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ABSTRACT: Hebbian theory seeks to explain how the neurons in
the brain adapt to stimuli to enable learning. An interesting feature
of Hebbian learning is that it is an unsupervised method and, as
such, does not require feedback, making it suitable in contexts
where systems have to learn autonomously. This paper explores
how molecular systems can be designed to show such
protointelligent behaviors and proposes the first chemical reaction network (CRN) that can exhibit autonomous Hebbian learning
across arbitrarily many input channels. The system emulates a spiking neuron, and we demonstrate that it can learn statistical biases
of incoming inputs. The basic CRN is a minimal, thermodynamically plausible set of microreversible chemical equations that can be
analyzed with respect to their energy requirements. However, to explore how such chemical systems might be engineered de novo,
we also propose an extended version based on enzyme-driven compartmentalized reactions. Finally, we show how a purely DNA
system, built upon the paradigm of DNA strand displacement, can realize neuronal dynamics. Our analysis provides a compelling
blueprint for exploring autonomous learning in biological settings, bringing us closer to realizing real synthetic biological intelligence.
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■ INTRODUCTION

While intelligent behaviors are usually associated with higher
organisms that have a nervous system, adaptive and
protointelligent behaviors are well documented in unicellular
organisms. Examples include sensing,1−3 chemotaxis,4,5 or
diauxic growth.6−8 This begs the question whether it is
possible to rationally build molecular systems that show
protointelligent behaviors and can be used as machines to
monitor or control their chemical environment at a micro-
scopic scale. Systems of this type could find applications in
areas such as drug delivery, bioprocessing, or biofabrication.
As a step in this direction, we will probe how artificial

intelligence can be realized in molecular systems. More
specifically, we will show how to realize artificial neurons, as
they are widely used in computer science as components of
neural networks.9 Individual artificial neurons are simple
machines but nevertheless show a remarkable ability to learn
from observation. For the purpose of this article, we will
consider a particular type of neuron, a spiking neuron (SN).
SNs are widely used in machine learning,10,11 and it is well
known that they have significant learning capabilities12,13

including principal component analysis,14 recognition of
handwriting,15 or classification of fighter planes.16 There are
a number of different models of SNs in the literature.
Commonly a SN has an internal state, usually represented by
a positive real number. The internal state may decay, which
means that it reduces over time with some rate. The internal
state variable increases when the SN receives a stimulus (an
input spike) via one of its N input channels. Importantly, these

input channels are weighted. The higher the weight, the more
the internal state variable increases following an input spike
through this channel. This weighting is crucial for the
behaviors of the neuron. Consequently, “learning”, in the
context of neural networks, normally means adjusting the
weights.
There have been numerous attempts to build neurons in

chemical systems. The earliest dates back to the 1980s by
Okamoto and collaborators,17 who showed that certain
biochemical systems implement the McCulloch−Pitts neu-
ronic equations. Later, a mathematical description of a neuron
was proposed,18 but this system had no ability to learn. Banda
et al.19 used artificial chemistry to emulate an artificial neuron
and a fully fledged feed-forward neural network20 which could
solve the XOR problem. Their model requires regular
interventions by outside operators, however. Besides these
simulation studies, there have also been attempts to implement
learning in vivo,21−24 but again, these systems are not
autonomous: they rely on iterative measurement and
manipulation protocols, which limit their practical deployment
as computing machines within a molecular environment.
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An attractive concept of learning that avoids the need to
monitor the molecular neurons is Hebbian learning. This
concept originated from neuroscience but is now widely used
in artificial intelligence to train neural networks. The basic idea
of Hebbian learning is that the connection between neurons
that fire at the same time is strengthened. This update scheme
is attractive because unlike many other learning algorithms, it
does not require evaluating an objective function, which would
be difficult to achieve in general with chemical networks.
To illustrate the basic idea of Hebbian learningor

associative learning as it is often called when there are only
two input channelsconsider a neuron with two inputs A1 and
A2. Let the weights associated with the inputs be set such that
(an output firing of) the neuron is triggered whenever A1 fires
but not when A2 fires. Assume now that A2 fires usually at
around the same time as A1. Then, its weights will be
strengthened by the Hebbian rule because of the coincidence
of A1 and A2. Eventually, the weights of the second channel will
have increased sufficiently such that firing of A2 on its own will
be sufficient to trigger an output.
Molecular models of Hebbian learning have been proposed

before. A biochemical model of associative learning was
proposed by Fernando and co-workers.25 Their model is fully
autonomous, but it is also inflexible. Association is learned after
just a single coincidence, and hence, the model is unable to
detect statistical correlations robustly. Moreover, the system
cannot forget the association between the inputs. McGregor et
al.26 introduced an improved design with systems that were
found by evolutionary processes. A biochemically more
plausible system was proposed by Sole ́ and co-workers,27 but
this system is also limited to learning two coinciding inputs and
relies on an explicit operator manipulation in order to forget
past associations.
In this article we will propose a fully autonomous chemical

artificial neuron, henceforth referred to as CN, Table 1, that

goes beyond the state of the art in that it can learn statistical
relations between an arbitrary number of inputs. The CN is
also able to forget learned associations and as such can adapt to
new observations without any intervention by an external
observer. Via each of its input channels the CN can accept boli,
which is the injection of a certain amount of chemical species,
representing the input spikes of simulated neurons. The CN
will “learn” the statistical biases of the input boli in the sense
that the abundance of some of its constituent species, which
play an analogous role to neuronal weights, reflect statistical
biases of the boli. In particular, we consider two types of biases.
(i) Frequency biases (FB): one or more input channels of the
CN receive boli at different rates. (ii) Time correlations (TC):
two or more input channels are correlated in time. The TC
task can be understood as a direct generalization of associative
learning with an arbitrary number of input channels.

