented
in the software pyrho (Spence and Song 2019).

Along with changes in population size and selection, another
process that can greatly alter patterns of LD is gene flow. Gene
flow and subsequent admixture between diverged populations
can have complex effects on patterns of LD within each popula-
tion (Nei and Li 1973; Ohta 1982). These effects range from large
and genomically variable increases in LD due to segregation of di-
vergent haplotypes, to genome-wide decreases in LD as popula-
tions become coupled and increase local Ne (Nei and Li 1973;
Ohta 1982). While it is now widely accepted that gene flow is
commonplace in natural populations (Barton 2001; Mallet 2005;
Waples and Gaggiotti 2006; Suvorov et al. 2022), there has not
been a systematic study of the effects of gene flow on LD-based
measures of recombination. Furthermore, it remains unclear
how gene flow (or any other violation of assumptions) impacts
our ability to detect differences in recombination rate between (as
opposed to within) populations using LD-based methods.

Here, we address these issues using forward-time population
genetic simulations. We attempt to answer 2 specific questions.
First, how does gene flow between populations affect the preci-
sion and accuracy of LD-based estimates of recombination rate
within populations? Secondly, how does gene flow affect our abil-
ity to detect evolved differences in recombination rate between
populations? Our primary goal is to answer these questions in
the context of a core set of realistic demographic scenarios, and
not perform an exhaustive exploration of parameter space.
Overall, we hope to help investigators understand key sources of

bias in LD-based estimates of recombination rate in natural pop-
ulations and highlight areas of future development.

Methods
Code availability
All scripts used in the analyses described below are available as a
repository on Github (http://github.com/ksamuk/LD_recomb).

Forward time simulations with SLiM
To explore how the timing and amount of gene flow affect esti-
mates of recombination rate, we performed forward-time popula-
tion genetic simulations using SLiM version 3.3 (Haller and Messer
2019). The basic form of all the simulations was an isolation-with-
migration scenario: a single ancestral population diverges into 2
subpopulations with a static amount of bidirectional gene flow
(Fig. 1). Populations were composed of diploid individuals with 100-
kb genomes arranged in a single chromosome. We used genome-
wide average estimates of effective population size, mutation rate,
and empirical recombination rate from natural populations of
Drosophila melanogaster (Adrion, Cole et al. 2020): Per site mutation
rate¼ 5.49� 10�9 (Li and Stephan 2006); per site recombination
rate¼ 2.23� 10�8, (average of chromosome 2R; Comeron et al. 2012);
Ne ¼ 1.72M (Li and Stephan 2006). Recombination and mutation
rates were conservatively modeled as uniform across the 100-kb ge-
nome. Following standard practice for forward-time simulations, all
simulations were run with an in silico population size of N¼ 1,000,
and simulated mutation and recombination rates scaled by a factor
of Ne/N as per the SLiM manual (Haller and Messer 2019). Note that
generation times are also subject to scaling, and for simplicity, we
will refer to all generations in terms of back-transformed actual
generations rather than SLiM generations (1 SLiM generation �
1,751 actual generations with our scaling factor).

Parameter space
To explore how variation in gene flow affects estimates of recombi-
nation, we varied the amount of gene flow over 5 orders of magni-
tude: 0, 0.01, 0.1, 1, 10, 100, in standard units of Nem (the product of
the effective population size and the migration rate). These values
were chosen to encompass total isolation (Nem¼ 0), limited gene
flow (Nem¼ 0.01–0.1), moderate gene flow in interconnected meta-
populations (Nem¼ 1–10; Morjan and Rieseberg 2004; Waples and
Gaggiotti 2006), and a scenario of a nascent hybrid swarm
(Nem¼ 100). We also varied the timing of the onset of gene flow,
with gene flow beginning either immediately after divergence or af-
ter a period of isolation. We performed preliminary simulations to
determine a period of isolation (�1.7M generations in our case) that
produced levels of genomic divergence (Supplementary Fig. 1) simi-
lar to those observed in natural population pairs that exhibit
genome-wide genetic divergence but still actively exchange genes
(FST � 0.4; Morjan and Rieseberg 2004; Roux et al. 2016). Finally, to
explore how gene flow impacts the detection of population differen-
ces in recombination rate, we modeled scenarios where recombina-
tion rate either remains constant in both subpopulations or
instantaneously increases by a factor of 2 at the time of divergence
in one of the 2 subpopulations (always subpopulation 2). This mag-
nitude of this difference is well within the range of variation in re-
combination rate reported for a wide variety of species (Stapley et al.
2017). In biological terms, an instantaneous increase in population
recombination rate could be readily mediated by an environmental
change (e.g. temperature, Lloyd et al. 2018), a change in mating sys-
tem (Brandvain and Wright 2016), or whole-genome duplication
(Tiley and Burleigh 2015). We note that this instantaneous change
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is a “best case” scenario for detecting interpopulation differences in

recombination rate, and thus any loss of power to detect differences
in recombination that occurs due to gene flow will be conservative.

