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By imitating the synaptic connectivity and plasticity of the brain, emerging

electronic nanodevices o�er new opportunities as the building blocks

of neuromorphic systems. One challenge for large-scale simulations of

computational architectures based on emerging devices is to accurately

capture device response, hysteresis, noise, and the covariance structure in

the temporal domain as well as between the di�erent device parameters.

We address this challenge with a high throughput generative model for

synaptic arrays that is based on a recently available type of electrical

measurement data for resistive memory cells. We map this real-world data

onto a vector autoregressive stochastic process to accurately reproduce

the device parameters and their cross-correlation structure. While closely

matching themeasured data, ourmodel is still very fast; we provide parallelized

implementations for both CPUs and GPUs and demonstrate array sizes above

one billion cells and throughputs exceeding one hundred million weight

updates per second, above the pixel rate of a 30 frames/s 4K video stream.

KEYWORDS

neuromorphic computing, machine learning, time series, emerging technologies,

stochastic model, ReRAM, neural networks, nanotechnology

Introduction

Recent trends in computing hardware have placed increasing emphasis on

neuromorphic architectures implementing machine learning (ML) algorithms directly

in hardware. Such bio-inspired approaches, through in-memory computation and

massive parallelism, excel in new classes of computational problems and offer promising

advantages with respect to power consumption and error resiliency. While CMOS-

based neuromorphic computing (NC) implementations have made substantial progress

recently, new materials and physical mechanisms may ultimately provide better

opportunities for energy efficiency and scaling (Burr et al., 2017; Milo et al., 2020;

Sangwan and Hersam, 2020).

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.941753
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.941753&domain=pdf&date_stamp=2022-08-18
mailto:daniel.bedau@wdc.com
https://doi.org/10.3389/fnins.2022.941753
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.941753/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Hennen et al. 10.3389/fnins.2022.941753

FIGURE 1

In analogy to biological synapses, two terminal solid state

nanodevices such as ReRAM can store synaptic weights as

electrical resistance states. The devices, consisting simply of

patterned metal-insulator-metal material stacks, have an

adjustable resistance level determined by the ionic configuration

inside the insulating layer. This nano-ionic mechanism also

exhibits non-ideal properties such as stochasticity and noise.

A specific functionality required in NC applications is

the ability to mimic synaptic connections and plasticity by

allowing the storage of large numbers of interconnected and

continuously adaptable resistance values. Several candidate

memory technologies such as MRAM, ReRAM, PCM, CeRAM,

are emerging to cover this behavior using different physical

mechanisms (Chen et al., 2014; Liu et al., 2014; You Zhou and

Ramanathan, 2015; Yu and Chen, 2016). Among these, ReRAM

is attractive for its simplicity of materials and device structure,

providing the necessary CMOS compatibility and scalability

(Waser et al., 2009). ReRAM is essentially a two terminal

nanoscale electrochemical cell, whose variable resistance state

is based on manipulation of the point defect configuration

in the oxide material (depicted in Figure 1). This redox-based

switching mechanism is intrinsically analog, allowing stable

resistance levels to be stored and adjusted through application

of bipolar voltage stimuli. However, non-idealities such as

stochasticity, nonlinearity, and noise are prominent features

of these devices that critically impact the performance of

neuromorphic systems composed of them (Kim et al., 2018).

Modern ML models have reached an astonishingly large

and ever-increasing size, with recent examples exceeding a

hundred billion weights (Brown et al., 2020). Before comparable

neuromorphic hardware using artificial solid-state synapses

can become a reality, large-scale network designs need to

first be implemented and evaluated in computer simulations.

Training, validation, and optimization of such networks is a

process that involves a huge number of simulated devices,

voltage pulses, and current readouts. Within this process, it

is important to accurately consider the constraints of the

underlying hardware in detail. Therefore, lightweight, fast, and

accurate stochastic simulations of the individual synaptic devices

is a key requirement.

Traditionally, device modeling begins with a physical

description of the materials and processes involved. In the case

of ReRAM, the physical situation is immensely complicated with

many degrees of freedom, and accurate modeling is a wide-

scale and ongoing research undertaking. Efforts in this direction

are motivated by advancing an understanding of physical and

chemical dependencies that can in principle inform design

choices on physically justified grounds. In the past decade,

many different computational techniques have been employed

to furnish device models, from ab initio density-functional

theory (DFT), molecular dynamics (MD), kinetic Monte Carlo

(KMC), finite element method (FEM), as well as ordinary

differential equation (ODE) and differential algebraic equation

(DAE) solvers (Ascoli et al., 2015; Jiang and Stewart, 2017;

Messaris et al., 2018; Stewart, 2019; Kopperberg et al., 2021).

The resulting models exist on a spectrum of physical abstraction,

such that the cost of increasing computational speed is generally

a trade-off in physical accuracy/detail (Ielmini and Milo, 2017).

Device models that naturally encompass stochasticity do

so at the cost of complexity needed to compute the physical

scenario in high detail. For example, atomistic KMC simulates

switching processes with atomic precision and is inherently

stochastic but requires hours of computation per cycle even

for small individual cell volumes (e.g., 125 nm2 Abbaspour

et al., 2020). At the other end of the spectrum, dynamic

models based on numerical solutions of ODE systems are

designed to run significantly faster while sometimes aiming

to remain physically realistic. However, their higher speed

invariably comes at the cost of approximations, simplifications,

and omissions of physical reality. Typically, device operation

is distilled to a dynamical description of one or two state

variables, such as a conducting filament length, radius, or a

defect concentration.

Due in part to ambiguity in their high dimensional

parameter space, a given ODE model encompasses a diverse

range of possible cell behaviors and has the flexibility to

approximately match measurement data (Mayer et al., 2010;

Reuben et al., 2019). However, fitting the model to data is

commonly an ad-hoc, manual, and/or unspecified procedure.