We will propose three different versions of the CN. The first
(basic) version will be the CN itself, which is a minimal set of
chemical reactions. It is also thermodynamically consistent in
that it comprises only microreversible reactions with mass-
action kinetics. This first version, while compact, assumes a
high degree of enzymatic multiplicity which is unlikely to be
realizable. Therefore, we shall propose a second version of the
model which is not thermodynamically explicit but biologically
plausible in the sense that it can be formulated in terms of
known biochemical motifs. The main difference between this
and the previous system is that the former is compartmental-
ized. Henceforth, this compartmentalized system will be
referred to as c-CN.
We also propose d-CN, a version of the CN that is

formulated using DNA strand displacement (DSD),28 a type of
DNA-based computing. DSD is a molecular computing
paradigm based entirely on interactions of DNA strands and
Watson−Crick complementarity and is biocompatible. By this
we mean that DSD computers can, in principle, be injected
into organisms and interact with their biochemistry29 and
therefore have potential to be used to control molecular
systems. It has been shown that DSD systems are capable of
universal computation30 and indeed that any chemical reaction
network can be emulated in DSD.31,32 From a practical point
of view, it is relatively easy to experimentally realize DSD
systems, and their behavior can also be accurately pre-
dicted33,34,37 using simulation software such as Visual DSD28

or Peppercorn.35 There is now also a wealth of computational
methods and tools for designing DNA-based circuits.36,37

Given these properties, there have been a number of
attempts to build intelligent DSD systems. Examples include
linear-threshold circuits, logic gates,30,38 switches,39 oscilla-
tors,40 and consensus algorithms.32

There were also some attempts to emulate neural networks
in DSD: Qian et al.41 proposed a Hopfield network which has
the ability to complete partially shown patterns. However,
because the weights connecting individual neurons were hard
coded into the system, the system was unable to learn.
Networks of perceptron-like neurons with competitive winner-
take-all architectures have also been proposed42,43 and show
how to use DSD reaction networks to classify patterns, such as
MNIST handwritten digits.44 However, learning is external to
these systems; weights have to be determined before building
the DNA circuit and are then hard coded into the design.
Supervised learning in DSD was proposed by Lakin and

collaborators.45 They used a two-concentration multiplier
circuit motif in order to model the gradient descent weight
update rule. However, this approach requires an external
observer to provide constant feedback. From the perspective of
implementing artificial protointelligence in biochemistry, none
of the above approaches can be used as a fully autonomous
component of a molecular learning system in the sense that
they can operate independently of constant external main-
tenance.

■ RESULTS

In the first part of this section, we describe the microreversible
chemical reactions that constitute the CN. Next, we
demonstrate that the system of reactions behaves like a
spiking neuron, and we analyze the key parameters that
determine the performance of the system. In the subsequent
section, we describe c-CN, which lends itself more easily to

Table 1. List of Acronyms

acronym definition

CN chemical neuron
c-CN compartmentalized chemical neuron
d-CN DNA chemical neuron
FB frequency biases
TC time correlations
DSD DNA strand displacement
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experimental implementation. Finally, we discuss how DNA
strand displacement can be used to construct the d-CN.
Chemical NeuronMinimal Model. Overview. We

model the CN as a set of microreversible elementary chemical
reactions obeying mass-action kinetics (Table 2, Figure 1).

Microreversibility makes the model thermodynamically con-
sistent. The system is best understood by thinking of each
molecular species Ai as an input to the system via channel i.
The inputs are provided in a form of boli, which is defined as a
fixed amount of molecules introduced to the system at the time
of the input. The weight equivalent of the ith input channel of
the CN is the abundance of the species Hi. The species is the
activated form of E and plays a dual role. It is (i) the learning
signal, which indicates that a weight update should take place,
and (ii) the output of the CN, which could be coupled to
further neurons downstream. The internal state of the CN,
which acts as a memory for the system, is represented by the
abundance of the molecular species B. We now proceed by
discussing each reaction in Table 2 in turn.
Input. We assume here that the CN has N different species

of input molecules A1, ..., AN. These represent the N input
channels, each of which is associated with a corresponding
weight H1, ...,HN. The weight molecules are the interpretable
output of the neuron in the sense that the abundance of the Hi
molecules will reflect statistical biases in the input. The input is
always provided as an exponentially decaying bolus at a
particular time ti

s, where s is a label for individual spikes.
Concretely, this means that at time t = ti

s the CN is brought
into contact with a reservoir consisting of β (unmodeled)
precursor molecules Ii that then decay into Ai molecules with a
rate constant κ > 0. A particular consequence of this is that the
Ai are not added instantaneously but will enter the system over
a certain time. This particular procedure is a model choice that

has been made for convenience. Different choices are possible
and would not impact on the results to be presented. The
important point is that the input signal to channel i is a bolus
of quantity Ai and occurs at a particular time t. This enables the
system to reach a steady state provided that the input is
stationary.
The basic idea of the CN is that input boli Ai are converted

into internal state molecules B. This reaction takes a catalyzed
as well as an uncatalyzed form. The uncatalyzed reaction

H IooA Bn
k

k

BA

AB
is necessary in order to allow the system to learn to

react in response to new stimulus, even when the weight
associated with a given channel decayed to 0. In the case of the
catalyzed reaction, the channel-specific Hi molecules play the
role of the catalyst. Thus, the speed of conversion depends on
the amount of weight Hi. If at any one time there is enough of
B in the system then the learning signal is created by
activating E molecules. Once the learning signal is present,
some of the Ai are converted into weight molecules, such that
the weight of the particular input channel increases. This
realizes Hebbian learning in the sense that the coincidence of
inputs Ai and output activates weight increases following the
well-known Hebbian tenet “What fires together, wires
together”.

Activation Function. The link between the internal state
molecules B and the learning signal is often called the
activation function. In spiking neurons, as they are used in
artificial intelligence, this activation is usually a threshold
function. The neuron triggers an output if the internal state
crosses a threshold value. In chemical realizations, such a
threshold function is difficult to realize. Throughout this
contribution, our systems are parametrized such that the
dynamics of the system is dominated by noise. Molecular
abundances are therefore noisy. As a consequence, the
activation function has to be seen as the probability to observe
the activated form as a function of the abundance of B.
An ideal activation function would be a step function, but

physical realization will necessarily need to approximate the
step function by a continuous function, for example, a sigmoid.
In the CN, this is realized as follows. Each of the E molecules
has m binding sites for the internal state molecules B. Once all
m binding sites are occupied, E is converted into its active form
. We make the simplifying assumption that the conversion

from E to is instantaneous once the last B binds. Similarly, if
a B molecule unbinds then the changes immediately to E. In
this model, the balance between and E molecules depends
on the binding and unbinding rates of B. We assume that there
is a cooperative interaction between the B molecules such that
unbinding of B from is much slower than unbinding from E.
With an appropriate choice of rate constants, this system is
known to display ultrasensitivity, i.e., the probability for the
fully occupied form of the ligand chain ( ) to exist transitions
rapidly from close to 0 to close to 1 as the concentration of
ligands approaches a threshold value ϑ ≈ k+/k−. The dynamics
of such systems is often approximated by the so-called Hill
kinetics. It can be shown that the maximal Hill exponent that
can be achieved by such a system is m.46 This means that the
chain-length m, which we henceforth shall refer to as the
“nonlinearity”, controls the steepness of the activation function
of . In the limiting case of m = ∞, this will be a step function,
whereby the probability to observe is 0 if the abundance of B
is below a threshold and 1 otherwise. We are limited here to

