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Abstract

Highly regioselective acylation of helicid with fatty acid vinyl esters catalyzed by the lipase from Thermomyces lanuginosus
has been successfully performed for the first time. For the enzymatic caproylation of helicid, under the optimal conditions,
initial reaction rate was 33.2 mM/h, and substrate conversion and regioselectivity were greater than 99%. In addition, the
acyl recognition of the enzyme in the regioselective acylation of helicid was investigated. The results showed that although
6’-O-acyl derivatives of helicid were exclusively obtained with all the tested acyl donors, the enzymatic reaction rate varied
widely with different acyl donors, presumably owing to their different interactions with the active site of the lipase. It is also
interesting that the different configuration of only one hydroxyl group at C-3 in helicid couldn’t affect the lipase-catalyzed
esterification and helicid has the same regioselectivity as that of D-glucose and arbutin.
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Introduction

Helicid, namely p-formylphenyl b-D-allopyranoside, was orig-

inally isolated as one of the main active constituents from Helicid

nilgrinica Bedd, a traditional Chinese herb. It has been used

clinically as antalgic and hypnotic for a long time in China. Some

studies also found that helicid could inhibit cholinesterase or

tyrosinase activities [1,2]. However, as a therapeutic agent, helicid

suffers from low oral bioavailability due to its poor cell membrane

penetration and its activity could be enhanced significantly by

introducing an appropriate lipophilic group into its structure.

Recently, it was reported that ester derivatives of helicid had

higher inhibitory activities toward cholinesterase and mushroom

tyrosinase, presumably due to their increased solubility in oil-based

systems and improved membrane penetration [1,2]. For example,

when acetylthiocholine and butylthiocholine were used as the

substrate, helicid acetic ester caused 50% inhibition of cholines-

terase at a concentration of less than 10 mM, compared to a

concentration of free helicid of 500 mM that was required to have

the same inhibitory effect [1].

Helicid has several hydroxyls with similar chemical reactivity and

so it is extremely difficult to acylate a single specific hydroxyl in

unprotected helicid directly via conventional chemical approaches,

unless time-consuming protection–deprotection steps are employed.

Fortunately, enzymatic regioselective acylation is a useful alternative

to classical chemical methods, and offers high selectivity, simplicity

and environmental friendliness [3,4,5,6,7]. We previously obtained

several fatty acid esters of arbutin catalyzed by immobilized lipase

from Penicillium expansum, with high conversion and excellent 6’-

regioselectivity [8,9]. However, as arbutin’s analogue, there have

been few reports on the enzymatic acylation of helicid up to now. It

is also interesting whether the different configuration of only one

hydroxyl group at C-3 in helicid may affect the lipase-catalyzed

esterification and whether the same regioselectivity as that of D-

glucose and arbutin are observed.

Lipozyme TLL, an immobilized lipase from Thermomyces

lanuginosus, is a low-cost lipase that has important industrial

applications in the synthesis of sugar esters [10] and oil esters [11],

resolution of chiral alcohol [12], preparation of biodiesel [13] and

acylation of nucleosides [5,6]. Here we have investigated the

potential of lipozyme TLL for regioselective acylation of helicid,

and have obtained several fatty acid esters of helicid with high

conversion and excellent 6’-regioselectivity (Figure 1).

Materials and Methods

Biological and Chemical Materials
Candida antarctica lipase B (Novozym 435, CAL-B), Thermomyces

lanuginosus lipase (Lipozyme TL IM, TLL), Rhizomucor miehei lipase

(Lipozyme RM IM, RML) were purchased from Novozymes Co.,

Ltd., China. Candida rugosa lipase (powder, CRL) was from Meito

SangyoCo., Japan. Penicillium roqueforti lipase (PRL, Lipase R) and

Penicillium camemberti lipase (PCL, Lipase G) are powder from

Amano Enzyme Inc., Japan. Helicid and vinyl esters used as the

acyl donors were purchased from TCI and Alfa Aesar. Other

chemicals were from commercial sources and were of the highest

purity available.

Assaying of Enzyme Esterification Activity
The enzyme esterification activity was determined according to

the method [14]. The specific activities of CAL-B, TLL, RML,
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CRL, PCL and PRL were 2.5, 0.21, 0.27, 0.68, 0.13 and 2.71 U/

mg, respectively.