Details of demographic events
Each simulation began with a single population of size Neanc,
which evolved for a 35M generation burn-in period (following the
general practice of a 10-20 Ne burn-in period; Haller and Messer
2019). This initial period was followed by divergence into 2 subpo-

pulations, each with size Neanc/2. Gene flow (for cases where
Nem > 0) began immediately at the time of divergence or after a
1.7M generation period of isolation and was symmetrical in mag-

nitude and bidirectional. Changes in recombination rate occurred
at the time of divergence and instantaneously applied to all indi-
viduals in subpopulation 2 only.

Starting at the time of divergence and thereafter in intervals

of 1,751 generations, we collected a random sample of 25 individ-
uals (a total of 50 haploid genomes) from each population and
saved their complete genotypic at all sites in VCF format. We

stopped the simulations after 51,000 generations. Each parame-
ter combination was replicated 100 times, for a total number of
�n¼ 48,000 population samples.

Estimation of recombination rate using pyrho
While there are a variety of LD-based estimators of recombination
rate, we elected to use pyrho (Spence and Song 2019) for estimation
in this study. It shares its statistical foundation with the most

widely used LD-based estimators (LD-hat and LD-helmet; McVean
and Auton 2007; Chan et al. 2012) while also having the ability to ac-
count for changes in effective population size such as we are model-

ing here (Spence and Song 2019). As such, any estimation biases
caused by gene flow will likely affect those approaches as least as
much as they affect pyrho. Direct comparisons with other methods

are complicated by the fact that pyrho is the only model-based
method that adequately accounts for changes in effective popula-
tion (Adrion, Galloway et al. 2020).

We followed the recommended practices for inferring recom-
bination rate using pyrho (https://github.com/popgenmethods/

pyrho). We parameterized the initial lookup tables using the ef-
fective population size and mutation rates used in the simula-
tions (unscaled in this case). To account for changes in effective
population size, we created lookup tables that accounted for a
change of Ne/2 (1.72M to 8.6M) in time steps of 1,751 generations
in the past. This allowed us to have an appropriately timed
lookup table for each step of the simulation. We used the built-in
methods to infer the hyperparameters of window size (best fit
100) and block penalty (best fit 1,000). Using this baseline, we in-
ferred recombination rates using the genotype data (VCF format)
from both subpopulations at each time point, for a total of
�96,000 pyrho fits. All computations were performed using the
Duke University Computing Cluster, running CentOS Version 8.

Statistical analyses
We performed all data processing and visualization using the tools
of the tidyverse package in R 4.0.3 (Wickham 2017; R Core Team
2018). To examine how gene flow between populations affects the
accuracy of LD-based estimates of recombination, and the context
of the various factors explored in our simulations, we performed an
analysis of variance using a linear mixed model with Gaussian
errors fitted via the lmer() function from the lme4 package (Bates
et al. 2015). This model had the following form: Recombination rate
¼ (1jsimulation replicate) þ (1jsimulation generation) þ gene flow
magnitude þ recombination rate change, where (1j[factor]) denotes
a random intercept. All variables were standardized (mean-cen-
tered and scaled by standard deviation) prior to analysis. To sim-
plify interpretation, we fitted separate models for the continuous
gene flow and secondary contact scenarios.

Results
Inference when recombination rate is identical
between populations
When the recombination rate remained constant between diverg-
ing populations, we found that gene flow introduced 2 types of
systematic biases in estimates of recombination rate within pop-
ulations (Fig. 2a). These effects began when Nem � 1 in both the