Table 2. List of Chemical Reactions Constituting the CN

function reaction(s)

input
H IooI An
k

k

AI

IA

H IooA Bn
k

k

BA

AB

activation function
F+ < −+−

+

B E E i m, 1i
k

k
i 1

H Iooo+ − −

+

B Em
k

k
1

last

learning
H Iooo H Iooo+ +A A Hn
k

k
n

k

k
n

A

A

H

H

H Iooo H Iooo+ +A H AH B Hn n
k

k
n

k

k
n

HA

AH

BH

HB

leak ⎯ →⎯⎯ ϕ
ϕ

Hn
kH

⎯ →⎯⎯ ϕ
ϕ

B
kB

Figure 1. Graphical representation of the minimal model of the CN.
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finite values of m > 0. In this case, the function is sigmoidal or a
saturating function in the case of m = 1. The parameter m and
hence the steepness of the activation function will turn out to
be crucial factors determining the computational properties of
the CN.
Learning. In neural networks, “learning” is usually

associated with the update of weights. Accordingly, in the
case of the CN, learning is the change of abundances Hi. The
abundance can only increase if two conditions are fulfilled: (i)
the learning signal is present and (ii) there are still input
molecules Ai in the system. In short, learning can only happen
if input and output coincide, which is precisely the idea of
Hebbian learning. For an illustrative example of how Hebbian
learning works in the CN, see Figure 2.
Leak. Finally, we assume that the weight molecules Hi and

the internal state molecules B decay, albeit at different rates.

This is so that the weight abundances can reach a steady state;
in addition, it enables the CN to forget past inputs and to
adapt when the statistics of the input changes. We will assume
that the decay of Hi is slow compared to the typical rate of
input boli.
Throughout this paper we will assume that the dynamics of

A, B, and E are fast compared to the change in concentration of
H. This is a crucial assumption to allow the weights to capture
long-term statistics of inputs; in particular, the weights should
not be influenced by high-frequency noise present in the
system. Furthermore, we also assume that the lifetime of is
short. For details of the parameters used, see Table S1.

Associative Learning. We first demonstrate that the CN is
capable of associative learning (Figure 3). To do this, we
generate a CN with N = 2 input channels. Then, we initialize
the CN with a high weight for the first channel (H1 = 100) and

Figure 2. (a) Example of three inputs of uniform size received from 3 different channels. Each input shown in the second graph has a different

weight associated it: Hgreen = 250, Hblue = 50, and Hred = 0. H molecules act as a catalyst in the H IooA Bn
Hn

reaction, hence the change in the function of
B molecules over time for each of the inputs. The higher the amount of H, the higher is the peak of B molecules caused by a particular input.
Moreover, with the increase in weights, the function of inputs also changes. The higher the amount of H, the quicker its corresponding A dissipates.
(b) Example simulation showing the core idea of the CN dynamics. Graphs show the internal state B, learning signal , and weight H for a single
channel. We assume a bolus provided at time t = 0.015. This causes the internal state to go up and reach the threshold. Learning signal is triggered
at around t = 0.03, and consequently, the weight is increased by (in this case) 15 molecules of H.

Figure 3. Associative learning in CN. First two graphs show inputs A1 and A2. Clearly, a single A2 does not lead to a sufficient increase of the
internal state B, such that no learning signal is triggered. After a few coincidences of A1 and A2, weights H2 (last graph) have increased sufficiently
for A2 to trigger a signal in its own at time t = 0.8. Note the increase in weights for the second channel after each coincidence.
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a low weight for the second channel (H2 = 0). Furthermore, we
set the parameters of the model such that a bolus of A1 is
sufficient to trigger an output but a bolus of A2, corresponding
to stimulating the second channel, is not. This also means that
presenting simultaneously both A1 and A2 triggers a learning
signal and increases H1 and H2. If A1 and A2 coincide a few
times then the weights of A2 have increased sufficiently so that
a bolus of A2 can push the internal state of the system over the
threshold on its own. This demonstrates associative learning.
Note that unlike some previous molecular models of
associative learning (e.g., ref 25), the CN requires several
coincidences before it learns the association. It is thus robust
against noise.
This means that the CN can also readily unlearn the

correlation if input patterns change (see Figures S4 and S5).
There are two mechanisms in the system that ensure that the
neuron is able to continuously learn new input statistics. These
are (i) the decay of the weights, which ensures a rate of
forgetting, and (ii) the uncatalyzed reaction An to B, which
allows the system to learn to react in response to new stimulus,
even when the weight associated with a given channel decayed
to 0.
Full Hebbian Learning.We now show that the ability of the

CN to learn extends to full Hebbian learning with an arbitrary
number of N input channels. First, we consider the FB task,
where the CN should detect input channels that fire at a higher
frequency than others. To do this, we provide random boli to
each of the N input channels. Random here means that the
waiting time between two successive boli of Ai is distributed
according to an exponential distribution with parameter 1/f i,
where f i is the frequency of the input boli to channel i. The CN
should then detect the difference in frequencies f i between
input channels. We consider the FB task as solved if (after a
transient period) the ordering of the abundances of weights
reflects the input frequencies, i.e., the number of Hi should be
higher than the number of Hj if f i > f j. Below we will show,
using a number of example simulations, that the CN is indeed
able to show the desired behavior. Later, we will probe in more
detail how the response of the system depends on its
parametrization and the strength of the input signal.
In order to test a CN with multiple inputs (N = 5, m = 1),

we consider 3 variants of the FB task. First, we assume that boli
to the first two input channels come at a frequency of 4 Hz,
whereas channels 3, 4, and 5 fire at a frequency of 2 Hz; we call
this variant FB 2. Similarly, for FB 3 and FB 4, the first 3 and 4

channels, respectively, fire at the higher frequency. Figure 4
shows the steady state weights for each of the three tasks. As
expected, in each of the experiments, the weights of the high-
frequency inputs are higher when compared to the low-
frequency inputs. We conclude that the CN can work as a
frequency detector at least for some parametrizations.
The other scenario that we will investigate is the TC task,

which is the direct generalization of the associative learning
task to an arbitrary number of input channels. For this problem
we assume that all input frequencies are the same, i.e., f i = f j for
all i,j ≤ N. Instead of differences in frequency, we allow
temporal correlations between input boli of some channels. If
A1 and A2 are temporally correlated then each bolus of A1 is
followed by a bolus of A2 after a time period of δ + ξ, with δ
being a fixed number and ξ a random variable drawn from a
normal distribution with μ = 0 and σ2 = 0.0001 for each bolus.
In all simulations, the input frequency of all channels is set to 2
Hz.
The CN can solve the TC task in the sense that, after a

transient period, the weights indicate which channels are
correlated. They also indicate the temporal order implied by
the correlation, i.e., if Ai tends to precede Aj then the
abundance of weight Hi should be lower than the abundance of
Hj. Furthermore, if Ai is correlated with some other channel k
but Aj is not then the abundance of Hi must be greater than
that of Hj.
In order to test whether the system is indeed able to detect

TC biases, we again simulated a CN with N = 5 input channels
and all weight molecules initialized to Hi = 0. We then
determined the steady state weights in four different scenarios:
there are correlations between (i) A1 and A2 (TC 2), (ii) A1,
A2, and A3 (TC 3), and (iii) A1, A2, A3, and A4 (TC 4). The
temporal order is always in ascending order of the index, such
that in the last example, A1 occurs before A2, which in turn
occurs before A3. We find that the behavior of the CN is as
expected (Figure 4). At steady state the weights reflect the
correlation between input channels, including the temporal
ordering, thus allowing us to conclude that, at least for some
parametrizations, the CN successfully identify temporal
correlations.