General Procedure for Enzymatic Acylation of Helicid
In a typical experiment, helicid (0.02 mmol), Lipozyme TLL

and fatty acid vinyl ester were added into 2 ml anhydrous THF

and the mixture was incubated at a predetermined temperature in

an orbital air-bath shaker (200 rpm). Aliquots were withdrawn at

specified time intervals from the reaction mixture, and then diluted

50-fold with corresponding mobile phase prior to HPLC analysis.

Regioselectivity was defined as the molar ratio of the desired

product to the total amount of ester products formed. All data are

averages of experiments performed in triplicate. No chemical

acylation of helicid was detectable in controls from which the

lipase preparation was omitted.

Operational Stability
Anhydrous THF (2 ml), helicid (0.02 mmol), vinyl hexanoate

(0.15 mmol) and enzyme (20 U) were incubated at 200 rpm and

45uC for 1.5 h. Then, the enzyme was separated by filtration,

thoroughly washed with reaction medium and added into fresh

reaction mixture to catalyze the acylation of helicid with a new

aliquot of the same amount of vinyl hexanoate. The process was

repeated to obtain the operational stability of the enzyme after up

to 11 cycles of reaction.

HPLC Analysis
The reaction mixture was analyzed by RP-HPLC on a

4.6 mm6250 mm (5 mm) Zorbax SB-C18 column (Agilent Tech-

nologies Industries Co., Ltd., USA) using an Agilent G1311A pump

and a UV detector at 270 nm. The mobile phase is a mixture of

water and methanol at 1.0 ml/min. The volumetric ratio of water to

methanol and the retention times for helicid and its 6’-O-monoester

were 60/40, 3.210 and 6.808 min (acetylation), 60/40, 3.198 and

10.442 min (propionylation), 40/60, 2.657 and 4.578 min

(butyrylation), 20/80, 2.511 and 3.921 min (hexanoylation), 20/

80, 2.509 and 4.797 min (caproylation), 20/80, 2.512 and 7.704

min (decanoylation), 10/90, 2.409 and 5.189 min (lauroylation),

10/90, 2.413 and 7.498 min (myristoylation), respectively. A

gradient elution with water/methanol of 40/60 (v/v) from 0 to 3

min, and then water/methanol of 20/80 (v/v) at 5.0 min was used

for crotonylation and methacryloylation. The retention times for

helicid and its 6’-O-monoester were 2.621, 4.029 (crotonylation) and

4.414 min (methacryloylation), respectively.

Scale-up Synthesis and Purification of the Esters and
Structure Determination

The reaction was initiated by adding 200 U Lipozyme TLL to

20 ml anhydrous THF containing 0.2 mmol helicid and 1.5 mmol

acyl donor at 200 rpm and 45uC. After the reaction, the enzyme

was removed by filtration and the solvent was evaporated under

vacuum. The residue was then purified through flash column

chromatography using ethyl acetate/petroleum ether as the

mobile phase. The products were exclusively helicid 6’-esters as

characterized by 13C NMR and 1H NMR (Bruker DRX-400

NMR Spectrometer, Bruker Co., Germany) at 100 MHz and

400 MHz, respectively, with DMSO-d6 being the solvent. Results

from the NMR spectroscopy are given in Figure S1. Mass spectra

were recorded on LCQ Deca Xp (Thermo Finnigan) using ESI

mode with ion spray voltage 3000 V. The sheath gas arbitrary flow

was set at 15 arb. The capillary temperature and voltage were

250uC and 18 V, respectively. Results from the mass spectra are

given in Figure S3. In addition, the HPLC chromatograms of the

helicid ester derivatives are provided in Figure S2.