Having dispensed with the atomistic sources of variability, ODE

models are fully deterministic by default. Where stochasticity

is required, it is accounted for by injecting noise into the state

variables or parameters of the model (Maria Puglisi et al.,

2015; Li et al., 2017; Bengel et al., 2020). Due to the unique

experimental challenges posed by electrical measurement of

ReRAM, the data used for fitting is not necessarily statistically

sufficient nor measured under relevant electrical conditions and

timescales.Whilemodels can be tuned by hand to roughlymatch

the dispersion observed in a measurement (Chen and Yu, 2015;

Jiang et al., 2016), they generally fail to accurately reproduce the

complex statistical properties of actual devices.
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The main purpose of ODE device models is to be

computationally efficient enough to support circuit simulation.

Still, nonlinear ODE solvers require many finely spaced

timesteps and a considerable amount of total time to compute

dynamical trajectories. Although they have been successfully

used to demonstrate small scale circuitry such as logic

elements and small crossbar arrays (Bocquet et al., 2014;

Huang et al., 2017; Siemon et al., 2019; Wald and Kvatinsky,

2019), benchmarks or indications of run time for ODE-based

simulations have so far not been supplied. Except for extremely

small ML model sizes on the order of 103 weights or below,

demonstrations of network performance are expected to remain

computationally intractable via conventional circuit simulation.

In this article, we address these device modeling challenges

with a new type of generative model for arrays of artificial

synapses. The main objective of the model is to accurately

reproduce the statistical properties of fabricated devices

while remaining computationally lightweight. Starting with

newly available electrical measurement data as an input, this

phenomenological model is systematically fit using a well

defined statistical regression analysis. The exclusive use of easily

computable analytical expressions provides close quantitative

agreement with relevant experimental observation. Taking

advantage of parallel resources on a modern CPU and GPU,

we demonstrate the ability to simulate hundreds of millions of

synaptic connections with over 108 weight updates per second.

With its high throughput and low memory footprint, the model

can be usefully employed to simulate large arrays of solid-

state synapses for investigation of emerging NC concepts on a

large scale.

Methods

The basic requirement for an electronic device serving as

an artificial synapse is to moderate the flow of electrical signals

through connections in a network. Left undisturbed, the device

ideally maintains a fixed weight, or dependence between the

voltage across the two device terminals, U, and the resulting

current through the device, I. Further, for learning there must

be some means of affecting the weight in a durable way.

ReRAMs are bipolar devices that have an adjustable (potentially

nonlinear) non-volatile resistance state, which is based on the

size and shape of a conducting filament that partially or fully

bridges the insulating gap of the oxide material. Simplistically,

when U exceeds certain threshold levels, the resistance state

begins to transition toward lower or higher values depending on

the voltage polarity, which corresponds to growth and shrinkage

of the conducting filament. When the filament only partially

bridges the insulating gap, conduction may be limited for

example by tunneling through a Schottky barrier of a material

interface, leading to a relatively high resistance levels (Yang

et al., 2008; Waser et al., 2009). As the filament grows and

gradually bridges the gap, the resistance decreases as conduction

transitions into the ohmic type.

In designing our model, we place high priority on speed

and fitting accuracy. One of the beginning assumptions is that

in every possible device state, the current can be represented

by a linear mixture of two fixed polynomials in U. These

two polynomials, which are each estimated from a fit to

measurement data, can be thought of as limiting cases for the

highest possible high resistance state, IHHRS(U), and lowest

possible low resistance state, ILLRS(U). The device current in all

possible resistance states is then given by

I(r,U) = rIHHRS(U)+ (1− r)ILLRS(U), (1)

conveniently reducing the description of the conduction in the

material to a single state variable 0 < r < 1. This set of functions

can be efficiently evaluated by Horner’s algorithm and serve as a

close enough approximation to the true non-linear conduction

behavior for our purposes.

In ReRAM, the overall resistance state as well as the

transition behavior is affected by a vast number of different

possible configurations of ionic defects in the material, giving

rise to the observed stochastic behavior and history dependence

(Figure 2). Rather than attempting to describe the ionic

transport physically, we turn instead to measurement data

to directly provide the necessary statistical information. A

discrete multivariate stochastic process based on a Structural

Vector Autoregression (SVAR) model is fit to the data and

used to generate latent variables that guide the state evolution

of simulated memory cells. As a cell is exposed to voltage

signals, new terms of the SVAR model are realized by a sum

of easily computable linear transformations of past states and

pseudorandom vectors.

As an overview, the experimental and simulation approach

that will be elaborated in this section can be shortly summarized

as follows:

1. A fabricated ReRAM cell is experimentally driven through a

large number of resistance cycles by applying a continuous

periodic voltage signal while measuring the resulting current.

2. A time series of feature vectors, xn, composed of resistance

values and switching threshold voltages, is extracted from

each of the measured cycles.

3. A discrete stochastic process, x∗n, is constructed to enable

generation of simulated feature vectors that reproduce the

measured distributions as well as the long-range correlation

structure of xn.

4. An array of simulated cells are instantiated according to

independent realizations of x∗n to represent cycle-to-cycle

variations, together with a random scaling vector sm to

represent device-to-device variations.

5. Two programming methods are exposed for each cell; one to

apply voltages and another to make realistic current readouts.

Applied voltages above the generated thresholds alter the
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FIGURE 2

Resistance states reached in a synaptic ReRAM device through

application of voltage pulses exhibit a probabilistic dependence

on past states, leading to long-range correlations that also

involve other parameters such as the voltage thresholds

required for switching. Starting with e�ectively infinite state

possibilities, represented by the three cells on the left, an applied

voltage pulse brings about a set of transition probabilities to

many possible future states (right).

device state, following an empirical structure which encodes

the resistance transition behavior and allows access to a

range of resistance states. Each voltage driven resistance cycle

triggers the generation of new stochastic terms from x∗n,
which govern the progression to future states.