Fig. 1. The structure of the forward-time simulations performed in SLiM. Time in back-transformed generations is shown along the x-axis, and the
populations in existence at a given time are shown as rectangles. panc ¼ the ancestral population, p1 ¼ the subpopulation with unchanged
recombination rate, and p2 ¼ the subpopulation with increased recombination rate (if applicable). Effective population sizes (Ne) and recombination
rates (c, in units of cM/Mb) are shown for each population, with the values for the subpopulations shown relative to the ancestral value. Variable
elements of the simulation are shown in braces. Time in generations postdivergence is indicated below the plots, with the precontact isolation period in
(b) shown as a dotted line preceding the main axis. Sample periods indicate intervals at which genotypes were output for analysis.
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continuous gene flow and secondary contact models. First, in the
model of continuous gene flow, when Nem � 1, we observed a
systematic increase (overestimate) in estimated rates of recombi-
nation in both populations (Fig. 2, a and b, top row, Nem¼ 1–100).
This increase was statistically significant [Type III Wald chi-
square¼ 5090.07, P< 2.0� 10�16; coefficient for gene flow¼ 0.63–
0.67 (95% CI), t(19495) ¼ 71.34, P < 0.001]. When the migration
rate was moderate to high (Nem 10–100), the recombination rate
was overestimated by �10–20% (Fig. 2b). This effect is consistent
with migration causing the populations to become coupled, be-
having as a single population with a larger Ne and thus inflating
the population-scaled estimate of recombination rate.

In contrast to the continuous gene flow case, under a model of
secondary contact, there was a marked systematic decrease

(underestimate) of recombination rates, which also became
visible when Nem � 1 (Fig. 2, a and b, bottom row, Nem¼ 1–100).
This decrease was statistically significant [Type III Wald
chi-square¼ 1512, P< 2.2� 10�16; coefficient for gene flow-
¼�(0.54–0.49) (95% CI), t(31846) ¼ �38.88, P < 0.001]. The magni-
tude of this decrease was substantial: on average, populations
experiencing Nem¼ 1 had recombination rates about 20% lower
than expected, with this increasing to 50% when Nem¼ 10 or
higher (Fig. 2, a and b). This decrease was accompanied by a sta-
tistically significant increase in the variance of recombination rate
estimates, especially for Nem¼ 1–10 compared to Nem < 1
(Fig. 2a, bottom row; F-test for equivalency of variance, F(10,429,
13,860) ¼ 0.20863, P< 2.2� 10�16). A systematic increase in the
mean and variance of LD within populations is consistent with

Fig. 2. The relationship between inferred recombination rate and the migration rate in simulated populations where recombination rate remains
constant in both subpopulations. (a) Inferred recombination rates for individual simulations at varying levels of migration. Each plot shows inferred
rates for simulation replicates (transparent lines) of population 1 (red, unchanged recombination) and population 2 (blue, increased recombination) for
a single migration rate. Dashed lines show the expected inferred value in the absence of gene flow (inferred from Nem¼ 0). (b) Summarized inferred
recombination rates (y-axis) for each level of migration (x-axis) from the simulations in a. Points are mean values and error bars depict standard
deviations (summarized across all generations). Dashed lines show the expected inferred value in the absence of gene flow for each population (i.e. the
mean value for Nem¼ 0). (c) The inferred difference in recombination rate between population 1 and population 2 (p2–p1) as a function of migration rate.
Points and error bars are as in b.
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allele frequency differences between populations manifesting as
migration-associated LD, and deflating estimates of recombina-
tion rate. When gene flow was very high, there was a visible re-
covery of estimated recombination rates (Fig. 2a, bottom row,
Nem¼ 100), presumably due to migration homogenizing allele
frequencies and increased effective population sizes increasing
the rate at which recombination breaks down migration-
associated LD.

When comparing recombination rates between p1 and p2, the
“coupling” bias observed in the continuous migration scenario
did not appear to systematically affect the ratio of recombination
rate between the 2 populations (Fig. 2c, Continuous Migration).
However, in keeping with the previous result, migration-
associated LD in the secondary contact model appeared to greatly
increase the between replicate variance in the ratio of recombina-
tion rates between populations when Nem � 1 (Fig. 2c, Secondary
Contact).

Inference when recombination rate differs
between populations
When recombination rates diverged between populations, we
also observed the 2 forms of bias described above (Fig. 3). The
estimates from the continuous gene flow scenario exhibited a
statistically significant increase [Type III Wald chi-
square¼ 8,936.44, P< 2.2� 10�16; coefficient for gene flow ¼
0.65–0.67 (95% CI), t(19495) ¼ 94.53, P < 0.001] whereas estimates
from the secondary contact model exhibited a statistically signifi-
cant decrease [Type III Wald chi-square¼ 1,512, P< 2.0� 10�16;
coefficient for gene flow¼�(0.27–0.22) (95% CI), t(34505) ¼
�23.22, P < 0.001]. However, the results differed from simulations
with constant recombination rates in a number of important
ways. First, there was a clear difference between the continuous
migration and secondary contact models in the overall trajectory
in the population-specific estimates of recombination rate
(Fig. 3a). In the continuous gene flow models, there was an over-
all positive trend for the estimates of recombination rate in p2