Helicid
1H NMR (400 MHz, DMSO-d6): d 3.42–3.50 (m, 3, H2’+ H3’+

H4’), 3.67–3.72 (m, 1, H5’), 3.74–3.78 (apparent d, 1, J = 3.2 Hz,

H6’), 3.96 (apparent d, 1, J = 3.2 Hz, H6’), 4.52 (t, 1, J = 5.7,

6.6 Hz, OH6’), 4.71 (d, 1, J = 7.4 Hz, H1’), 5.01 (d, 1, J = 3.7 Hz,

OH4’), 5.15 (d, 1, J = 6.8 Hz, OH3’), 5.27 (d, 1, J = 7.9 Hz, OH2’),

7.19 (d, 2, J = 8.7 Hz, H2+ H6), 7.87 (d, 2, J = 8.7 Hz, H3+ H5),

9.89 (s, 1, OH7). 13C NMR (100 MHz, DMSO-d6): d 60.86 (C6’),

66.93 (C4’), 70.18 (C2’), 71.45 (C3’), 74.79 (C5’), 98.08 (C1’), 116.39

(C2+ C6), 130.45 (C4), 131.65 (C3+ C5), 162.38 (C1), 191.45 (C7).

Helicid 6’-acetate
1H NMR: d ppm 2.01(s, 3, H2’’), 3.46–3.55 (m, 2, H2’+ H3’),

4.01 (apparent dd, 2, J = 16.3, 5.6 Hz, H4’+ H5’), 4.10 (dd, 1,

J = 11.7, 6.6 Hz, H6’), 4.27–4.31 (m, 1, H6’), 4.98 (d, 1, J = 7.4 Hz,

H1’), 5.15 (d, 1, J = 3.7 Hz, OH4’), 5.28 (dd, 2, J = 7.9 Hz,

OH2’+OH3’), 7.19 (d, 2, J = 8.7 Hz, H2+ H6), 7.89 (d, 2,

J = 8.7 Hz, H3+ H5), 9.90 (s, 1, OH7). 13C NMR: d ppm 20.62

(C2’’), 63.59 (C6’), 67.13 (C4’), 69.97 (C2’), 71.28 (C3’), 71.44 (C5’),

97.85 (C1’), 116.29 (C2+ C6), 130.52 (C4), 131.59 (C3+ C5), 162.06

(C1), 170.24 (C1’’), 191.42 (C7). The isolated yield was 76%.

Helicid 6’-propionate
1H NMR: d ppm 1.01(t, 3, J = 7.5 Hz, H3’’),2.31(qd, 2, J = 7.6,

2.0 Hz, H2’’), 3.45–3.55 (m 2, H2’+ H3’), 3.97–4.05 (m 2, H4’+
H5’), 4.10 (dd, 1, J = 11.7, 7.0 Hz, H6’), 4.32 (dd, 1, J = 11.9,

Figure 1. Enzymatic regioselective acylation of helicid.
doi:10.1371/journal.pone.0080715.g001
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2.0 Hz, H6’), 4.98 (d, 1, J = 7.4 Hz, H1’), 5.15 (d, 1, J = 3.8 Hz,

OH4’), 5.26 (dd, 2, J = 12.7, 7.3 Hz, OH2’+OH3’), 7.19 (d, 2,

J = 15.9 Hz, H2+ H6), 7.88 (d, 2, J = 7.6 Hz, H3+ H5), 9.90 (s, 1,

OH7). 13C NMR: d ppm9.40 (C3’’), 27.27 (C2’’), 64.08 (C6’), 67.71

(C4’), 70.47 (C2’), 71.79 (C5’), 72.05 (C3’), 98.34 (C1’), 116.79 (C2+
C6), 131.02 (C4), 132.05 (C3+ C5), 162.57 (C1), 173.93 (C1’’),

191.91 (C7). The isolated yield was 80%.

Helicid 6’-butyrate
1H NMR: d ppm 0.85 (t, 3, J = 7.5, H4’’), 1.51 (q, 2, J = 7.3 Hz,

H3’’), 2.27 (td, 2, J = 7.2, 1.4 Hz, H2’’), 3.42–3.53 (m, 2, H2’+H3’),

3.95–4.04 (m, 2, H4’+H5’), 4.09 (dd, 1, J = 11.7, 7.0 Hz, H6’), 4.31

(apparent dd, 1, J = 11.9, 2.0 Hz, H6’), 4.97 (d, 1, J = 7.4 Hz, H1’),

5.14 (d, 1, J = 3.8 Hz, OH4’), 5.25 (dd, 2, J = 12.7, 7.3 Hz, OH2’+
OH3’), 7.18 (d, 2, J = 12.0 Hz, H2+ H6), 7.88 (d, 2, J = 8.0 Hz,

H3+ H5), 9.90 (s, 1, OH7). 13C NMR: d ppm 13.35 (C4’’), 17.87

(C3’’), 35.32 (C2’’), 63.52 (C6’), 67.24 (C4’), 69.95 (C2’), 71.28 (C5’),

71.55 (C3’), 97.80 (C1’), 116.30 (C2+ C6), 130.52 (C4), 131.54 (C3+
C5), 162.07 (C1), 172.58 (C1’’), 191.43 (C7). The isolated yield was

78%.