Data collection

For the purposes of stochastic modeling, electrical

measurement data is needed that capture relevant information

about the internal state of a memory cell and its variation

cycle-to-cycle (CtC) and device-to-device (DtD). However,

ReRAMmeasurements performed at operational speed typically

make exclusive use of rectangular voltage pulse sequences,

which yield very little useful state information. On the other

hand, measurements applying continuously swept voltage

signals while sampling the resulting current are more suitable

because much more information is collected each cycle, such

as switching threshold voltages, current-voltage nonlinearity,

resistance states, and transition behavior.

Conventionally, measurements employing voltage sweeps

are carried out using the source measure units (SMUs)

of commercial semiconductor parameter analyzers (SPAs).

However, SMUs make heavy use of averaging to measure noisy

signals at high resolution and thus sample too slowly to collect

cycling data in a meaningful quantity. Furthermore, because

two-terminal switching devices are prone to electrical instability

and runaway transitions, voltage sweeping measurements

usually require integrated current limiting transistors to avoid

destruction or rapid degradation of the cell. This presents

a significant fabrication overhead and limits the materials

available for study. In light of these challenges, the input

data for the present stochastic model was acquired using a

custom measurement technique, introduced in detail in a recent

publication (Hennen et al., 2021). The setup uses an external

current-limiting amplifier circuit to allow for collection of

sweeping measurements at over six orders of magnitude higher

speeds than SMUs, while also eliminating the cumbersome

requirement of on-chip current limiting.

The ReRAM cell used for measurement of cycling statistics

was integrated in the back end of line of a 130 nm CMOS

process, between M4 and M5 aluminum metal lines (Figure 3).

On M4, a damascene TiN via followed by a patterned TiN

bottom electrode were processed, forming the inert electrode

of the device. The memory stack was then deposited. First,

10 nm HfO2 deposited by atomic layer deposition (using

HfCl4 and H2O precursors) acts as the resistive switching

layer (Nail et al., 2016). Then, a 20 nm Ti scavenging layer

was deposited by physical vapor deposition, allowing creation

of oxygen vacancies within the HfO2 during the memory

operation. A 100 nm TiN top layer was used to cap the device.

Deep ultraviolet photolithography and dry etching were used

to pattern the memory dot, defining the active area. A SiN

capping layer was used to isolate the memory from adjacent

cells. Top vias were then opened by photolithography and

dry etching in order to contact the memory dots. Finally,

aluminum M5 was deposited and patterned to complete the

process flow.

The measured device was electrically isolated with contact

pads leading directly to the top and bottom device electrodes,

with no access transistor or added series resistance. Using a

fixed 100 µA current limit in the SET polarity, the pristine cell

was electroformed by application of 100 µs duration triangular

pulses with incrementally increasing amplitude until a current

jump was recorded near 3 V. For all subsequent cycling, a 1.5 V

amplitude 10 kHz triangular waveform was applied. The cell

was first exercised for 2.4 × 106 cycles before 106 additional

cycles were collected for analysis. Current (I) and voltage (U)

waveforms were simultaneously recorded with 8-bit resolution

and with a sample rate of 1,042 samples per cycle. The measured

current array was smoothed with a moving average filter to

improve the quality of the raw data before further analysis. An

adaptive rectangular window size was used to preserve current

steps in the signal, with the maximum window size of 25

samples gradually reducing to a minimum of 3 samples at the

pre-detected locations of SET transitions of each cycle. After

smoothing, the contiguous I and U waveforms were split into
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FIGURE 3

Scanning electron micrographs of the ReRAM cell design used

for electrical measurement. (A) shows an optical image of the

array of contact pads, (B) shows a cross-section of a cell, and

(C) shows a zoom-in of the resistive memory between

metalization layers M4 and M5.

indexable cycles at most positive value of the periodic applied

voltage (see Figure 4).

Each cycle exhibits the following temporal sequence of states

and events: a high resistance state (HRS), a transition (SET)

out of the HRS into the following low resistance state (LRS),

and finally another transition (RESET) into the next HRS.

Current vs. voltage (I,U) plots for a subset of the collected

cycles are shown in Figure 5, which highlights the significant

stochastic CtC variations. The observed characteristics are

typical for ReRAM devices subjected to voltage-controlled

sweeps — on average, there is relatively higher voltage non-

linearity in the HRS than in the LRS, and a large proportion

of the SET transitions are abrupt with respect to the applied

voltage. The SET transition times as defined by the time spent

FIGURE 4

Measured time dependence of I and U waveforms resulting from

the ReRAM cycling experiment. The waveforms are divided into

106 indexed cycles, the first three of which are shown. From this

dataset, the periodic temporal sequence of the states and

events of each cycle (HRSn, SETn, LRSn, RESETn) is extracted and

subject to statistical modeling.

between –30 µA and –90 µA is connected to the voltage sweep

rate, and was distributed between 100 ns and 5 µs in this case.

The RESET transitions, in contrast, proceed relatively gradually

over a voltage range of approximately 700 mV, following

a concave transition curve with N-type negative differential

resistance.

Feature extraction

The full I,U cycling measurement just described consists

of over 16 GB of numerical data and would not be practical to

model on a point-by-point basis. Therefore, we aim to compress

the dataset while retaining enough information such that the full
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FIGURE 5

A subset of the 106 measured (I,U) cycles used as input to the

stochastic model. The black arrowed path shows the average

(I,U) curve and its temporal direction. Di�erent cycle indices are

represented by colored paths, which show significant statistical

variation.

(I,U) characteristics can be approximately reconstructed from

the compressed representation. Accordingly, the full dataset is

reduced to a vector time series of distinguishing features of each

cycle. Four scalar features were chosen for extraction: the value

of the HRS, RH[�], the SET threshold voltage, US[V], the value

of the LRS, RL[�], and the RESET voltage, UR[V]. We denote

the series as

xn =




RH,n

US,n

RL,n

UR,n


 =




RH

US

RL

UR



n

, (2)

where n = {1, 2, . . . , 106} is the set of cycle indices. The

feature vector elements, whose precise definition follows, are

chronologically ordered from top to bottom as they occur in the

measurement dataset.