Analysis of Activation Function Nonlinearity. The ability
of the CN to perform in the TC task depends on its ability to
detect coincidences. In this section, we will now analyze in
more detail how this coincidence detection depends on the
nonlinearity of the activation function, i.e., the parameter m.

Figure 4. Normalized weights for a variety of TC and FB tasks. First (blue) bar refers to the first weight, second (orange) to the weight for the
second channel, and so on. Each value represents the average over 300 time units of a single simulation. Data was only collected after the weights
reached the steady state (after 700 time units). In all experiments, we set the number of E1 molecules at the start of the simulation to 40.
Nonlinearity was set to m = 5 for the TC and m = 1 for FB.
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To do this, we consider two extreme cases: First, the case of
minimal nonlinearity (i.e., m = 1), and second, the limiting
(and hypothetical) case of maximal nonlinearity (i.e., m = ∞).
This latter case would correspond to an activation function
that is a step function. While a chemical neuron cannot realize
a pure step function, considering the limiting case provides
valuable insight.
We consider first this latter scenario with a CN with two

inputs A1 and A2. In this case, there will be a learning signal
in the CN if the abundance of B crosses the threshold ϑ. Let us
now assume that the parameters are set such that a single bolus
of either A1 or A2 is not sufficient to push the abundance of B
over the threshold but a coincidence of both is. In this scenario
then we have the following.

• A single bolus of A1 will not lead to a threshold crossing.
No learning signal is generated, and weights are not
increased.

• If a bolus of A1 coincides with a bolus of A2 then this
may lead to a crossing of the threshold of the internal

state. A learning signal is generated. Weights for both
input channels 1 and 2 are increased (although typically
not by equal amounts).

Next, consider an activation function tuned to the opposite
extreme, i.e., m = 1. It will still be true that both A1 and A2 are
required to push the abundance of B across the threshold.
However, the learning behavior of the CN will be different.

• A single bolus of A1 will not lead to a threshold crossing.
A learning signal may still be generated even below the
threshold because the activation function is not a strict
step function. The weight H1 will increase by some
amount, depending on the bolus size.

• If a bolus of A1 coincides with a bolus of A2 then this will
lead to more learning signal being generated than in the
case of A1 only. As a result, the weights for both input
channels 1 and 2 are increased by more than if they had
occurred separately.

Figure 5. Steady state weights as a function of bolus size for a CN with 3 inputs. Input A3 (green) is provided at 4 Hz, A1 and A2 are correlated with
δ = 0.0047, but they are only provided at 2 Hz. Graph shows the normalized weights at steady state corresponding to the input channels for
different bolus sizes (here reported as a fraction of the threshold). From left to right, bolus size increases. For m = 1, the system detects the higher
frequency of A1 as indicated by its high weight. It also differentiates between the correlated inputs but with weaker signal. As the bolus size
increases, the neuron maintains its ability to recognize FB but can no longer detect TC, i.e., H1 and H2 have the same abundance. For the higher
nonlinearity (m = 4), the system detects the TC (H2 has a higher abundance than H1). As the bolus size increases, it detects the FB but its ability to
detect TC decreases.

Figure 6. Differential weight increase for different nonlinearities. For both graphs, the points were computed as follows: We simulated a CN with
two input channels only. We set the initial condition to H1, H2 = 0. At time t = 0, we provided a bolus of A1, and after a time period of δ, we
provided the bolus A2. We then continued the simulation for another 0.2 time units. y axis records the relative increase of H2 over 0.2 time units
averaged over 1000 repetitions. (a) We stimulate channel 1 followed by channel 2 after a time period of δ. Then, we measure the amount by which
weights H1 and H2 were increased and record the fraction. Value of 1 means that only the second input channel received weight accumulation.
Value of 0.5 means that the weights of both channels were updated equally. (b) Same but for different removal rates of B. The faster the removal,
the more specific the coincidence detection, i.e., inputs need to occur within a narrower window.
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These two extreme cases illustrate how the CN integrates
over input. In the case of low nonlinearity, the weights of a
channel will be a weighted sum over all input events of this
channel. The weights will be higher for channels whose boli
coincide often. On the other hand, a step-like activation
function will integrate only over those events where the
threshold was crossed, thus specifically detect coincidences.
From this we can derive two conjectures.

• The higher the nonlinearity, the better the CN at
detecting coincidences. Low nonlinearity still allows
coincidence detection but in a much weaker form.

• As the bolus size increases, the CN will lose its ability to
detect coincidences, especially when the bolus size is so
large that a single bolus is sufficient to push the
abundance of B over the threshold. In this case, a single
input spike can saturate the activation function, thus
undermining the ability of the system to detect
coincidences effectively.

In order to check these conjectures, we simulated a version
of the CN with 3 inputs, where A1 and A2 are correlated and A3
fires at twice the frequency of A1 and A2. We considered the
minimally nonlinear case (m = 1) and a moderate nonlinearity
(m = 4), which shows the weights as a function of the bolus
size (Figure 5). The minimal nonlinear CN detects both
coincidences and frequency differences but loses its ability to
detect coincidences as the bolus size increases. This is
consistent with the above formulated hypothesis. In contrast,
for the nonlinear CN and moderately low bolus sizes, the
weights indicate the coincidences strongly (i.e., the weights H2
are highest) and less so the FB. As the bolus size increases, the
nonlinear CN loses its ability to detect coincidences and
becomes a frequency detector, as conjectured.
Next, we check how the coincidence detection depends on

the time delay between the correlated signals. To do this, we
created a scenario where we provided two boli to the system.
The first bolus A1 comes at a fixed time and the second one a
fixed time period δ thereafter. We then vary the length of δ and
record the accumulation of weights H2 as a fraction of the total
weight accumulation. Figure 6 shows the average weight
accumulation per spike event. It confirms that the CN with low
nonlinearity is less sensitive to short coincidences than the CN
with higher m. However, it can detect coincidences over a
wider range of lag durations. This means that for higher
nonlinearities, the differential weight update becomes more
specific but also more limited in its ability to detect