Helicid 6’-hexanoate
1H NMR: d ppm 0.80 (apparent t, 3, H6’’), 1.16–1.24 (m, 4,

H4’’+H5’’), 1.45–1.54 (m, 2, H3’’), 2.28 (td, 1, J = 7.3, 1.3 Hz, H2’’),

3.44–3.55 (m, 2, H2’+H3’), 3.94–4.04 (m, 2, H4’+H5’), 4.10

(apparent dd, 1, J = 11.7, 7.1 Hz, H6’), 4.32 (apparent d, 1,

J = 8.0 Hz, H6’), 4.97 (d, 1, J = 7.4 Hz, H1’), 5.15 (d, 1, J = 3.8 Hz,

OH4’), 5.26 (dd, 2, J = 14.7, 7.3 Hz, OH2’+ OH3’), 7.18 (apparent

d, 2, J = 8.0 Hz, H2+ H6), 7.88 (apparent d, 2, J = 8.0 Hz, H3+
H5), 9.90 (s, 1, OH7). 13C NMR: d ppm 13.69 (C6’’), 21.71 (C5’’),

24.06 (C4’’), 30.58 (C3’’), 33.42 (C2’’), 63.54 (C6’), 67.29 (C4’), 69.97

(C2’), 71.28 (C5’), 71.54 (C3’), 97.78 (C1’), 116.27 (C2+ C6), 130.50

(C4), 131.52 (C3+ C5), 162.07 (C1), 172.70 (C1’’), 191.31 (C7). The

isolated yield was 82%.

Helicid 6’-caprylate
1H NMR: d ppm 0.82 (t, 3, J = 6.7 Hz, H8’’), 1.15–1.23 (m, 8,

H4’’+ H5’’+ H6’’+ H7’’), 1.44–1.56 (m, 2, H3’’), 2.28 (t, 2,

J = 7.4 Hz, H2’’), 3.43–3.48 (m, 1, H3’), 3.52 (td, 1, J = 7.2,

2.7 Hz, H2’), 3.96–4.03 (m, 2, H4’+ H5’), 4.06–4.11 (m, 1, H6’),

4.31 (apparent dd, 1, J = 11.8, 2.0 Hz, H6’), 4.96 (d, 1, J = 7.2 Hz,

H1’), 5.13 (apparent dd, 1, J = 8.8, 3.8 Hz, OH4’), 5.20–5.30 (m, 2,

OH2’+ OH3’), 7.16–7.19 (m, 2, H2+ H6), 7.86–7.89 (m, 2, H3+
H5), 9.90 (s, 1, OH7). 13C NMR: d ppm 13.85 (C8’’), 21.96 (C7’’),

24.40 (C3’’), 28.30 (C5’’), 28.37 (C4’’), 31.05 (C6’’), 33.49 (C2’’),

63.56 (C6’), 67.30 (C4’), 69.97 (C2’), 71.29 (C5’), 71.54 (C3’), 97.82

(C1’), 116.27 (C2+ C6), 130.50 (C4), 131.51 (C3+ C5), 162.09 (C1),

172.70 (C1’’), 191.27 (C7). The isolated yield was 85%.

Helicid 6’-decanoate
1H NMR: d ppm 0.83 (t, 3, J = 6.8 Hz, H12’’), 1.18–1.21 (m, 12,