even in the absence of gene flow (Fig. 3a, continuous migration).
This was presumably caused by a lag in the establishment of
equilibrium levels of LD within p2 that reflect the new recombina-
tion rate (which spontaneously changed at the time of diver-
gence). This lag resulted in the recombination rate in p2 being
consistently underestimated (because it had not reached its new
equilibrium), in addition to the coupling effect observed previ-
ously (Fig. 3, b and c, continuous migration). In the case of the
secondary contact model, we did not observe the same positive
trend for recombination rate estimates in p2, likely because the
isolation period (1.7M generations) was sufficiently long enough
for p2 to establish an equilibrium level of LD prior to secondary
contact (Fig. 3a, Secondary Contact).

Additional simulations
To examine the robustness of our results, we explored 2 addi-
tional demographic scenarios. First, we repeated our simulations
using an effective population size of 1,720 (1/1,000th of the D. mel-
anogaster Ne). These simulations produced broadly similar
results, with all biases we identified using a larger Ne also
appearing in the presence of a smaller Ne (Supplementary Figs. 2
and 3). Furthermore, there was an apparent increase in variance
of recombination estimates in many cases, suggesting that the
issues we identified may be considerably worse in species with
smaller effective population sizes (Supplementary Fig. 2c).

Finally, using these smaller effective population size simula-
tions as a base, we also explored how asymmetry in gene flow

may affect the estimation of recombination rate. To do this, we
performed simulations in which gene flow is unidirectional from
p2 into p1. Asymmetrical gene flow resulted in an increase in
both the bias and variance of recombination rates estimates,
with the worst effects again manifesting at moderate levels of
gene flow (Supplementary Figs. 4 and 5). As such, it appears that
our core simulations (large Ne, symmetrical gene flow) may rep-
resent a “best case scenario” for mitigating biases, and departures
from this balanced scenario appear to only worsen the prospects
for accurate population genetic estimation of recombination
rates.

In keeping with the scenario with constant recombination
rates, starting at Nem � 1, migration-associated LD resulted in
the systematic underestimation and increase in variance for esti-
mated recombination rates within both p1 and p2 [Fig. 3b,
Secondary Contact; Type III Wald chi-square¼ 538.97,
P< 2.0� 10�16; coefficient for gene flow¼�(0.27–22) (95% CI),
t(34505) ¼ �23.22, P < 0.001; F-test for equivalency of variance,
F(7,734, 13,579) ¼ 0.2174, P< 2.2� 10�16]. In addition, the ob-
served divergence in recombination rate between p2 and p1

(which was always expected to be þ2 cM/Mb) decreased with in-
creasing levels of gene flow (Fig. 3, b and c, Secondary Contact).
This effect would likely result in an increase in false negatives
with increasing gene flow (i.e. finding no difference in recombina-
tion rate between populations when there is in fact one). This de-
crease in the observed divergence between populations is again
likely the outcome of the population-specific levels of LD becom-
ing coupled/merged at moderate to high levels of gene flow,
resulting in the populations exhibiting LD (and hence recombina-
tion rate estimates) intermediate to what would be expected in
the absence of gene flow.

Discussion
Accurate estimates of recombination rate are key to understand-
ing the causes and consequences of recombination rate variation
in natural populations. With the increasing availability of
genome-wide sequencing data, LD-based estimators of recombi-
nation rate have become widely used in a large variety of taxa.
However, while gene flow is widely known to shape patterns of
LD in populations, the effect of gene flow on LD-based estimators
of recombination rate remains largely unexplored. Here, we used
forward-time simulations to show that (1) moderate to strong
gene flow can introduce substantial bias into LD-based estimates
of genome-wide recombination rate and (2) the nature of this
bias depends on the demographic and evolutionary history of the
populations in question.

