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700115 Iaşi, Romania
2Department of Mother and Child Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 16 University Street,
700115 Iaşi, Romania
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Currently, the deciphering of the signaling pathways brings about new advances in the understanding of the pathogenicmechanism
of ovarian carcinogenesis, which is based on the interaction of several molecules with different biochemical structure that,
consequently, intervene in cell metabolism, through their role as regulators in proliferation, differentiation, and cell death. Given
that the ensemble of biomarkers in OC includes more than 50 molecules the interest of the researchers focuses on the possible
validation of each one’s potential as prognosismarkers and/or therapeutic targets.Within this framework, this review presents three
protein molecules: ALCAM, c-FLIP, and caveolin, motivated by the perspectives provided through the current limited knowledge
on their role in ovarian carcinogenesis and on their potential as prognosis factors.Their structural stability, once altered, triggers the
initiation of the sequences characteristic for ovarian carcinogenesis, through their role asmodulators for several signaling pathways,
contributing to the disruption of cellular junctions, disturbance of pro-/antiapoptotic equilibrium, and alteration of transmission
of the signals specific for the molecular pathways. For each molecule, the text is built as follows: (i) general remarks, (ii) structural
details, and (iii) particularities in expression, from different tumors to landmarks in ovarian carcinoma.

1. Introduction

There are several aspects which place the ovarian cancer in
the focus of the scientific community. Its high mortality rate,
due to the nonspecific symptoms that determine a delay of
early diagnosis, the postsurgical treatment relapses, and the
lack of favorable response to chemotherapy for most of the
cases [1] require a better understanding of itsmechanism and,
implicitly, of the molecules that govern its behavior.

Although major progresses have been recorded in recent
years in the knowledge of the complex signaling pathways
involved in ovarian carcinogenesis [2], the deciphering of
its pathogenic journey is far from being complete. The
information on the genic and proteomic background of
ovarian carcinoma (OC) could be regarded as a giant puzzle
which is not yet assembled in order to form the entire image.
On the basis of the molecular configuration of the signaling
pathways, the interest of the researchers is focused on

the identification of those components which could represent
either new prognosis markers or new therapeutic targets, or
both [3]. The difficulty of this endeavor is augmented by the
histologic heterogeneity of ovarian tumors [4].

Even if in the last 15 years over 500 reports on the rela-
tionship between the molecular profile and tumor behavior
[5, 6] have been available in the mainstream publication, no
new prognostic factor is yet confirmed and accepted. The
ensemble of potential biomarkers in OC includes more than
50 molecules [5], from which the best known are WT1 and
p53 (as oncogenes and tumor suppressor genes), Ki67, PCNA,
and topoisomerase II (as proliferation markers), cyclins and
their inhibitors (as cell cycle regulators), TRAIL and their
receptors, Fas and Fas-L, Bcl-2, Bax, and caspases (asmarkers
of apoptosis), BRCA and PARP-1 (as DNA repair enzymes),
CD31, CD34, VEGF, COX-2, and MMPs (as angiogenesis
markers), T lymphocytes and their regulatory protein (as
immunological factors), EGFR and Her-2 (as tyrosine kinase
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receptors) and their signaling pathways, and cadherin–beta-
catenin complex [6]. Moreover, the review of the literature
shows inconsistent data on other promising candidates.

Therefore, we believe the description of ALCAM, c-FLIP,
and caveolin is worthwhile, because their expression is fewer
investigated in OC, thus supporting their classification in
the group of lesser-known molecules involved in ovarian
carcinogenesis.

The choice of these three molecules with different func-
tions is supported by our aim to illustrate diverse aspects of
the events specific for carcinogenesis: disruption of cellular
junctions, disturbance of pro-/antiapoptotic equilibrium, and
alteration of transmission of the signals specific for the
molecular pathways.

These molecules contribute to normal cell function, but
their structural stability, once altered, reveals their com-
petency as modulators that trigger the initiation of the
carcinogenic mechanism.

The presentation respects the following sequences for
each molecule: initial comments, structural features, and
expression and known functions applicable in OC, with a
corresponding discussion on the prognosis value.