H4’’+ H5’’+ H6’’+ H7’’+ H8’’+ H9’’), 1.47 (p, 2, J = 7.1 Hz, H3’’),

2.27 (t, 2, J = 7.4 Hz, H2’’), 3.51–3.55 (m, 2, H2’+ H3’), 3.98–4.04

(m, 2, H4’+ H5’), 4.10 (dd, 1, J = 11.7, 7.1 Hz, H6’), 4.32 (d, 1,

J = 11.6 Hz, H6’), 4.97 (d, 1, J = 7.4 Hz, H1’), 5.15 (apparent d, 1,

J = 3.8 Hz, OH4’), 5.26 (t, 2, J = 7.2 Hz, OH2’+ OH3’), 7.17 (d, 2,

J = 8.4 Hz, H2+ H6), 7.87 (d, 2, J = 8.3 Hz, H3+ H5), 9.89 (s, 1,

OH7). 13C NMR: d ppm 13.83 (C10’’), 22.03 (C9’’), 24.40 (C3’’),

28.43 (C4’’), 28.60 (C7’’), 28.67 (C6’’), 28.80 (C5’’), 31.22 (C8’’),

33.49 (C2’’), 63.58 (C6’), 67.32 (C4’), 69.98 (C2’), 71.26 (C5’), 71.54

(C3’), 97.84 (C1’), 116.26 (C2+ C6), 130.49 (C4), 131.47 (C3+ C5),

162.10 (C1), 172.67 (C1’’), 191.16 (C7). The isolated yield was 89%.

Helicid 6’-laurate
1H NMR: d ppm 0.85 (apparent t, 3, J = 6.6 Hz, H12’’), 1.19–

1.24 (m, 16, H4’’+ H5’’+ H6’’+ H7’’+ H8’’+ H9’’+ H10’’ +H11’’), 1.48

(apparent t, 2, J = 7.3 Hz, H3’’), 2.28 (t, 2, J = 7.5 Hz, H2’’), 3.42–

3.53 (m, 2, H2’+ H3’), 3.95–4.02 (m, 2, H4’+ H5’), 4.08 (dd, 1,

J = 11.7, 7.1 Hz, H6’), 4.30 (d, 1, J = 11.4 Hz, H6’), 4.96 (d, 1,

J = 7.4 Hz, H1’), 5.14 (d, 1, J = 3.8 Hz, OH4’), 5.24 (apparent dd,

2, J = 10.3, 7.4 Hz, OH2’+ OH3’), 7.17 (d, 2, J = 8.4 Hz, H2+ H6),

7.87 (d, 2, J = 8.3 Hz, H3+ H5), 9.90 (s, 1, OH7). 13C NMR: d
ppm 13.91 (C12’’), 22.05 (C11’’), 24.40 (C3’’), 28.42 (C4’’), 28.66

(C5’’+C9’’), 28.83 (C7’’), 28.94 (C6’’+C8’’), 31.25 (C10’’), 33.48 (C2’’),

63.56 (C6’), 67.29 (C4’), 69.96 (C2’), 71.28 (C5’), 71.53 (C3’), 97.83

(C1’), 116.27 (C2+ C6), 130.50 (C4), 131.52 (C3+ C5), 162.09 (C1),

172.70 (C1’’), 191.27 (C7). The isolated yield was 87%.

Helicid 6’-myristate
1H NMR: d ppm 0.86 (t, 3, J = 6.6 Hz, H14’’), 1.21 (apparent d,

20, J = 15.7 Hz, H4’’+ H5’’+ H6’’+ H7’’+ H8’’+ H9’’+ H10’’ +H11’’+
H12’’+ H13’’), 1.48 (apparent p, 2, J = 7.1 Hz, H3’’), 2.28 (t, 2,

J = 7.3 Hz, H2’’), 3.41–3.53 (m, 2, H2’+ H3’), 3.95–4.02 (m, 2,

H4’+ H5’), 4.08 (dd, 1, J = 11.7, 7.1 Hz, H6’), 4.30 (apparent dd, 1,

J = 11.8, 2.0 Hz, H6’), 4.96 (d, 1, J = 7.4 Hz, H1’), 5.15 (apparent

d, 1, J = 3.8 Hz, OH4’), 5.24 (t, 2, J = 8.3, Hz, OH2’+ OH3’), 7.17

(apparent d, 2, J = 8.0 Hz, H2+ H6), 7.88 (apparent d, 2,

J = 8.0 Hz, H3+ H5), 9.90 (s, 1, OH7). 13C NMR: d ppm 13.92

(C14’’), 22.06 (C13’’), 24.40 (C3’’), 28.42 (C4’’), 28.66 (C5’’+C11’’),

28.83 (C6’’), 28.92 (C7’’), 28.97 (C9’’+C8’’), 28.99 (C10’’), 31.26

(C12’’), 33.49 (C2’’), 63.56 (C6’), 67.29 (C4’), 69.96 (C2’), 71.28 (C5’),

71.53 (C3’), 97.82 (C1’), 116.27 (C2+ C6), 130.49 (C4), 131.52 (C3+
C5), 162.09 (C1), 172.70 (C1’’), 191.28 (C7). The isolated yield was

86%.