coincidences that are far apart. In the particular case of δ >
0.1, the CN with m > 1 does not detect any coincidences any
more whereas the case of m = 1 shows some differential weight
update throughout.
Next, we tested the conjecture that the TC can be solved

more effectively by the CN when the nonlinearity is higher. To
do this, we generated a CN with N = 5 input channels on the
TC 2 task. We then trained the CN for nonlinearities m = 1, ...,
10. As a measure of the ability of the system to distinguish the
weights, we used the index of dispersion, i.e., the standard
deviation divided by the mean of the weights. A higher index of
dispersion indicates more heterogeneity of the weights and
hence a better ability of the system to discriminate between the
biased and the unbiased input channels.
Consistent with our hypothesis, we found that the ability to

distinguish temporarily correlated inputs increases with the
nonlinearity. However, it does so only up to a point (the
optimal nonlinearity), beyond which the index of dispersion
reduces again (Figure 7). Increasing the bolus size, i.e.,
increasing the number of Ai that are contained within a single
bolus, shifts the optimal nonlinearity to the right. This suggests
that the decline in the performance of the CN for higher chain
lengths is due to a resource starvation. The realization of the
sigmoidal function, i.e., the thresholding reactions in Table 2,
withdraws m molecules of B from the system. As a
consequence, the CN is no longer able to represent its internal
state efficiently and the activation function is distorted. If the
total abundance of B is high compared to E then this effect is
negligible. We conclude that there is a resource cost associated
with computing nonlinearity. The higher m, the higher the
bolus size required to faithfully realize the activation function.
As an aside, we note that other designs for the system are also
possible. For example, B molecules could be used catalytically.
Nevertheless, such systems would also face different trade-offs.
The system presented here was one of many designs that we
tested and provided the most desirable properties for learning
temporal patterns.
While the TC task requires nonlinearity, the FB task does

not. This can be understood acknowledging that the FB task is
fundamentally about integrating over input, which can be done
naturally in chemical systems. Indeed, it can be done by
systems that are much simpler than the CN. For example, the

minimal system to detect FB bias is → ϕAi
d

. For appropriately
chosen values of d, the steady state value of Ai would then
reflect the input frequency. To understand this, note that the

Figure 7. Index of dispersion for different bolus sizes β expressed as a fraction of the threshold ϑ. We show TC 2 (left) and FB 2 (right). Index of
dispersion measures how different the steady state weights are from one another and hence indicates how well the CN distinguished between input
channels. Completely unbiased input would give an index of dispersion of ∼0. Graph shows that for the TC task, there is an optimal nonlinearity.
Increasing the bolus size increases the optimal nonlinearity, which is consistent with the fact that the optimum is due to resource starvation.
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input frequency determines the rate of increase of Ai. This rate
divided by the decay rate constant d then determines the
steady state abundance of Ai, such that Ai trivially records its
own frequency. This system is the minimal and ideal frequency
detector.
The CN itself is not an ideal frequency detector because all

weight updates are mediated by the internal state B. Hence, the
weights are always convolutions over all inputs. The weights
thus reflect both frequency bias and temporal correlations. In
many applications this may be desired, but sometimes it may
not be. We now consider the conditions necessary to turn the
CN into a pure frequency detector, i.e., a system that indicates
only FB but not TC. One possibility is to set the parameters
such that the CN approximates the minimal system. This could
be achieved by setting kBA ≪ kAB and all other rate constants
very high in comparison to kAB. The second possibility is to
tune the CN such that a single bolus saturates the threshold. In
this case, the strength of the learning signal does not depend
on the number of boli that are active at any one time. A single
bolus will trigger the maximal learning signal. This is confirmed
by Figure 5, which shows that as the bolus size increases, the
system becomes increasingly unable to detect temporal
correlations but remains sensitive to frequency differences.
c-CN: CN with Compartments. The CN, as presented in

Table 2, is thermodynamically plausible and has the benefit of
being easy to simulate and analyze. However, it is biologically
implausible. As written in Table 2, the molecular species Ai, Hi,
and B would have to be interpreted as conformations of the
same molecule with different energy levels. In addition, we
require that these different conformations have specific
enzymatic properties. Molecules with the required properties
are not known currently, and it is unlikely that they will be
discovered or engineered in the near future.
As we will show now, it is possible to reinterpret the reaction

network that constitutes the CN (Table 2) so as to get a model
whose elements are easily recognizable as common bio-
chemical motifs. This requires only relatively minor adjust-
ments of the reactions themselves but a fundamental
reinterpretation of what the reactions mean.

The main difference we introduce is that the new model is
compartmentalized (Figure 8). While in the basic model the
indices of Ai and Hi referred to different species that exist in
the same volume, it should now be interpreted as the same
species but living in different compartments. This means that
Ai and Aj are the same type of molecule but located in
compartments i and j, respectively. Similarly, Hi and Hj are the
same species. All compartments i and j are themselves
enveloped in a further compartment (the “extracellular
space”). The internal state species B is the same as Ai but
located in the extracellular space. From here on, we will refer to
this reinterpreted model as the c-CN. It is formally described
by the reactions in Table 3.
Input to channel i is provided by boli of the molecular

species A into the compartment i. A novelty of c-CN when
compared to CN is that it has an activated form of A, denoted
by A*. The conversion from A to A* is catalyzed by the
learning signal . Also new is that each compartment contains
a gene h that codes for the molecule H (we suppress the index
indicating the compartment). Expression of the gene is
activated by A* binding to the promoter site of h. We also
allow a low leak expression by the inactivated gene (denoted as
h0 in Table 3). Gene activation of this type is frequently
modeled using Michaelis−Menten kinetics, thus reproducing
in good approximation the corresponding enzyme kinetics in
the CN. The molecules of type H are now transporters for A.
We then interpret the conversion of Ai to B as export of A from
compartment i to the extracellular space. The rate of export of
A is specific to each compartment in that it depends on the
abundance of H in this compartment. Finally, we interpret the
E molecules as transmembrane proteins that are embedded in
the membrane of each compartment. Their extracellular part
has m binding sites for B molecules which bind cooperatively.
When all sites are occupied, the intracellular part is activated,
i.e., becomes . In its activated form it can convert A to A*.
Another difference between the two versions of the models

is that the molecule E is now specific to each membrane. The
minimum number of copies of E is thus N, whereas in the basic
model a single copy of E at time t = 0 could be sufficient. This