2. ALCAM, Member of Immunoglobulin
Superfamily Cell Adhesion Molecules

2.1. Starting Point. Cell-cell and cell-matrix interactions
assist cellular differentiation and proliferation in both normal
and pathologic development. Extensively investigated, the
incomplete formation and/or remodeling of cell junctions are
regarded as initial steps of the carcinogenicmechanism,while
the detachment of cells from primary tumors sets in motion
a course that favors invasion and metastasis. A particular
attention is granted within this context to the cell adhesion
molecules (CAMs), which comprise the families of inte-
grins, cadherins, selectins, and immunoglobulin superfamily
(IgSF).

The organ specificity of the molecules belonging to IgSF
(generically called Ig-CAMs) was studied in normal status
and several malignancies [7–18]. For ovarian tumors, there
is little specific information that ascertains the involvement
of MCAM [19], L1CAM (CD171), EpCAM [20], IgLON [21],
and ALCAM/CD166 (Activated Leukocyte Cell Adhesion
Molecule) [22–24]. Strictly referring to ALCAM, besides its
role of adhesion molecule, it is also a transductor that modu-
lates a large panel of signaling pathways: MAPK, ERK1/2, and
JNK [25].

2.2. Structural Features. At first identified and isolated as lig-
and for CD6 [26] in thymic epithelial cells, ALCAM has been
found since then in most fundamental tissues in the human
body (except for muscle tissue) and in lymphohematopoi-
etic structures. In physiological circumstances, ALCAM is
involved not only in cell adhesion processes, but in neuro-
genesis, hematopoiesis, and immune responses as well [27].
The adhesion mechanism of ALCAM is both heterophilic
(ligand-dependent) and homophilic (ligand-independent,
regulated by actin cytoskeleton [28]) and is ensured either by

interaction at the N-terminal domain or by cis oligomeriza-
tion on cell surface through C-proximal domain [29].

Following the typical structural pattern of immunoglob-
ulins, ALCAM is a type I transmembrane glycoprotein,
with three domains: one extracellular (500 amino acids),
one transmembranous (22 amino acids), and one short
intracellular, cytoplasmic domain (34 amino acids) [30]. The
extracellular domain consists of five N-terminal domains
of immunoglobulin type; two are variable and three are
constant (V1V2C1C2C3) [30].The genewhich codesALCAM
is located on the long arm of chromosome 3 [26].

2.3. ALCAMExpression: FromDifferent Tumors to Landmarks
inOvarian Carcinoma. In tumor pathology, ALCAMexpres-
sion varies from strong (colon, gastric, and pancreatic cancer)
[31–33] to weak (breast cancer) [34], depending on cellular
type and on the modified microenvironment.

The value of ALCAM as unfavorable prognosis marker
is reported in colon [8], pancreas [33], urinary bladder [35],
breast [34, 36], and endometrial [37] tumors, melanoma [38],
and other types of malignancies [39], while the association
between ALCAM strong expression and a favorable outcome
is recorded in prostate cancer [40, 41]. Moreover, ALCAM
has also been investigated as marker for evaluation of
chemotherapy response in the early stages of breast, cervical
[42], pancreas [43], and esophageal cancer [44].

Unfortunately, as far as we know, although there are
roughly 150 reports on ALCAM in various types of tumors,
only one of these focuses on its value as prognostic factor in
OC [23], based on the assessment of one human serous OC
cell line and human tissue samples.

The role of ALCAM in ovarian carcinogenesis cannot
be understood without knowing its behavior in the normal
status. The multiple cell interactions promoted by ALCAM
are due to the five extracellular binding domains Ig-like,
which explain the membranous expression pattern revealed
by immunohistochemistry (IHC). In malignancies, when
intercellular adhesion is damaged, with loss of membranous
contact, ALCAM expression relocates in cell cytoplasm. In
other words, any loss of binding is associated with the inter-
nalization of ALCAM [23]. Hence, any event that perturbs
the connection between ALCAM and its ligands brings about
repercussions on the motility of ovarian tumor cells [23].