Helicid 6’-methacrylate
1H NMR: d ppm 1.88 (s, 3, H4’’), 3.43–3.55 (m, 2, H2’+H3’),

3.97 (apparent d, 1, J = 3.2 Hz, H4’), 4.03–4.13 (m, 2, H5+H6’),

4.42 (d, 1, J = 10.0 Hz, H6’), 5.01 (d, 1, J = 7.4 Hz, H1’), 5.15 (d, 1,

J = 6.3 Hz, OH4’), 5.25 (dd, 2, J = 13.5, 7.4 Hz, OH2’+ OH3’),

5.71 (s, 1, H3’’), 6.07 (s, 1, H3’’), 7.18 (d, 2, J = 8.7 Hz, H2+ H6),

7.84 (d, 2, J = 8.7 Hz, H3+ H5), 9.90 (s, 1, OH7). 13C NMR: d
ppm 17.93 (C4’’), 64.29 (C6’), 67.37 (C4’), 69.97 (C2’), 71.34 (C5’),

71.55 (C3’), 97.83 (C1’), 116.30 (C2+ C6), 125.85 (C3’’), 130.54 (C4),

131.50 (C3+ C5), 135.79 (C2’’), 162.07 (C1), 166.35 (C1’’), 191.46

(C7). The isolated yield was 75%.

Helicid 6’-crotonate
1H NMR: d ppm 1.86 (dd, 3, J = 6.9, 1.6 Hz, H4’’), 3.47–3.53

(m, 2, H2’+H3’), 3.97 (s, 1, H4’), 4.01–4.06 (m, 1, H5’), 4.14 (dd, 1,

J = 11.8, 6.9 Hz, H6’), 4.34 (dd, 1, J = 11.7, 1.7 Hz, H6’), 4.99

(apparent s, 1, H1’), 5.15 (s, 1, OH4’), 5.26 (d, 2, J = 8.0 Hz, OH2’+
OH3’), 5.90 (dd, 1, J = 15.5, 1.7 Hz, H2’’), 6.90 (dq, 1, J = 13.8,

6.9 Hz, H3’’), 7.17 (d, 2, J = 8.7 Hz, H2+ H6), 7.86 (d, 2,

J = 8.8 Hz, H3+ H5), 9.90 (s, 1, OH7). 13C NMR: d ppm 17.66

(C4’’), 63.51 (C6’), 67.26 (C4’), 69.97 (C2’), 71.33 (C5’), 71.49 (C3’),

97.84 (C1’), 116.34 (C2+ C6), 122.13 (C3’’), 130.50 (C4), 131.56

(C3+ C5), 145.34 (C2’’), 162.04 (C1), 165.37 (C1’’), 191.44 (C7). The

isolated yield was 60%.

Results and Discussion

Screening the Biocatalyst
With the regioselective caproylation of helicid as a model

reaction, three immobilized enzymes (CAL-B, TLL and RML)

and three enzyme powders (PCL, PRL and CRL) were tested as

the biocatalysts (Table 1). Among these lipases, lipozyme TLL

Regioselective Route to Helicid Esters
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showed the highest catalytic activities (11.9 mM/h), affording 98%

conversion after 10 h, while the reaction catalyzed by lipase CAL-

B and RML proceeded with low reaction rate and low conversion.

Furthermore, no acylation products were detected in the reaction

mixture by using the enzyme powders (PCL, PRL and CRL). The

possible reason for no esterification activity is that the three lipase

powders might be in the less active conformation, which is

unfavorable for helicid of large size to enter into the active site,

while water molecules of small size could readily enter into the

active site and attack the acyl-enzyme intermediate.