Figure 8. Graphical representation of a c-CN. Ai and Aj are the same molecular species but contained in different compartments i and j,
respectively. We allow for an activated form of A, denoted by A*, which binds to the promotor site of h and activates its expression. H is an active
transporter molecule for A. Once exported to the extracellular space, an Ai molecules become a molecule of B. We assume that each compartment
has a transmembrane protein E with m extracellular binding sites. If all m binding sites are occupied by B then the internal site becomes active
(indicated by green) and can catalyze the activation of A.
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has two consequences. First, at any particular time the number
of occupied binding sites will typically be different across the
different N compartments. This is a source of additional
variability. Moreover, since the number of copies of E is higher
than that in CN, the c-CN is more susceptible to starvation of
B as a result of the extracellular binding sites withdrawing
molecules from the outer compartment. Both of these potential
problems can be overcome by tuning the model such that the
abundance of B molecules is high in comparison to E
molecules.
This highlights that the differences between the basic CN

and c-CN are deeper than the list of reaction suggests. Our
simulations, however, confirm that the c-CN supports
associative learning (Figure 9) and full Hebbian learning
(Figure 10) just as the basic CN provided that the parameters
are set appropriately.
d-CN: Chemical Neuron in DNA. We now show how to

emulate the chemical reaction network of Table 2 using DNA
strand displacement (DSD).28 This is interesting because the

experimental realization of DSD systems is straightforward and
predictable when compared to biochemical reaction networks.
The basic idea of DNA-based computation is that double-

stranded DNA molecules with an overhang on one strand
often called the toeholdcan interact with single-stranded
DNA that contains the Watson−Crick complement of the
toehold via partial or total displacement of the existing
complement. DNA-based systems are typically analyzed on
two levels: the sequence level and domain level. The former
involves the study of interactions between individual
nucleotide pairs, while the latter focuses on the interactions
between domains. Here, domains are sequences of nucleotides
of varied length. There are two types of domains which are
differentiated by their length. Short domains or toeholds are
between 4 and 10 nucleotides and are assumed to be able to
bind and unbind from complementary strands. Long domains,
or recognition domains, are at least 20 nucleotides in length
and assumed to bind irreversibly. DSD is a domain-level
mechanism for performing computational tasks with DNA via
two basic operations: toehold-mediated branch migration and
strand displacement.

Implementing the d-CN Using Two-Domain DSD. In order
to emulate the chemical neuron in DNA, we will focus here on
two-domain strand displacement,32,36 where each molecular
species comprises a toehold and a long domain only. These
species can interact with double-stranded gates which facilitate
the computation. Restricting computation to two-domain
strands helps to protect against unexpected interactions
between single-stranded species, which can occur with more
complex molecules. Also, as all double-stranded structures are
stable and can only change once a single-stranded component
has bound, there is no possibility for gate complexes to
polymerize and interact with each other.
Here, we will be using the standard syntax of the Visual DSD

programming language28 to describe the species present in our
system. We denote double-stranded molecules as [r], where
its upper strand <r> is connected to a complementary lower
strand {r*}. Each of the reactants and products in our system
is an upper single-stranded molecule composed of a short
toehold domain (annotated with a prefix t and an identifier ^)
and a corresponding long domain <tr^ r>. We will refer to a
short domain of a two-domain DSD strand An as ta and its
corresponding long domain as an, where n is a channel index.
Note that the toehold is not specific to the species index n, and
therefore, the recognition of each input and weight strand is
dependent on their long domains rather than their toeholds.
We will use the same convention for all other channel-specific

Table 3. List of Chemical Reactions Constituting the c-CNa

function reaction(s)

input
H IooI An
k

k

AI

IA

H Iooo H Iooo+ +A H AH B H
k

k

k

k

HA

AH

BH

HB

activation function
F+ < −+−

+

B E E i m, 1i
k

k
i 1

H Iooo+ − −

+

B Em
k

k
1

last

weight accumulation
H Ioo H Ioooo+ + *

*

*
A A A

k

k

k

k

EA

AE

EA

A E

H Ioooo*
*

*
A A

k

k

AA

A A

H Iooo+ *
•

•

h A h
hA

A h
0

⎯ →⎯⎯⎯ +h H h
k

n0 0
leak

→ +h H h
k

n
h

leak ⎯ →⎯⎯ ϕ
ϕ

H
kH

⎯ →⎯⎯ ϕ
ϕ

B
kB

aMolecular species A, E, , h0, h, and H are compartmentalized. Each
compartment has a gene h0 which when activated by A* can express a
transporter H.

Figure 9. Same as Figure 3 but for c-CN. For the parameters used, see Table S2. For this experiment, we approximated the ligand kinetics by a Hill
function in order to speed up the simulations.
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two-domain species. For a detailed description of the
nucleotide structure and binding rates, see Tables S3 and S4
in the SI. The main two-domain strands that enable
communication between different modules of the d-CN are
shown in Table 5.
While there is a theoretical guarantee that any chemical

reaction network can be mimicked by a DSD circuit,32 it is
often difficult to find circuits. However, there are now a
number of general design motifs with known behaviors in the
literature. Here, we will make extensive use of the two-domain
scheme, which introduces a Join−Fork motif to mimic a
chemical reaction. While the abstract chemical system remains
broadly similar to the CN model, there are some crucial
differences (see Table 4). The general strategy we take to

convert the CN to DSD is to translate each of the catalytic
reactions in Table 4 into a Join−Fork gate.32,36 Subsequently,
we will simulate the gates acting in concert.
We first explain how we use the Join−Fork gates. For each

reaction, a Join gate is able to bind the reactants and produces
a translator strand. Then, the translator activates a Fork gate,
which in turn releases the reaction products. Additional energy
must be supplied to completely release all products from Fork
gates, as the translator strand will only displace the first
product. Appropriately designed helper strands are therefore
placed in the solution to release subsequent products. After the
first product has unbound, an exposed toehold is left, which
can lead to unwanted side effects. To address this, we follow32

and extend the original design from ref 36 by incorporating an
additional long domain on the left-hand side of the Fork gate,

which upon binding an appropriate auxiliary molecule seals the
gate to prevent rebinding of its outputs. Here, we extend all
Join gates in an equivalent way to prevent rebinding of the
translator strand. This addition allows us to avoid interactions
of the double-stranded complexes with waste molecules.
In our design, binding of the translator immediately releases

an An (<ta^ an>) strand, the first of the reaction products.
The second product, B (<tb^ b>), is released upon binding
of a Fork helper strand <b ta^>. Finally, the ForkAB gate is
sealed upon binding of the Fork seal strand <i tb^>. The
pair of Join and Fork gates together consume 1 molecule for
each of the reactants and produce 1 molecule for each of the
products, ensuring equivalent stoichiometry to the abstract
reaction.
In order to illustrate the mapping from the CN to DSD, we

describe now in detail the reaction Fsin + An → An + B (Figure
11a), which serves as a representative of all 3 catalytic reactions
in the d-CN. A JoinAFsi gate is defined by a structure that
enables the binding of Fsin and An; the gate is only active if
both input species are present. First, Fsin binds and displaces
the incumbent bound <in ta^> molecule, exposing the ta^
toehold. This enables the binding of An (<ta^ an>), which
then displaces the <an tisi^> translator strand, signaling
that the reactants have been received and that the overall
reaction can fire. The JoinFsiA gate is then sealed by the binding
of <tisi^ i>, preventing rebinding of the translator and
producing a further waste molecule <i>. The ForkAB gate is
designed in such a way that upon triggering by the translator
strand of the corresponding Join gate it is able to release both
product molecules.