The SET voltage US, or the voltage where the cell resistance

abruptly decreases, is extracted from each cycle as the absolute

value of the linearly interpolated U corresponding to the first

level crossing of I = −50µA. The RESET voltageUR, defined as

the voltage where the reset process begins, is determined from

the I datapoints by peak detection using simple comparison

of neighboring samples. Here, only the increasing section of

the voltage sweep with U > 0 is considered. The voltage

corresponding to the first encountered peak with prominence

≥ 5 µA is taken as the RESET voltage. If no peak satisfies this

criterion, the peak with maximum prominence is taken instead.

The device current for any static state is approximated in

our model as a polynomial function of the applied voltage.

The values of RH and RL are likewise extracted from least

squares polynomial fits to appropriate subsets of the measured

(I,U) data of each cycle. The HRS is fit with a 5th degree

polynomial on the decreasing U sweep in the variable range

US + 0.1 V ≤ U ≤ 1.5 V and −25 µA ≤ I ≤ 80 µA,

and the LRS is fit with a 3rd degree polynomial on the increasing

part of the V sweep in the range −0.7 V ≤ U ≤ UR − 0.05 V

and −80 µA ≤ I ≤ 120 µA. The fits are constrained

such that the 0th order coefficient equals 0 A, and the 1st order

coefficient is≥1 nA/V. The values of RH and RL are then defined

as the static resistance of the respective polynomials at a fixed

voltage U0 = 200 mV.

An overview of the result of this feature extraction is given

in Figure 6. The 106 cycles proceeded without significant long-

term drift from the overall mean value,

x̄n =




166.5 k�

0.85 V

8.2 k�

0.72 V


 , (3)

but with significant variations in each feature between cycles.

A prominent characteristic of this data is that it is strongly

correlated over long cycle ranges, as quantified in Figure 14.

The asymmetric marginal distributions for each of the features

were very well resolved due to the large number of samples, and

they did not accurately converge to any analytical probability

density function (PDF) in common use, including the normal

and log-normal.

Stochastic modeling

This section will introduce the statistical methods used to

model the internal states of an array of synaptic ReRAM devices,

including CtC and DtD variability effects. The handling of

voltages applied to the cells as well as the simulation of realistic

readouts of the resistance states will also be established. To help

orient the reader, the overall structure of the generative model

that will be described is provided in advance in Figure 7.

Cycle-to-cycle variations

In seeking to represent the input time series xn with

a stochastic process, the main goals are to recreate the

marginal distributions as well as the correlation structure of

its vector components. To achieve the first goal with high

generality, we use an approach based on transformation of

the measured densities to and from the standard normal

distribution N (0, 1). This way, a single process can be used to

achieve any set of marginals presented by the input data, with

the relatively unrestrictive requirement that this base process

generates normal marginals. Notationally, we define and apply

an invertible, smooth mapping Ŵ :R
4 → R

4 that normalizes

the marginal distributions of the vector components,
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FIGURE 6

A view of the feature vector time series extracted from each of 106 measured (I,U) cycles. Each feature, which represents either a resistance

state or a switching voltage, has its marginal histogram shown on the right.

xn =




RH

US

RL

UR



n

Ŵ−→




R̂H

ÛS

R̂L

ÛR



n

= x̂n, (4)

where a hatted variable signifies that it is distributed as N (0, 1).

We then construct a base process x̂∗n whose marginals are

normal, and finally transform its output back to the original data

distributions via the inverse map Ŵ
-1. The overall process x∗n is

thus defined,

x̂∗n =




R̂∗H
Û∗
S

R̂∗L
Û∗
R



n

Ŵ
-1

−−→




R∗H
U∗
S

R∗L
U∗
R



n

= x∗n, (5)

where a star indicates a generated random variable to distinguish

from variables originating from measurement data.

This type of density transformation procedure is a widely

used technique for working with arbitrary distributions, which

finds application in a variety of fields and can be constructed

in many different ways (Cario and Nelson, 1996; Rezende

and Mohamed, 2015). While the transformation is trivially

constructed in the case where the target quantile function and

its inverse are each analytically defined, we do not make this

assumption in the present scenario. A simple numerical method

in this case is a so-called quantile transform, where the input

and output quantile functions are each discretely sampled and

the transformation is defined through a direct map between bins

or through interpolation. The main requirement for Ŵ in our

model, however, is that its inverse (Equation 5) is easy to evaluate

without causing cache misses due to memory access, thus it is

preferable to avoid referencing and interpolation of large look-

up tables. The forward transformation (Equation 4), on the other

hand, only needs to be computed once for model fitting and

is not used for the generating process. We therefore define Ŵ
-1

as essentially a quantile transform, operating on each feature

independently, that is evaluated from a fit of the quantiles to a

specific analytic function. Namely,

Ŵ
-1
(̂xn) = exp




γ1 (̂RH,n)

γ2(ÛS,n)

γ3 (̂RL,n)

γ4(ÛR,n)


 = xn, (6)

where γ1–γ4 are each 5th degree polynomials, and the

exponential function is applied element-wise. The coefficients of

the polynomials are fit to standard normal quantiles vs. those

of the respective (log) features, sampled at 500 equally spaced

values between 0.01 and 0.99. The fitted polynomials are checked

for monotonicity within four standard deviations above and

below zero, and the forward transformation,

Ŵ(xn) =




γ
-1

1 (logRH,n)

γ
-1

2 (logUS,n)

γ
-1

3 (logRL,n)

γ
-1

4 (logUR,n)


 = x̂n, (7)
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FIGURE 7

Graphical model depicting the relationships between all parameters and latent variables involved in the stochastic synapse model. Plate notation

is used to represent N switching cycles of M devices, each yielding an observed readout current. The dotted recurrent arrow denotes a

connection to each of the p following frames, as needed by the history dependent stochastic process.

is computed using numerical inverse of the γ polynomials. A

visualization of the functionŴ as well as themarginal histograms

corresponding to input series xn and output series x̂n, are shown

in Figure 8.