Thus, it is believed that the membranous expression of
ALCAM reflects the maintenance of intercellular stability
(Figure 1) and that the cytoplasmic location, resulting from
rearrangement of the intercellular junctions, characterizes
tumor cells with high potential for invasion and metastasis
[23]. This cytoplasmic specificity discriminates the advanced
stages from the early ones, which designates ALCAM as a
useful marker in the attempt to prove the effect of destruction
of the intercellular binding, in tumor versus normal context
[23]. Consequently, the decrease or absence of ALCAM
membrane expression indicates a poor outcome in OC and
can be useful in the identification of patients at risk, who need
a more frequent follow-up and alternative treatment [23].

However, our experience in the IHC assessment of
ALCAM expression in OC (unpublished data) revealed, in
a completely unexpected manner, results that contradict
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Figure 1: Graphical scheme that illustrates the general structures and action principles for ALCAM, c-FLIP, and caveolin (RTKs: tyrosine
kinase receptors, OD: caveolin scaffolding domain, Fas-R/Fas-L, TRAIL/TRAIL-R (DR4, DR5), TNF/TNF-R: death-receptor mediated
apoptosis pathway, DISC: Death Inducing Signaling Complex, cas-8: caspase-8, cas-10: caspase-10, and eNOS, Src, ErbB-2/MAPK, Erk, Wnt,
NF-𝜅B, and PI3K/AKT/mTOR: signaling pathways).

the reports in the literature [23]. The membranous pattern of
ALCAM, indicator of junction stability and, therefore, of low
invasive potential, was predominantly associated with stage
III andG3 differentiation.These results assign a higher poten-
tial for aggressiveness to themembranous pattern of ALCAM
than the one generally recorded in tumor pathology and, par-
ticularly, in the ovarian malignancies. This statement opens a
series of new perspectives for the reappraisal of the signifi-
cance of ALCAM expression as indicator for tumor progres-
sion ability. In our opinion, a hypothesis worthy of consider-
ation implies the return to the membranous expression, after
the cytoplasmic translation, whichwould reflect amuchmore
aggressive biological behavior than the cytoplasmic profile.

Recent data relying on in vitro (using human epithelial
OC cell lines) and in vivo (using human sera and ascites
fluid) studies show the existence of a soluble form of ALCAM
(sALCAM) [22, 24], which results from its disconnection
from the cell membranes (Figure 1). EGFR, in association
with other protein molecules (such as phorbol esters and
pervanadate), via molecular signals triggered in various
pathways, ensures the release of ALCAM from ovarian tumor
cells through a metalloproteinases-dependent mechanism,
regulated by the proteolytic activity of ADAM17/TACE,

which determines the occurrence of sALCAM in ascites and
serum [22, 24]. Membranous detachment of ALCAM may
also occur as result not only of protease degradation but
also of methylation of ALCAM promoters [22, 24]. sAL-
CAM conducts tumor growth by coordination of invasion
and metastasis [22, 24]. The potential for diffusion in the
extracellular liquid recommends the usage of sALCAM as
ovarian tumoral biomarker [22, 24], in correlation with the
expression level, for sALCAM may be present in the serum
of healthy individuals as well [42, 45].

3. c-FLIP, A Major Contributor in
Mediation of Antiapoptotic Signals

3.1. Starting Point. c-FLIP (cellular FLICE-like inhibitory
protein) is the main mediator of antiapoptotic events and the
negative regulator of the signals monitored by proapoptotic
receptors [46, 47], with the involvement of the proteolytic
activity of the caspase family members [48, 49] (Figure 1).

c-FLIP is upregulated by several signaling pathways:
PI3K/Akt, NF-𝜅B, and MAPK (Figure 1) or downregulated
through c-myc, Foxo3a, Fos Jun, or IRF5 pathways [47, 50,
51].
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Overexpression of c-FLIP is recorded in various tumors
[50, 52–68] and nontumoral diseases (diabetes mellitus,
autoimmune syndromes, and multiple sclerosis) [51, 69, 70].
However, as opposed to other apoptotic markers, c-FLIP is
less investigated in ovarian tumoral pathology [49, 71–76].