Controlling the Activation Function Nonlinearity with
Extended Polymers. The only reaction which takes a different
form than a combination of Join and Fork gates is the
activation function. We first describe the simplest case of an
activation function with minimal nonlinearity, i.e., m = 1. In
this case it takes the form {tb^*} [b te0^]: [b te1^]
<b> or graphically: . B molecules can bind to
this compound; in doing so they expose the te0 short domain
which allows for binding of E0. When E0 binds to the complex,
it displaces a long domain b and releases the learning signal ,
which in the case of m = 1 is represented by three-domain
species <b te1^ b>.
This system can now be generalized to arbitrary integer

values of m by extending the polymer with additional segments
to accommodate for binding of more B and Em molecules
(Figure 12). We use segments of the form [b tb^]:[b
tek^], where k is the index of the kth extra segment in the
complex. Each new segment should be added before the last

Figure 10. Same as Figure 4 but for c-CN. Experiments approximated the ligand dynamics by a Hill function in order to speed up the simulations.

Table 4. List of Reactions That Constitute the d-CN

function reaction

signal integration F+ +Fsi A A Bn n n

weight accumulation An + E ⇌ E + Hn

signal modulation F+ +A H H Bn n n

activation function F+B E E0 1

F+ −B Em 1

Table 5. List of Key DNA Strands Which Facilitate Learning

name signal DSD species

input An <ta^ an>

weights Hn <th^ hn>

internal state B <tb^ b>

learning signal E <b tem^ b>

signal integration fuel Fsin <tfsi^ fsin>
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fragment which contains : [b te1^]<b>. In the case of m
= 2, the activation function then is {tb^*} [b te0^]: [b
tb^]: [b te1^]: [b te2^]<b> or graphically:

.
The weight accumulation function is distinguished from

standard gates in that the first reactant of the Join gate, i.e., <b
te2 b> representing the learning signal and the first
product of the Fork gate are both three-domain species. The
initial form of the Fork gate complex has a long domain b
branching out of the double-stranded structure (Figure 13).
This modification is necessary in order to allow for to
catalyze the reaction.

An alternative way to implement this mechanism could be
the use of a multistep cascade of gates. This approach,
however, would necessitate the use of additional toehold
definitions, thus limiting the number of input channels that
could be simulated.

Computational Complexity. Extending the d-CN to
accommodate additional input channels requires the user to
define a single new toehold domain definition tiwan, which
is responsible for weight accumulation in each of the N
channels. Moreover, there are six toehold domains that remain
the same regardless of the number of input channels (ta, th,
tb, tfsi, tism, tisi). Therefore, the system with N = 3
input channels requires 9 toehold definitions (6 + N). In
addition, depending on the length of the polymer which
facilitates the activation function there are at least two
additional toehold domains: te0 and te1. We base the
recognition of the inputs as well as other two-domain strands
in the system on the long domains. There are two long
domains which remain the same regardless of the number of
channels (b, i) and three which need to be defined when
adding another input channel (an, hn, fsin). Therefore, the
system with N = 3 input channels requires 11 long domain
definitions (2 + 3N).

Simulating the d-CN. When simulating the d-CN, we
initialize the system with different amounts of gate complexes
and helper strands needed for the computation by both Join
and Fork gates depending on their function. Signal modulation
fuel molecules are initiated at 25 000 μM, signal integration at

Figure 11.Mapping the CRN neuron to a DNA neuron. We use a two-domain Join−Fork gate to emulate each of the catalytic reactions in the CN
(Table 4). In each case, a Join gate binds the two reactants in sequence, first displacing a waste molecule and second displacing a translator
molecule, which triggers the corresponding Fork gate to release strands representing the reaction products. Translator displaces the first product,
and then a Fork helper displaces the second product. Both Join and Fork gates can be sealed upon binding of an appropriate auxiliary strand
(labeled Join seal and Fork seal), which displaces the final incumbent bound <i> strand.

Figure 12. Activation function for m = 2 is modeled as a long polymer
which accommodates for binding of B and subsequent E molecules to
its surface. These two species can bind to the polymer in an alternate
manner. First, the binding of B frees up a te0 toehold; next, the
binding of E1 frees up a tb toehold, etc. Altogether, this process
consumes B molecules. At the end of the process, a three-domain
learning signal molecule is produced. In the case of m = 2, this
molecule takes the following form: <b te2^ b>. This mechanism
can also run backward to produce B molecules.

Figure 13. Weight accumulation (m = 2): An + → + Hn.
Catalytic reaction that realizes the weight accumulation function is a
Join gate and a modified variant of the Fork gate. In this variation, the
first reactant of the Join gate and the first product of the Fork gate are
a three-domain species , which represents the learning signal. Initial
Fork gate complex now has a long domain b branching out of the
double-stranded structure. This modification is needed to ensure
complementarity with the tunable activation function.
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50 000 μM, and weight accumulation at 10 000 μM. We also
initialize the fuel molecules necessary for the signal integration
mechanism Fsin with 50 000 μM. Lastly, in all of the
experiments, we choose to set the bolus size, i.e., the amount
of An species injected to the system at each spike, to β = 10
μM. In order to model decay of Hn species, we introduce
garbage collection molecules {th^*}[hn], which sequester
and inactivate the molecular species Hn. We inject 12 and 0.1
μM of these species to the system periodically every 1000 s.

We have been careful to use strand displacement reaction
rates that are within the range that has been measured
experimentally.47 In order to reproduce the desired dynamical
behaviors, the binding rates associated with the ta, th
toeholds have been set to lower values than the other toeholds;
see Table S3 for details on the parameters.
To determine whether the d-CN is capable of learning, we

carried out a range of simulations using Visual DSD, Figure 14.
We found that both infinite and detailed mode compilation
could produce the intended dynamical behaviors. Similarly, we

Figure 14. Examples of learning episodes in d-CN for (a) frequency bias task and (b) temporal correlation task. For statistical data about the
weight distributions obtained over multiple runs, see Figure S2.

Figure 15. Normalized steady state weights as a function of the length of the activation function polymer. As the polymer is extended, the activation
function becomes steeper and therefore requires a correlation of at least two signals to trigger learning. Therefore, the DNA neuron becomes better
at recognizing temporal correlations when m is high.