Now that we have transformed the input measurement data

into a normalized vector time series x̂n, a suitable stochastic

process will be chosen for fitting. This process should serve

as a useful approximation to the true physical mechanisms

that generated the data, capturing the long-range correlation

structure of the observed features. Time series analysis is broadly

used across scientific and engineering domains, but despite

its applicability to the rich statistical behavior displayed by

resistive switching devices, device models have not yet widely

employed dependent stochastic processes. Many models and

analyses assume for convenience that features are independently

and identically distributed according to a normal or lognormal

PDF (Chen, 2015; Li et al., 2017). However, there is not a

strong theoretical basis for this assumption in a highly nonlinear

and path-dependent system based on continuous evolution of

conducting filaments. Dependent stochastic processes, on the

other hand, more appropriately allow for a description of the

dependence of future states on past states.

Simple models in the category of Markov chains have

been considered as generating processes for memory cells.

A rudimentary example is a 1-dimensional random walk

process, where each future state is computed as a random

additive perturbation on the previous state (Bengel et al.,

2020). While random walk represents a reasonable short-

range approximation, it has the well known property that the

expected absolute distance between the initial value and the Nth

value is proportional to
√
N for large N, causing the process

to eventually drift to unphysical values without the use of

artificial constraints.

Autoregressive (AR) models are simple univariate processes

sharing some characteristics of random walk, but based

additionally on a deterministic linear dependence on past

observations. Each new term of an AR(p) (AR of order p) model

is computed by linear combinations of p previous (lagged)

values together with a noise term, producing processes that

are wide-sense stationary and mean-reverting within suitable
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FIGURE 8

Visualization of the invertible normalizing transformation Ŵ that

is applied to the measured feature vectors before fitting with a

base stochastic process. The left column shows the marginal

PDFs of the vector time series xn extracted from measurement.

The center column shows the input and output

quantile-quantile plots with the fitted log-polynomial function

used to transform the distributions (here, Q denotes the quantile

function of its argument). The right column is the result of

applying Ŵ to the input data, producing x̂n whose elements are

normally distributed.

parameter ranges (Hamilton, 1994; Lütkepohl, 2005). The few

times they have appeared in the literature, low order models

like AR(1) and AR(2) were used to describe state variables

independently (e.g., a sequence of high and/or low resistance

states) (Fantini et al., 2015; Roldán et al., 2019). Here we pursue a

more comprehensive statistical description of the interrelations

between the different variables contained in the vectors x̂n which

takes into account long-range correlations p≫1. This is enabled

by using a VAR(p) model (vector AR of order p), which is the

multivariate counterpart of the AR model applicable to discrete

vector time series (Hamilton, 1994; Lütkepohl, 2005).

We adopt in particular a Structural VAR (SVAR)

formulation of the model, which is a factorization that

makes the relationships between the contemporaneous (same

index) variables explicit. The model has the form

Âx∗n =
p∑

i=1

Cîx
∗
n−i + Bǫn, (8)

where A, B, and Ci are 4 × 4 matrices of model parameters,

and ǫn is a 4-dimensional standard white noise process. With

this formulation we impose a general structure of causal

ordering for the generated random variables consistent with

the chronological chain of measurement events. Within this

structure, each variable may have a causal and deterministic

effect on all future variables within range p, as visualized by

the graph of Figure 9. The size of these effects are all subject

to fitting via the coefficients of the model. Constraints on the

structural parameters,

A =




1 0 0 0

A21 1 0 0

A31 A32 1 0

A41 A42 A43 1


 ,B =




B11 0 0 0

0 B22 0 0

0 0 B33 0

0 0 0 B44


 (9)

enforce the desired causal structure while assuming an

uncorrelated noise driving process. Model fitting was performed

using the Python statsmodels package (Seabold and Perktold,

2010), wherein a VAR(p) model is first fit by ordinary least

squares regression, and a maximum likelihood estimate is then

used to determine the structural decomposition.

Device-to-device variations

So far, we have only considered the statistical modeling of the

cycling process of a single memory cell. However, the purpose

of the presented model is to simultaneously simulate a large

number of cells in a network. Individual memory devices on a

wafer generally show statistical variations, mainly arising due

to defects and non-uniformities in fabrication (Fantini et al.,

2013; Dalgaty et al., 2021). These DtD variations depend strongly

on the lithography processes and materials used. They can also

originate from intrinsic factors and are influenced by conditions

during the electroforming of each cell (Butcher et al., 2012;

Zhao et al., 2014). Because of the potential positive or negative

impact on network performance, it is important for the model to

account for the DtD variability (Moon et al., 2019; Dalgaty et al.,

2021).

The electrical effect of device variability is modeled with each

cell using a modification of the same underlying SVAR cycling

process. Device-specific processes are defined as members of a

parametric family of processes, all based on element-wise scaling

of x∗n, where the scaling factors are themselves random vectors.

The specific process is denoted

y∗m,n = sm ⊙ x∗n, (10)
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FIGURE 9

A weighted graph displaying the causal structure of the utilized SVAR(p) process, showing the nearest temporal contributions to realizations of

the random vector x̂∗n. Arrow weights show the model parameters contained in A, B and the upper triangular part of C1 when fit with p = 100.

The actual SVAR(p) model uses many more connections than shown (16p+ 10), so that each variable is impacted by all past values of all other

variables within cycle range p.

wherem = {1, 2, . . . ,M} is the device index,⊙ is the Hadamard

(element-wise) product, and sm are 4× 1 random vectors drawn

from a fixed distribution at cell initialization.