3.2. Structural Features. c-FLIP functions as a complex mul-
tiprotein system consisting of 3 isoforms with roughly similar
structures: a long variant c-FLIPL and two short ones, c-FLIPS
and c-FLIPR [47, 77, 78]. The two short variants result from
the nucleotide polymorphism in 3 splice site of c-FLIP gene
[51, 79] and are almost equal in size (26 and 24 kDa, resp.) and
biochemical arrangement, with only one difference in the C-
terminal domain, where c-FLIPS has an addition of 20 amino
acids, essential for ubiquitination and proteasomal degrada-
tion, which support the antiapoptosis effects [46]. c-FLIPL
is the longer variant, weighing 55 kDa, and has a structure
similar to caspase-8, which it inhibits and deactivates. The
structural analogy between c-FLIP and caspase-8 contributes
to unfavorable effects with repercussions in cancer therapy
[51]. All three c-FLIP variants display at their N-terminal end
two death effector domains (DEDs) [51].

The c-FLIP protumoral effect is achieved by binding c-
FLIP to the death receptors through DEDs (in a ligand-
dependent or ligand-independent pattern), followed by inhi-
bition of DISC formation by TRAIL and CD95/Fas/APO1
[49] and consequent blockage of the proapoptotic activity
of caspase-8 and caspase-10, through inhibition of their
activation [51] (Figure 1).

The gene that codes c-FLIP (CFLAR) is located on the
2q33-2q34 chromosome, together with the genes that code
caspase-8 and caspase-10 [46, 70]. Any gene alteration afflicts
negatively the expression of pro-/antiapoptotic molecules
[46, 70].

3.3. c-FLIP Expression: From Different Tumors to Landmarks
in Ovarian Carcinoma. The overexpression of c-FLIP is
reported in experimental studies on cell lines of colorectal
carcinoma [52], gastric adenocarcinoma [53], pancreatic [54]
and prostate [55] carcinomas, melanoma [56], and tissue
specimens corresponding to gastric [57, 58], colorectal [59],
gallbladder [60], liver [61], bladder [62], lung [63, 64], and
cervix [65] tumors, melanoma [66], Ewing sarcoma [67], and
Burkitt lymphoma [68].

In ovarian carcinogenesis, the published data is centered
on the antiapoptotic role of c-FLIP in the carcinogenic
mechanism by using OC cell lines [49, 71, 72, 76], while only
four reports analyze its value as prognosis marker on human
tissue samples [71, 73–75].

The presence of c-FLIP is associated with unfavorable
prognosis [75], due to its contribution, by regulation of
TRAIL signals [73], to the resistance towards the apoptotic
receptors [74], which promotes ovarian tumor progression
and development of chemoresistance [49] (Figure 1). How-
ever, although the knowledge on the various apoptotic recep-
tors and pathways involved in sensitivity or resistance of OC
to chemotherapy has increased significantly in the last two
decades, this issue is still in permanent upgrade.

Our experience in the IHC appraisal of c-FLIP in OC
(unpublished data) reveals, in accordance with the literature
[71, 73–75], that the expression of c-FLIP varies significantly
between the early and advanced stages, as well as in correla-
tion with the differentiation degree. Our data indicates that a
positive expression of c-FLIP characterizes the initial phases
of ovarian carcinogenesis, which corresponds to FIGO I stage
and differentiation degree G1.

The decrease of c-FLIP expression in advanced stages
could be explained either by its interposition only in the
initial phases of the apoptosis [74], this process being later
inhibited by several other molecules which regulate tumor
survival, or it could be possible that the intervention of c-
FLIP is no longer necessary for the inhibition of the pathways
involved in the maintenance of apoptosis.

It is worth mentioning that, in case of a functional p53,
ovarian tumoral cells may escape from the cascade of events
specific to apoptosis [71, 75]. Inversely proportional relation-
ships between c-FLIP and p53 are reported, with the c-FLIP
increased expression being associated to “wild-type” p53,
while mutant p53 is associated to diminished c-FLIP expres-
sion [71]. Consequently, the literature describes increased
expression of c-FLIP in well-differentiated serous OC and
clear cell OC, subtypes which, according to pathogenic
classification, are type I tumors, without p53 expression at
molecular level [71].

All these data recommend c-FLIP not only as a candidate
prognostic factor for OC but also as an useful tool in patients’
stratification for innovative treatments which could also take
into consideration c-FLIP as therapeutic target [75, 80, 81].