Figure 16. Same as Figure 4 but for the d-CN. Data was only collected after the weights reached the steady state (after 800 000 time units).
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found that these behaviors could be produced in both
simulations at low copy numbers (using Gillespie’s stochastic
simulation algorithm) and in the fluid limit (deterministic rate
equations). Accordingly, we show infinite mode deterministic
simulations in the main article and other simulations in the SI
(Figure S3).
To check whether the d-CN behaves as expected, we test its

ability to distinguish the two types of biases on tasks where A2
is temporally correlated with A1 and further analyze how this
depends on the nonlinearity/polymer length (Figure 15). First,
we consider a scenario where A3 is both uncorrelated with A1/
A2 and has a spiking frequency twice as high as the other input
channels (0.0002 Hz; Figure 15a). Consistent with the CN, the
d-CN is sensitive to frequency bias when the nonlinearity is
low, corresponding to the weights of A3 being high for m = 1.
Vice versa, in the case of high nonlinearity, the d-CN
recognizes the temporal correlations, corresponding to the
weights of A1 and A2 being high. When removing the frequency
bias of A3, the system still differentiates between uncorrelated
and correlated inputs but the ability to distinguish the two
types of signals increases with m (see Figure 15b).
We also compared the ability of the d-CN directly with the

CN. We found that the d-CN is able to detect both FB and TC
biases (Figure 16). However, in the TC task the indication of
the temporal order of the input signals is subtle in the sense
that the steady state weights of the correlated channels are
almost the same with only a slight difference indicating
temporal order.

■ DISCUSSION

To the best of our knowledge, the CN is the first fully
autonomous chemical model of a Hebbian spiking neuron.
While it is unlikely that the basic model can be engineered as
is, it has some features that make the system interesting from a
fundamental point of view.
One of the attractive features of the (basic) CN neuron is

that it is microreversible and therefore thermodynamically
plausible. This makes it a useful theoretical tool to probe the
thermodynamics of learning. While a thorough analysis of the
energy requirements of the system is beyond the scope of this
article, we note that the physical plausibility of the model has
highlighted resource requirements of computation. In partic-
ular, we found that increasing the nonlinearity comes at an
additional cost in resources. The CN suffers from starvation of
B molecules as m increases. For a sufficiently high number of
m, this leads to a breakdown of the mechanisms and the system
loses its ability to detect coincidences, as illustrated in Figure 7.
This “starvation” effect can be alleviated by increasing the
bolus size (while keeping the threshold fixed; Figure 7). In a
biological context, the increase of the bolus size comes at a
direct synthesis cost if the molecules that make up the bolus
need to be made by the cell. Yet, even if we assume that the
particles are, somehow, pre-existing, injecting a bolus requires
chemical work, which is proportional to the number of
particles, i.e., the bolus size. Hence, there is a fundamental
thermodynamic cost involved in computing the nonlinearity.
We are not aware of any formal proofs that show that
computing nonlinearities necessarily requires an increased
energy requirement. It therefore remains an open question
whether or not this is a feature of the particular model choices
or the manifestation of a deeper constraint. Interestingly, the
FB task, which does not rely on nonlinearities, can be solved

with much simpler and thermodynamically cheaper designs,
e.g., a simple decaying particle.
While the basic CN does not lend itself to a direct

implementation in biochemistry, we presented a compartmen-
talized interpretation of the system that is biologically more
plausible. It interprets different input species and indeed the
internal state molecule B as one and the same species but
contained in different compartments. This makes the system
feasible, in principle. Although creating many compartments
with the required dynamics may remain challenging, significant
progress has been made in recent years toward programming
molecular systems in protocells.48

Interestingly, there are structural similarities between the c-
CN and the lac system in E. coli.49 The essence of the lac
system is that it only switches on the lactose metabolism (the
equivalent to the weight molecules in the compartment) when
it is stimulated by lactose in the environment (i.e., B). The
principle of operation of the lac system is similar to that of the
c-CN, except that E. coli does of course not export lactose to
the environment. Taking this analogy seriously, it would be
interesting to consider whether catabolite repression, which is
a moderately complex decision process, can be mapped to a
simple neural network.
Among the three versions of the chemical neuron that we

presented, we found that all could reproduce the same
qualitative behaviors (Figures 3 and S9). However, given that
all three of them are different designs, each version required its
own parametrization, which had to be found by manual
exploration in each case. It is thus not possible to reproduce
the behavior of one model with another one exactly.
Qualitatively, however, we found the same behaviors in all
models. The only major difference was on the TC task. Unlike
the other two versions of the chemical neuron, the d-CN did
not clearly highlight the temporal order of input signals (Figure
16). While the d-CN indicates a strong difference between the
correlated and the noncorrelated species, the weight difference
between the correlated channels which should indicate the
temporal order is marginal. Whether this can be improved with
a better parametrization or whether this points to a
fundamental limitation of the model must remain an open
question.
From an engineering perspective, the d-CN is certainly the

easiest to realize experimentally. DNA circuits are much less
prone to crosstalk than more standard biochemical reaction
networks. Synthesizing DNA molecules is now a routine
procedure. There are, however, several elements of the d-CN
design that will require careful consideration before an
implementation can be done. For any practical use, one
would need to interface the DNA computer with the in vivo
target systems. How to do this in a general way remains an
open question, but there have been a number of previous
systems that indicate possible pathways.50−53

More specifically, for the d-CN, there are a number of
experimental challenges that need to be addressed. In order to
ensure that the kinetics of the d-CN are conserved throughout
the learning and testing phases, we require the activation
species B to decay. To remove the B species, we employ simple
helper complexes, which are periodically replenished during
the simulation. These complexes are capable of making B and
Hn species unreactive, thereby removing them from the system.
In order to achieve better reproducibility of the results, the
experimental realization of this would necessitate a relatively
frequent or continuous supply of these DNA complexes. While
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difficult to achieve experimentally, there are known techniques
to overcome the need for frequent replenishment, including
the use of buffered gates40 or timer circuits.54

Scaling the system to more input channels requires
additional short domain sequences per new channel. Prima
facia the scaling up of the d-CN is therefore limited by the
availability of orthogonal short domain sequences. A redesign
based on localized design principles could be a feasible solution
if the number of toeholds becomes a problem. Here, instead of
using a different set of long and short domains, distinct
channels could be implemented through physical separation of
the species.55

Describing the model as a neuron encourages the question
of building networks capable of complex computational tasks.
A major impediment for building networks of d-CN could be
the immediate injection of A species to the neurons in the next
layers of the network. This would necessitate inclusion of a
different activation function or a mechanism which would
allow for signal propagation. Incorporating a buffered gate
design40 could allow for a programmed release of a certain
number of input species once the activation signal is produced.
Nevertheless, we leave the question of constructing functional
neural networks in DNA for future research.
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