Our results here are consistent with theoretical predictions
that gene flow between populations can affect LD: increasing in
the magnitude and variance of LD at low migration rates as well
as reducing LD via the “coupling effect” we observed at higher
rates of gene flow. Our study shows how these predictions play
out with modern methods and genomic data, and also provides a
sense of the magnitude of the potential degree of misestimation –
in our case, ranging from 20 to 50 percentage points in cases of
moderate gene flow. For comparison, a recent study of
population-level differences in recombination rate in Drosophila
pseudoobscura revealed genetically based interpopulation differen-
ces on the magnitude of �10% measured using replicated linkage
maps in each population (Samuk et al. 2020). Using LD-based esti-
mators, an observed a difference of this magnitude could be spu-
riously generated by modest levels of gene flow alone, or missed
altogether due to coupling at higher levels of gene flow.
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In addition, the specific magnitude and direction of the bias intro-

duced by gene flow are difficult to know without precise knowl-
edge of the population/demographic histories of the populations

in question. This should give pause to anyone planning on using
LD-based methods to infer recombination rate in nonequilibrium

populations.
One key question is whether there are methods to control for

or counteract the increased variance and/or biases in the estima-

tion of recombination rate caused by gene flow. One approach
could be to identify and remove introgressed haplotypes from

datasets prior to inferring recombination rate, thereby removing
migration-associated LD. This would require “pure” samples from

the source populations, such that the population of origin could

be assigned to haplotype blocks (Dias-Alves et al. 2018). However,

this method would require gene flow to be low enough that cou-
pling (of both LD and allele frequencies) has not occurred. The
upward bias and increased variance in recombination rate that
occurs as a result of coupling, together with the homogenization
of allelic differences between populations at higher levels of gene
flow will likely make a “filtering” scheme very difficult (perhaps
impossible) to achieve. One other approach may be to attempt to
jointly estimate a demographic model along with population-
specific recombination rates, as has been done with mutation
rates (DeWitt et al. 2021). However, given the existing complexity
and uncertainty in inferring demographic models, we suspect it
may be difficult to disentangle the complex interdependencies
between gene flow, population size, and estimates of recombina-

tion rate.

Fig. 3. The relationship between inferred recombination rate and the migration rate in simulated populations where recombination rate increases by a
factor of 2 in one subpopulation. (a) Inferred recombination rates for individual simulations at varying levels of migration. Each plot shows inferred
rates for simulation replicates (transparent lines) of population 1 (red, unchanged recombination) and population 2 (blue, increased recombination) for
a single migration rate. Dashed lines show the expected inferred value in the absence of gene flow (inferred from Nem¼ 0). (b) Summarized inferred
recombination rates (y-axis) for each level of migration (x-axis) from the simulations in a. Points are mean values and error bars depict standard
deviations (summarized across all generations). Dashed lines show the expected inferred value in the absence of gene flow for each population (i.e. the
mean value for Nem¼ 0). (c) The inferred difference in recombination rate between population 1 and population 2 (p2–p1) as a function of migration rate.
Points and error bars are as in b.
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On a related note, in our simulations we had perfect knowl-
edge of the demographic histories of both populations (ancestral
and derived population sizes; divergence time), which was used
to parameterize the correction procedure employed by pyrho. In
the vast major of empirical cases, demographic history would
need to be separately estimated prior to parameterizing pyrho.
Such demographic inference is itself error prone and subject to a
wide variety of potential biases (Marchi et al. 2021) and these
errors would propagate into estimates of rho (see Dapper and
Payseur, 2018). Furthermore, the interactions between selection,
gene flow, and recombination likely further complicate inference
of rho. For example, many studies have now shown a negative
correlation between recombination rate and introgression medi-
ated by alleles causing reproductive isolation (Aeschbacher et al.
2017; Samuk et al. 2017; Schumer et al. 2018). This suggests that
biases in rho estimation introduced by gene flow could them-
selves vary with genomic context. As such, the biases and error
rates identified here represent a “best case” scenario, and would
be in addition to any errors due to misestimation of the demo-
graphic history or the effects of reproductive isolation.

Together with previous work (Dapper and Payseur 2018), our
results suggest that LD-based estimates of recombination rate
need to be interpreted with great caution when studying none-
quilibrium populations. Indeed, these methods are likely only ap-
propriate when populations can be assumed to be evolving in the
absence of any gene flow and have reached a reasonable demo-
graphic equilibrium. However, it is now widely appreciated that
gene flow is ubiquitous in natural populations (Waples and
Gaggiotti 2006; Ellstrand and Rieseberg 2016). This may mean
that many published LD-based estimates of recombination rate
are incorrect. Without empirical maps to compare existing LD-
based estimates, it is difficult to say just how incorrect they are.
What can be said is that the levels of gene flow required to intro-
duce nontrivial biases into estimates of recombination rate, i.e.
Nem �1–10, are not uncommon in natural populations (Slarkin
1985; Waples and Gaggiotti 2006). Although direct estimates of
Nem in wild populations are scarce, under an island model, an
Nem of 10 would correspond to an FST of around 0.02. In a review
of population comparisons of traits by Leinonen et al. (2008), such
populations comprise around 20–30% of the cases identified. It is
also worth noting that it is not the case that 2 populations being
studied have to be exchanging genes themselves (e.g. which
would not the case when studying 2 reproductively different spe-
cies), but just that one or more of the populations are exchanging
genes with some other population (e.g. an unsampled population
of the same species).