Interestingly, all the lipases displayed absolute 6’-regioselectiv-

ities (.99%) in the caproylation of helicid. This is similar to the

excellent selectivity toward the 6’-hydroxyl of the D-allose that was

observed during acylation of D-allose catalysed by lipase from

Candida antarctica, porcine pancreatic or Burkholderia cepacia [15].

Likewise, our group recently found that lipase from Candida

antarctica, Penicillium expansum, Pseudomonas cepacia or Thermomyces

lanuginosus exhibited excellent selectivity toward 6’-hydroxyl of the

glucose moiety in the acylation of arbutin [9].

Optimization of Enzymatic Caproylation of Helicid
With caproylation as a model reaction, the effects of several key

variables were investigated in detail. As shown in Table 2, the

reaction accelerated clearly with increasing enzyme dosage from 5

to 20 U (entries 1-4), and then no substantial variation occurred

with further increasing amounts of enzyme.

Parallel to enzymatic acylation of glycosides with vinyl esters,

there exists a side reaction, the enzymatic hydrolysis of the acyl

donors. As a result, an excess of the acyl donors is usually

necessary in such reactions to ensure efficient enzymatic acylation.

The molar ratio of vinyl hexanoate to helicid greatly influenced

the initial acylation rate and the maximal conversion (Table 2,

entries 4 and 7–11). A good initial reaction rate (30.3 mM/h) and

high conversion (.99%) could be achieved with the molar ratio of

vinyl hexanoate to helicid as 7.5 (Table 2, entry 9).

Generally, substrate molecules are more active at higher

reaction temperatures. On the other hand, high temperature

would induce the comformational changes of the enzyme, thus

decreasing the enzyme activity. Hence, the effect of temperature

on the reaction was examined. The reaction showed a broad

temperature profile with an optimum at 45uC (entries 9 and 12–

16). From these data, the optimum conditions of enzyme dosage,

molar ratio of vinyl hexanoate to helicid and reaction temperature

were 20 U, 7.5 and 45uC, respectively, and the regioselectivity of

the reaction remained excellent under all conditions tested.

Time Course of Enzymatic Reaction and Operational
Stability

To gain a deeper insight into the enzymatic progress, the time

course of caproylation of helicid catalyzed by lipase TLL was

followed under the optimum conditions described above. Sub-

strate conversion increased rapidly with reaction time, and

reached its maximum at 1.5h (Figure 2A). The lipase TLL

Table 1. Regioselective caproylation of helicid catalyzed by
various lipases.

Enzyme V0 (mM/h) Time (h)a C (%)
6’-Regioselectivity
(%)

CAL-B 5.1 14 53.2 .99

Lipozyme TLL 11.9 10 98 .99

RML 4.5 16 37.9 .99

PCL n.d. 48 n.d. n.d.

PRL n.d. 48 n.d. n.d.

CRL n.d. 48 n.d. n.d.

Reaction conditions: 0.02 mmol helicid, 0.1 mmol vinyl hexanoate, 10 m lipase,
2 ml anhydrous THF, 40uC, 200 rpm.
aReaction time when the maximum conversion was achieved.
n.d.: no detected.
doi:10.1371/journal.pone.0080715.t001

Table 2. Optimization of enzymatic caproylation of helicid.

Entry Enzyme dosage (U) VB (eq.) T (6C) V0 (mM/h) C (%) 6’-Regioselectivity (%)

1 5 5 40 3.4 97 .99

2 10 5 40 11.9 98 .99

3 15 5 40 16.2 .99 .99

4 20 5 40 24.4 .99 .99

5 25 5 40 25.1 .99 .99

6 30 5 40 26.2 .99 .99

7 20 1.5 40 6.9 58 .99

8 20 3 40 16.2 89 .99

9 20 7.5 40 30.3 .99 .99

10 20 10 40 31.4 .99 .99

11 20 15 40 32.2 .99 .99

12 20 7.5 35 26.7 .99 .99

14 20 7.5 45 33.2 .99 .99

15 20 7.5 50 33.5 .99 .99

16 20 7.5 55 33.1 .99 .99

Reactions conditions: 0.02 mmol helicid.
doi:10.1371/journal.pone.0080715.t002
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showed the higher operational stability with 28% loss in activity

after 8 cycles of the reaction (Figure 2B).