4. Caveolin: A Peculiar Mechanotransductor

4.1. Starting Point. Caveolins are major structural compo-
nents of the caveolae [82], located in areas with intense vesic-
ular traffic, where they act as “mechanotransductors” and
ensure relay of information towards target molecules [83–
85]. Their presence was confirmed in epithelial cells (mainly
endothelial cells and pneumocytes), fibroblasts, adipocytes,
myocytes [86, 87], and glial cells [88].

They play a dynamic part in themediation of intercellular
and/or extracellular adhesion through cadherins, integrins
[89], and fibronectin [90], in the control of endothelial pas-
sage, ensuring the stability of the endothelial barrier via
catenins [91], and inhibit inflammatory processes, through
their action on the cytokines [89].

Due to their role as signal transductors, caveolins are
involved in various sequences of carcinogenesis [92]. Con-
sequently, several reports in the mainstream publications
analyze caveolin in different types of tumors [93–105], with
its expression being investigated in OC as well [106–111].

4.2. Structural Features. The caveolin is a transmembranous
protein with heterooligomeric structure and a molecular
weight of 24 kDa. The peculiar form of hairpin is caused by
the organization pattern of its five domains: two cytoplasmic
N/C-terminals, a C-terminal membrane attachment domain,
an oligomerization domain, and a central transmembranous
domain [87, 89, 112]. The oligomerized domain comprises
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a “scaffolding” subdomain (Figure 1), responsible for the
interaction between caveolins and various molecules in the
vesicular traffic [87, 87, 112].

There are three types described: type 1 with two isoforms
(1𝛼 and 1𝛽), type 2, and type 3, all with a molecular weight of
18 to 24 kDa [112]. For caveolins 1 and 3, the role as structural
component of caveolae is ascertained, but the function of
caveolin 2 remains still undetermined [113].

Caveolins are arranged in a regular pattern, with 100–
200 molecules along a caveola, thus forming multiprotein
complexes at the submembranous level [114]. Because of the
numerous protein and nonprotein signaling molecules at
these sites, any structural damage to the caveolae or caveolins
generates the inhibition of molecular signaling [115].

4.3. Caveolin Expression: FromDifferent Tumors to Landmarks
in Ovarian Carcinoma. The profile of caveolins is investi-
gated in various carcinomas, such as breast [96], prostate
[97, 98], colon, liver, stomach, esophagus [95, 99], kidney
[100], urinary bladder [101], pancreas [102], lung [94], head
and neck [103], biliary tree [104], and salivary glands [105],
and in sarcoma [93]. The results reveal that their positive
expression depends on tumor subtype, grade, or stage and
that caveolin inhibition is associated with poor prognosis and
metastatic invasion.

Their involvement in the carcinogenic mechanism con-
sists strictly in the regulation of signaling pathways Ras,
Raf, ERK, ErbB-2-/MAPK/FAK, Src tyrosine kinase, PI3-
K/AKT/mTOR, and NF-𝜅B [89, 93, 116], through their ability
to block the activation of the oncogenes v-Src, H-ras, PKA,
PKC, and Ras-p42/44 [94, 113], and thus are granted the
status of tumor suppressor genes [93, 116] (Figure 1).However,
recent evidence shows that caveolins can also act as onco-
genes [117–119]. This potential duality, as oncogene versus
tumor suppressor gene, reflects upon the different molecular
pathways, which results in regulation of cell cycle, increase of
tumor cell proliferation and invasion potential, promotion of
angiogenesis, and the balancing of the apoptotic mechanism
[93, 117].

The little existing information regarding caveolins in OC
is based rather on experimental researches [83, 106–109] than
on human ovarian tissue specimens [110, 111]. The first type
of studies, on OC cell lines, shows that the caveolins have
the same action mechanism as in the general sequence of
carcinogenesis.

The IHC studies on paraffin-embedded samples of nor-
mal, benign, and malign ovary reveal that caveolins are
present in normal ovarian surface epithelium, in benign
pathology, and in early stages of tumor proliferation, with
their expression being inhibited as themalignant transforma-
tion advances [111].The prevalent association of the caveolins
with the serous subtype is to be noted, in contrast with other
OC histologic subtypes [111].