The distribution of sm is chosen so that the features of the

median cycles of different devices are distributed and correlated

in the same way as the measured cycling data xn. This choice

reflects that the covariations of switching features DtD arise

in the same physical system with causes and effects that are

comparable to those of the CtC variations. To this end, random

vectors ŝm are drawn from a multivariate normal (MVN)

distribution and Ŵ
-1 is then reused to map them to the measured

CtC distribution,

sm = Ŵ
-1
(̂sm)⊘ Ŵ

-1
(0), where ŝm ∼ N (0, a6). (11)

Here, the denominator of the Hadamard division (⊘) sets

the median scale vector to the identity, 6 = cov(̂xn) is the

sample covariance of the normalized measurement data, and

a is a free scalar parameter providing adaptability to different

DtD covariance levels. A robust determination of a requires

measurement of many switching cycles across a large number of

devices of interest. Values in the range a ∈ [1, 1.5] approximately

correspond to published DtD measurement samples (Fantini

et al., 2013; Dalgaty et al., 2021), but improved processing and

electroforming procedures may justify the use of a < 1.

Control logic

As components of a network, each simulated cell possesses a

resistance state that encodes the weight of a connection. Voltage

pulses directly applied to the cells are used to produce resistance

state transitions to update the weights. In this model, applied

voltage pulses are distinguished only by a scalar amplitude Ua,

whether they are in fact square waveforms or they have a more

complex shape of an action potential. Although ReRAMs are

known to be highly time-dependent devices (Menzel et al.,

2015), we assume here that the duration of the pulses are

appropriately matched to the experimental timescale, such that

a simulated voltage pulse of a given amplitude produces an effect

comparable to the experimental voltage sweep at the instant

it reaches that same amplitude. Possible state modifications in

response to an input pulse is computed with respect to I,U

sweeps that are reconstructed from each stochastic feature vector

generated for each cycle as illustrated in Figure 10.

As previously specified in Equation (1), every possible

electrical state of a device is assumed to correspond to a

polynomial I(U) dependence parameterized by a state variable

r. It is straightforward to calculate that the state variable for a

curve passing through an arbitrary (I,U) point is uniquely given

by the function

r(I,U) =
ILLRS(U)− I

ILLRS(U)− IHHRS(U)
. (12)

Therefore, the state variable corresponding to any static

resistance level R (evaluated at U0) can be calculated using

r(R) =
ILLRS(U0)− U0R

-1

ILLRS(U0)− IHHRS(U0)
. (13)

The I(U) curves for the electrical states corresponding to the

HRS and LRS of each cycle, hereafter called IHRS,n(U) and

ILRS,n(U), are defined according to equations (1) and (13)
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FIGURE 10

Conduction polynomials and threshold voltages allow

reconstruction of (I,U) cycles from generated feature vectors.

Simulated resistance switching is such that the conduction state

I(r,U) induced by an applied voltage Ua intersects the

reconstructed cycle at U = Ua. For visual simplicity, the cycle

shown begins and ends in the same HRS (RH,n = RH,n+1).

such that their static resistance equals the respective value

of R∗H,n and R∗L,n.
Transitions between the HRS, LRS, and intermediate

resistance states (IRS) in response to an applied pulse amplitude

Ua follow an empirically motivated structure, represented by the

flow chart of Figure 11. The SET transition for the nth cycle

HRSn → LRSn may occur for negative voltage polarities and

follows a simple threshold behavior, fully and instantaneously

transitioning the first time a voltage pulse with amplitude Ua ≤
U∗
S,n is applied. In contrast, the RESET transition LRSn →

HRSn+1 occurs gradually in the positive polarity with increasing

Ua in the range U∗
R,n < Ua ≤ Umax, where Umax = 1.5 V is the

maximum voltage applied in the voltage sweepingmeasurement.

A transition curve IRESET,n(U) is defined to connect the (I,U)

points of the two limiting states where the RESET transition

begins and ends. The functional form of the transition curve is

chosen to be the parabola with boundary conditions

IRESET,n(U
∗
R,n) = ILRS,n(U

∗
R,n) (14)

IRESET,n(Umax) = IHRS,n+1(Umax) (15)

dIRESET,n

dU

∣∣∣∣
U=Umax

= 0. (16)

When a voltage pulse in the RESET range is applied, an IRS

results which is calculated with reference to the transition curve

such that I(r,Ua) = IRESET,n(Ua). Additional RESET pulses

with larger amplitudes may be applied to incrementally increase

the cell resistance, with HRSn+1 being reached only if Ua ≥
Umax, after which no further RESET switching is possible for

the nth cycle. After either partial or full RESET, the resistance

may only decrease again by entering the following LRSn+1 with

a voltage pulse meeting the SET criterion Ua ≤ U∗
S,n+1.

Readout

Simulated current measurements (readouts) for each

individual cell can be generated given an arbitrary readout

voltage input Uread. The noise-free current level simply

corresponds to evaluation of I(r,Uread) for each cell. In any

real system, however, current readouts are accompanied by

measurement noise, which may impact system performance and

even present a fundamental bottleneck. Furthermore, in digital

systems current readouts are converted to finite resolution by

analog to digital converters (ADCs). Due to constraints of power

consumption and chip area, ADC resolution is often limited

such that digitization is the dominant contributor to the total

noise (Ma et al., 2019). Many additional noise sources can

be considered, such as 1/f noise (Wiefels et al., 2020), but at

minimum the Johnson-Nyquist noise and the shot noise should

be included because they represent a lower bound of noise

amplitude impacting all systems.

To account for measurement noise, each individual current

readout includes an additive noise contribution drawn from a

normal distribution. The noise amplitude is approximated from

the Nyquist and Schottky formulas,

σI =

√
4kBTIread1f

Uread
+ 2qIread1f , (17)

where1f is the noise equivalent bandwidth, kB is the Boltzmann

constant, T = 300 K is the temperature, q is the electron charge,

Iread is the noiseless current readout, and Uread is the voltage

used for readout. The total current is then ideally digitized with

an adjustable resolution nbits between adjustable minimum Imin

and maximum Imax current levels.