Regioselective Acylation of Helicid with Various Acyl
Donors

The acylation of helicid with various fatty acid vinyl esters

catalyzed by lipase TLL was investigated in anhydrous THF

(Table 3). Interestingly, in all cases lipase TLL displayed almost

absolute 6’-regioselectivity (.99%), since only the 6’-ester of

helicid could be detected by NMR and HPLC, which is similar to

the acylation of sucrose, rutin, esculin, isoquercitrin and arbutin

with a notable selectivity for 6’-hydroxyl of the glucose moiety

[8,9,16,17,18]. This regioselectivity may occur because the less-

hindered primary hydroxyl of the sugar moiety may more easily

enter into the active site of the lipase to attack the acyl-enzyme

intermediate than the other more hindered hydroxyl groups, thus

resulting in the preferential formation of 6’-esters.

As shown in Table 2, the initial reaction rate increased with the

elongation of chain length of vinyl esters from C2 to C8 (Table 3,

entries 1–5), perhaps because medium chain-length acyl groups

can form stronger interactions with the hydrophobic acyl binding

site of the enzyme than shorter-chain acyl groups [19,20].

Figure 2. Time course of enzymatic caproylation and operational stability of Thermomyces lanuginosus lipase. Reactions conditions:
0.02 mmol helicid, 0.15 mmol vinyl hexanoate, 20 U Thermomyces lanuginosus lipase, 2 ml anhydrous THF, 45uC, 200 rpm. Symbols: (h) the
conversion, (g) the regioselectivity, (%) the relative activity.
doi:10.1371/journal.pone.0080715.g002

Table 3. Enzymatic synthesis of various esters of helicid.

Entry Acyl donor V0 (mM/h) Time (h)a C (%) 6’-Regioselectivity (%)

1 Vinyl acetate (C2) 24.3 4 .99 .99

2 Vinyl propionate (C3) 27.2 3 .99 .99

3 Vinyl butyrate (C4) 31.1 1.5 .99 .99

4 Vinyl hexanoate (C6) 33.2 1.5 .99 .99

5 Vinyl caprylate (C8) 38.3 1.0 .99 .99

6 Vinyl decanoate (C10) 37.2 1 .99 .99

7 Vinyl laurate (C12) 27.5 1.5 .99 .99

8 Vinyl myristate (C14) 20.8 2 .99 .99

9 Vinyl methacrylate (C4) 7.3 6 89 .99

10 Vinyl crotonate (C4) 0.9 23 92 .99

Reaction conditions: 0.02 mmol helicid, 0.15 mmol fatty acid vinyl ester, 20 m lipase, 2 ml anhydrous THF, 45uC, 200 rpm.
aReaction time when the maximum conversion was achieved.
doi:10.1371/journal.pone.0080715.t003
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However, the initial reaction rate decreased with the elongation of

chain length from C10 to C14 (Table 3, entries 6–8), presumably

due to the larger steric hindrance of the longer chain acyl donors.

This is similar to the results obtained in the acylation of

nucleosides with the same lipase [21].

When there was a conjugated C–C double bond adjacent to the

carbonyl moiety in the acyl group, the reaction rate decreased

substantially (Table 3, entries 9, 10). Initial crotonylation and

methacrylation rates were 0.9 and 7.3 mM/h, respectively, which

were much lower than that of the butanoylation (31.1 mM/h,

entry 3). This effect might be attributed to the resonance effect of

the conjugate double bond [22]. Surprisingly, although vinyl

crotonate is less hindered than vinyl methacrylate due to the

presence of a-methyl group in the latter, the reaction rate with

vinyl methacrylate was greater than that with vinyl crotonate.

Recently, we obtained similar results in enzymatic acylation of

arbutin: a conversion of 99% at 20 h was afforded with vinyl

methacrylate as the acyl donor, in contract to the same conversion

of 99% at 72 h with vinyl crotonate [9].

Conclusions

In conclusion, various 6’-ester derivatives of helicid could be

synthesized via lipase-mediated transesterification with good

conversions and excellent regioselectivities. The structure of the

acyl donors brings a significant impact on the catalytic perfor-

mance of lipozyme TLL. These findings will undoubtedly enrich

the fundamentals of enzymology. Furthermore, the enzymatic

process is highly regioselective, simple, environmentally friendly

and mild as compared with the traditional chemical procedures.
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