On the other hand, an increased expression of caveolins
is ascertained in metastases, as opposed to primary ovarian
tumors [110], a fact which suggests that caveolins should
not be regarded merely as structural molecules, but also
as functional ones, directly involved in the control and
regulation of various signals that cross cellular membranes.

In accordance with the literature [110, 111], our results
in the assessment of caveolins in OC (unpublished data)
indicate that absence of caveolin expression reflects tumor
progression, and the correlations with clinicopathological
factors and survival variables confirm that its negative expres-
sion is associated with a poor prognosis. Extrapolation of
IHC results towards the mechanism that governs malignant
transformation leads to the idea that in early tumor stages
caveolins work as tumor suppressor genes, through the
control of junctional contacts, while in advanced tumor
stages caveolins function as oncogenes.

Hence, the role of caveolins in the mechanism of ovarian
carcinogenesis remains to be clarified, more so taking into
account the fact that their behavior varies, according to
cellular microenvironment and received signals, from block-
ing the cellular oncogenic potential to stimulation of tumor
growth [111].

5. Final Remarks

The current trend in ovarian carcinogenesis is the decoding
of the genic and proteomic profile, which would lead to a
deeper understanding of the pathogenicmechanism, a clearer
explanation for the wide variability in the clinical course, and,
also, to the documented validation ofmolecularmarkers with
prognostic value.

This brief review of the three molecules, ALCAM, c-FLIP,
and caveolin, chosen due to the interlocked dialogue they
develop in the signaling pathways, is thus fully justified by the
perspectives provided through the current limited knowledge
on their role in the initiation and progression of ovarian
carcinogenesis and on their potential as prognosis factors.
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al., “The neural cell adhesion molecule is involved in the
metastatic capacity in amurinemodel of lung cancer,”Molecular
Carcinogenesis, vol. 49, no. 4, pp. 386–397, 2010.

[17] C. W. Wong, D. E. Dye, and D. R. Coombe, “The role of
immunoglobulin superfamily cell adhesionmolecules in cancer
metastasis,” International Journal of Cell Biology, vol. 2012,
Article ID 340296, 9 pages, 2012.

[18] L. Bombardelli and U. Cavallaro, “Immunoglobulin-like cell
adhesion molecules: novel signaling players in epithelial ovar-
ian cancer,” The International Journal of Biochemistry & Cell
Biology, vol. 42, no. 5, pp. 590–594, 2010.

[19] D. Aldovini, F. Demichelis, C. Doglioni et al., “M-cam expres-
sion as marker of poor prognosis in epithelial ovarian cancer,”
International Journal of Cancer, vol. 119, no. 8, pp. 1920–1926,
2006.

[20] G. Spizzo, P. Went, S. Dirnhofer et al., “Overexpression of
epithelial cell adhesion molecule (Ep-CAM) is an independent
prognostic marker for reduced survival of patients with epithe-
lial ovarian cancer,” Gynecologic Oncology, vol. 103, no. 2, pp.
483–488, 2006.

[21] G. C. Sellar, K. P. Watt, G. J. Rabiasz et al., “OPCML at 11q25
is epigenetically inactivated and has tumor-suppressor function
in epithelial ovarian cancer,” Nature Genetics, vol. 34, no. 3, pp.
337–343, 2003.

[22] O. Rosso, T. Piazza, I. Bongarzone et al., “TheALCAMshedding
by the metalloprotease ADAM17/TACE is involved in motility
of ovarian carcinoma cells,” Molecular Cancer Research, vol. 5,
no. 12, pp. 1246–1253, 2007.

[23] D. Mezzanzanica, M. Fabbi, M. Bagnoli et al., “Subcellular
localization of activated leukocyte cell adhesion molecule is a
molecular predictor of survival in ovarian carcinoma patients,”
Clinical Cancer Research, vol. 14, no. 6, pp. 1726–1733, 2008.

[24] G. Carbotti, A. M. Orengo, D. Mezzanzanica et al., “Activated
leukocyte cell adhesion molecule soluble form: a potential
biomarker of epithelial ovarian cancer is increased in type II
tumors,” International Journal of Cancer, vol. 132, no. 11, pp.
2597–2605, 2013.
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