Program implementation

To facilitate investigations of neuromorphic systems, model

implementations designed to simulate arrays of devices were

developed in the Julia programming language. Julia is a

modern high-level language that is focused on performance

and that provides an advanced ML and scientific computing

ecosystem. Julia programs compile to efficient native code

for many platforms via the LLVM compiler infrastructure,

and a cursory analysis indicated that single threaded CPU

performance of a Julia implementation is up to 5,000 times

faster than a Python implementation. Furthermore, as modern

computational resources are highly parallel, Julia’s support for

CPUmulti-threading and GPU programming through CUDA.jl

(Besard et al., 2019) is an important advantage.

All model parameters corresponding to the device

characterized in this article, including different possible

SVAR model orders, p ∈ [1, 200], are stored in a binary file

which is read in by the program at startup. Each instantiated

cell stores state information and p cycles of history using
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FIGURE 11

Logical flow chart showing how applied voltage pulses a�ect the state of each cell during simulation. Following the experimental observations,

SET processes always occur abruptly below a threshold voltage, while partial switching is induced for a range of RESET voltages, with

intermediate states bounded for cycle n by resistance values between RL,n and RH,n+1. As resistance cycling progresses, later terms of the

stochastic driving process are used for limiting resistance states and threshold voltages. Pulse amplitudes not producing a state change are

e�ciently disregarded.

primarily 32-bit floating point numbers. The total memory

footprint grows linearly with the chosen model order and

is approximately 16p + 56 bytes per cell. A reduced form

VAR process is used to compute realizations of x∗n, which

are lazily evaluated along with the parabolic transition

polynomials if and when they are needed. The majority of

the necessary runtime computations are formulated as matrix

multiplications, which are heavily optimized operations across

many different contexts.

The present release contains two model implementations

to suit a wide variety of computing platforms and use cases

(Hennen, 2022). The first is a CPU optimized version wherein

the cells of an array are individually addressable for read/write

operations. These operations are naturally parallelized for multi-

core processors by partitioning the cells and assigning each

partition to independent threads of execution. The second

implementation is a GPU accelerated version compatible with

CUDA capable GPUs. This version uses a vectorized data

structure and parallel array abstractions to take advantage

of the implicit parallelism programming model of CUDA.jl.

Here, all defined cells are always accessed simultaneously, with

each read/write operation employing optimized linear algebra

GPU kernels. While the GPU implementation integrates well

with other ML components residing in GPU shared memory

and achieves higher throughput per cell for large parallel

operations, the CPU implementation obtains higher update

rates for sparse operations commonly encountered in large-scale

models (Pedroni et al., 2019, 2020).

Results

As shown visually in the scatterplot of Figure 12, the

stochastic process x∗n generates data that closely resemble

the measurement data xn. The generated distributions match

the empirical distributions so closely that it is difficult to

visualize their difference. The Wasserstein metric is a distance

function defined between probability distributions that can

be used to quantify a small discrepancy (Kantorovich, 1960).

The first Wasserstein distance was calculated element-wise

and averaged across 100 realizations of x∗n with length 106.

The result,

W1(xn, x
∗
n) =




5, 146 �

937 µV

20 �

356 µV


 , (18)

is much smaller than the mean feature vector, x̄n (Equation 3),

and independent of the chosen model order. This shows that

the goal of reproducing the measurement distributions is well
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FIGURE 12

Comparison of feature time series extracted from measurement data and those generated by the SVAR-based model. The compared features

converge to e�ectively equivalent distributions and the short-range behavior is qualitatively similar across thousands of cycles.

achieved for the input dataset by using the described method of

probability density transformation.

Simulations of full (I,U) cyclingmeasurements (Figure 13A)

show close similarity with the measurement data of Figure 5.

Multi-resistance-level capability is also demonstrated by a

similar simulation involving partial RESET operations by

changing the maximum voltage applied (Figure 13B). The

dependence of the resulting HRS value on the applied

voltage reproduces a non-linear characteristic comparable to

experimental findings (Park et al., 2013; Ambrogio et al., 2016).

While a full structural analysis of the fitted SVAR(p) model

parameters (A,B,Ci) will not be presented here, a few aspects

are worthy of note. For the fit corresponding to the particular

device and measurement described in this work, the white noise

terms are by far the dominant contributors to all four modeled

features. The contemporaneous terms (A) and first order (C1)

terms are the next most significant, which indicates that themost

recent cell history is most relevant for generating the proceeding

states. Nevertheless, input data correlations persist for many

cycles, and the generating process x∗n successfully reproduces the
overall correlation structure of the data up to at least p cycle lags,

as shown in detail in Figure 14.

Although no physical effects were explicitly put into the

model definition, it is important to recognize that the effects are

quantitatively captured and put into a useful statistical context

by the SVAR model fitting procedure. The model weights

contained in A,B, and Ci quantify deterministic relationships

between past and future variables even in the presence of large

random fluctuations. As seen in the graph of Figure 9, the

four strongest coefficients in the fitted model correspond to

the relationships

R̂∗H,n
0.111−−−−→ Û∗

S,n, (19)

Û∗
S,n

−0.139−−−−→ R̂∗L,n, (20)

R̂∗L,n−1
0.153−−−−→ R̂∗L,n, (21)

R̂∗L,n
0.180−−−−→ Û∗

R,n, (22)

where weight of each relationship is printed above the arrows.