If many LD-based estimates are incorrect, why do published
LD-based estimates of recombination rate correlate well with di-
rect estimates, e.g. from genetic maps? (McVean and Auton 2007;
Chan et al. 2012; Smukowski Heil et al. 2015). There are several
considerations. First, the correlations that have been reported are
by no means perfect (e.g. �Spearman’s Rho of 0.6: Smukowski
Heil et al. 2015; r2 ¼ 0.37–63: (Chan et al. 2012) and depend greatly
on the genomic scale at which they are measured (Smukowski
Heil et al. 2015). Second, simple correlations between LD-based
and empirical estimates do not speak to genome-wide differences
in the estimates of recombination rate, such as those due to the
coupling effects we observed. Such effects would be visible as dif-
ferences in the intercept of a linear regression, rather than the R2,
for example. Finally, the species where these correlations have
been examined (humans and D. melanogaster) may meet the
assumptions of demographic equilibrium more readily (Ochoa
and Storey 2019; Suvorov et al. 2022). While such assumptions

may be reasonable for these populations, for which LD-based
estimators were originally developed, they are much less likely to
hold in many natural populations. Notably, they are likely rarely
met in populations that have recently adaptively diverged in the
presence of gene flow, which have lately been the subject of in-
creased research interest (Ravinet et al. 2017; Linck and Battey
2019). The equilibrium assumption is also likely not valid in pop-
ulations in which the recombination rate has recently changed
(Brandvain and Wright 2016), reducing the utility of these esti-
mates for studying the rapid evolution of recombination rates.

While we only focused on a single implementation of one type
of LD-based estimator of recombination (pyrho), it is likely that
other population genetic methods will also suffer from the effects
we describe here. LD is the “information” used by all estimators,
either directly as in methods like LDjump (Hermann et al. 2019) or
indirectly as in machine learning methods like ReLERNN (Adrion,
Galloway et al. 2020). That said, in the case of the latter method,
it may be possible to overcome some of the issues we have identi-
fied if the training datasets were simulated with an accurate de-
mographic model. As such, the distorting effects of gene flow on
LD need to be carefully considered when applying any statistical
methods for inferring recombination rate approaches. We also
stress that our simulations do not suggest that LD-based estima-
tors and their implementations are wrong per se, but rather that
the assumptions under which LD-based estimates are biologi-
cally accurate are readily violated by levels of gene flow and di-
vergence common seen in natural populations.

Finally, the biases we have identified likely affect the identifi-
cation of recombination cold/hotspots and the “landscape” of re-
combination in general. For example, if introgression is itself
variable across the genome, this could result in the biases we
have identified here (1) covarying with introgression and (2) cre-
ating false heterogeneity in recombination estimates. The in-
crease in variance we identified could also result in (apparent)
increased heterogeneity in recombination across the genome. In
terms of identifying hotspots, the difference in recombination
rate between hot and cold spots in most species vastly exceeds
the 20–50% differences we described here, and thus the biases we
identified may not be an issue for the identification of extreme
hotspots per se.

Conclusion
Studying variation in recombination rate is difficult. LD-based
methods for inferring recombination rate are attractive in their
data requirements but require strong assumptions to be met. As
we have shown here, gene flow readily violates these assump-
tions and introduces biases and decreases in precision, in a vari-
ety of ways that are difficult to identify in a given study
population. This is problematic because gene flow is extremely
common in natural populations. How should we proceed? Rather
than attempt to squeeze blood from the proverbial stone, we be-
lieve that the most straightforward solution to the problems we
outline here is simply to prioritize the use of direct, empirical
methods for measuring of recombination rate. This decision is
made hopefully simpler with the increased ease and low cost of
creating traditional linkage maps and performing gamete se-
quencing. That said, LD-based approaches remain important
tools for hypothesis generation, and when paired with direct esti-
mates of recombination rate can provide a detailed picture of
both the past and present landscape of recombination rates in
natural populations.
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