Comparable relationships between switching variables have

been identified and discussed in physics-based models and

simulations as well as in experimental studies involving various

materials (Ielmini, 2011; Nardi et al., 2011, 2012; Nishi et al.,

2015; Kim et al., 2016a,b; La Torre et al., 2016). According to

relation 19, larger starting HRS values tend to contribute to a

higher SET voltage, which is a well known effect due to a reduced

driving force for ionic motion at a given applied voltage, as a

larger HRS gives both reduced power dissipation as well as a

reduced electric field in a thicker insulating gap. The subsequent

LRS is strongly affected by the SET voltage (relation 20). This

can be attributed to the runaway nature of the SET transition

and a higher voltage initial condition, and is also connected
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FIGURE 13

Two example simulations involving repeated cycling of a single device. Voltage pulse sequences were applied with varying amplitude following a

triangular envelope, and the (I,U) characteristic of each cycle is plotted in a di�erent color. Subplot (A) shows 300 consecutive cycles between

the full voltage range ±1.5 V, with a readout performed after every pulse (inset). Subplot (B) demonstrates multilevel capability with 300 cycles

between –1.5 V and maximum voltage that increases each cycle, from 0.7 V to 1.5 V. Readouts following each cycle are shown in the inset. In

each case, readouts were simulated using a fixed Uread = 200 mV, including noise and 4-bit quantization between Imin = 0 µA and Imax = 40 µA.

with the dynamics of the current limiting circuitry (Hennen

et al., 2021). The LRS value is also strongly correlated with the

value of the previous LRS (relation 21), because of the influence

of the residual filamentary structure from the previous cycle

(Piccolboni et al., 2015). Lastly, relation 22 indicates that higher

LRS values tend to have larger reset voltages, which has to

do with a balance of factors influencing filament dissolution,

including temperature and drift. This balance depends on the

cell materials, operating regime, and internal series resistance

(Ielmini et al., 2011).

Benchmarks

As a benchmark of the throughput of write operations,

repeated resistance cycling was induced on arrays of simulated

cells under varying conditions. In each case, voltage pulse

sequences to be applied to all defined cells were generated

prior to the benchmarks, consisting of amplitudes ±1.5 V

with alternating polarity. Defined as such, every pulse drives

each cell through a transition into its next HRS or LRS. The

read operation was benchmarked separately under equivalent

conditions, reading out the entire array using a fixed readout

voltage of Uread = 0.2 V .

The CPU benchmark was performed using an Intel Xeon

Silver 4116 CPU, varying the cell array size M, the order of

the VAR process p, as well as the number of threads used

to perform the operations in parallel. The resulting read/write

throughputs are summarized in Figure 15. Write throughputs

up to 2 × 108 operations per second (OPS) were obtained,

which is equivalent to 5 ns per individual write operation. Read

operations were nearly an order of magnitude faster than writes,

with up to 109 OPS or 1 ns per read operation. Due to the size

of necessary matrix multiplications, increasing the VAR order

p incurs a cost of write throughput, with a p = 100 model

running approximately 4× slower than one with p = 10. The

read operation, in contrast, shows a negligible dependence on

the VAR order.

The GPU accelerated version was benchmarked in an

analogous way, using the same host machine with an

NVIDIA TITAN RTX GPU device. The results are shown in

dependence of the cell array size M in Figures 15B,D. The GPU

implementation overtakes the CPU above M = 106 parallel

operations where the entire array is updated, and achieves 2×
faster updates and 5× faster readouts for large arrays withM >

107. However, CPU throughput is applicable to subsets of the

array, and may retain an advantage for sparse operations.

Discussion

In order to assess the potential of emerging synaptic devices,

new lightweight and accurate device models are needed to

constitute the millions/billions of weights used in modern

machine learning (ML) models. Candidate memory cells such as

ReRAM are highly non-linear stochastic devices with complex

internal states and history dependence, all of which needs to be

explicitly taken into account. In this article we introduced an

efficient generative model for large synaptic arrays, which closely

reproduces the statistical behavior of real devices.
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FIGURE 14

Auto- and cross-correlations of the normalized feature vector components, showing the Pearson coe�cients ρX,Y of the variables specified in

the subplot columns X and rows Y as a function of lag l. Row variables are lagged with respect to column variables, as denoted by the lag

operators LX . A comparison between measurement data and data generated from SVAR(30) shows extremely close agreement up to cycle range

30. For lags larger than the chosen model order, some of the correlations of x̂∗ decay more quickly than x̂.

Taking advantage of a recently developed electrical

measurement technique (Hennen et al., 2021), we systematically

fit the model to a dataset that is dense in relevant information

about the device state evolution. Together with this new

kind of measurement, our modeling approach helps complete a

neuromorphic design feedback loop by defining a programmatic

connection from the measured behavior of a fabricated device

under the intended operating conditions directly to fitted

model parameters. Probability density transformation of the

underlying SVAR stochastic process gives the model the power

to accurately reproduce nearly arbitrary distribution shapes and

covariance structures across the switching cycles and across the

separate devices. These features enable evaluation of network

performance while automatically adapting to a wide variety of

possible future device designs.

We provide parallelized implementations for both CPU and

GPU, where up to 15 million cells per GB of available memory

can be simulated at once. Benchmarks show throughputs

above three hundred million weight updates per second,

which exceeds the pixel rate of a 30 frames per second

video stream at 4K resolution (3,840 × 2,160 pixels). Realistic

current readouts including digitization and noise were also

benchmarked, and are approximately an order of magnitude

faster than weight updates. While speeds can be expected to

improve with future optimizations, these benchmarks give a

basis for estimating the scope of applicability of the model

to ML tasks.

The implementation and the general concept of this model

are naturally extendable. Although model parameters were

adapted here to a specific HfO2-based ReRAM device, the

method is applicable to a variety of other types of stochastic

memory cells such as PCM, MRAM, etc. Four specific switching

features were chosen in this demonstration to reconstruct (I,U)

cycling behavior, but additional switching parameters can also

be extracted from measurements and accommodated within

this framework. Ideally informed by statistical measurement

data, different functional forms, transition behaviors, time

dependence, and underlying stochastic processes can each be
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FIGURE 15

Benchmarks of the read/write operation throughput per cell of the Julia model implementations. In (A,C), an array of 220 (≈106) cells are

simulated on the CPU as a function of number of parallel threads spawned, and the VAR model order p. In (B,D), the CPU (32 threads) and GPU

implementations are benchmarked vs. the cell array size M, with p = 10.

substituted. Fitting may also be performed with respect to

the output of physics-based simulations, thereby establishing

an indirect link to physical parameters while achieving much

higher computational speed. With these considerations, the

model represents a flexible foundation for implementing

large-scale neuromorphic simulations that incorporate realistic

device behavior.
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