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Important information from the environment often arrives to the brain in temporally

extended sequences. Language, music, actions, and complex events generally unfold

over time. When such informational sequences exceed the limited capacity of working

memory, the human brain relies on its ability to accumulate information in long-term

memory over several encounters with a complex stimulus. A longstanding question in

psychology and neuroscience is whether the neural structures associated with working

memory storage—often viewed as capacity limited and temporary—have any builtin

ability to store information across longer temporal delays. According to the classic

Hebbian dual memory theory, temporally local “activity traces” underlie immediate

perception and working memory, whereas “structural traces” undergird long-term

learning. Here we examine whether brain structures known to be involved in working

maintenance of auditory sequences, such as area Spt, also show evidence of memory

persistence across trials. We used representational similarity analysis (RSA) and the

Hebb repetition paradigm with supracapacity tonal sequences to test whether repeated

sequences have distinguishable multivoxel activity patterns in the auditory-motor

networks of the brain. We found that, indeed, area Spt and other nodes of the auditory

dorsal stream show multivoxel patterns for tone sequences that become gradually more

distinct with repetition during working memory for supracapacity tone-sequences. The

findings suggest that the structures are important for working memory are not “blank

slates,” wiped clean from moment to moment, but rather encode information in a way

can lead to cross-trial persistence.

Keywords: working memory, learning, fMRI, representational similarity analysis, auditory memory, sequence

memory, Hebb repetition effect

INTRODUCTION

Humans are frequently faced with the need to detect, briefly store, and act upon a sequence of
information encountered in the environment. In the canonical (if now anachronistic) example, one
reads outs a number from the telephone book and then must retain it in memory—in working
memory—as one travels from the phone book to the phone. A question that has long interested
psychologists and neuroscientists has been how the brain holds on to new arbitrary sequences
of information. Such sequences consist of information patterns for which no long-term memory
trace can yet exist, even if such traces may exist for the constituent elements of the sequence.
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For example, using the example of the phone number, although
one may have a lifetime’s worth of experience with the numerical
digits “0” to “9,” there are a very large number of arbitrary
arrangements of such numbers (e.g., 428–7,539) whose sequential
combinatorial arrangement has never been encountered.

The psychologist Donald Hebb was particularly interested
in the neurophysiological mechanisms (“a dual trace” theory)
that underlie both the learning and short-term maintenance of
sensory- or sensory-motor sequences of the kind exemplified
by the phone-number task. Hebb conceived of two main
physiological mechanisms that support short-term maintenance
and long-term learning, respectively (1). He proposed that
short-term maintenance of information is supported by activity
traces encoded in distributed cell assemblies that could achieve
temporary persistence through reverberatory activity that relied
on sensory-motor connections and synaptic feedback loops.
Hebb proposed that long-term learning was mediated by the
repeated co-occurrence of synaptic connectivity among sets of
neurons, leading to a gradual strengthening of connections—a
structural trace—between such sets or assemblies.

Hebb (2) fixed upon a difficulty or puzzle of human long-
term learning and short-term memory that was not easily
accommodated by his dual trace mechanism. On the one hand,
he pointed out that the human brain, due in part to its large
numbers of neurons and wide expanses of association regions, at
any time is dominated by neural activity (“excess neural activity”)
that is not currently relevant to learning a specific task. Thus, “any
random activity in these excess neurons (the ones not needed for
the task being learned) is ‘noise’, whichmust tend to interfere with
learning” [(2), p. 38]. Thus, the very flexibility afforded by a large
number of neurons, and the high proportion of those neurons
devoted to association processes, makes the human brain not
especially well-adapted for fast learning of specific tasks due to
the swamping of a small signal with large excess neural activity.
Thus, the higher animal, despite its increased capacity for flexible
behavior, does not necessarily learn specific tasks faster than
the lower animal, for example a wasp that succeeds at one-trial
learning (3).

A second puzzle raised by Hebb was that the very “duality”
of his trace theory seemed to preclude the short-term learning
of novel recombinations of highly overlearned items. On the one
hand, Hebb’s “activity trace” is a purely temporary phenomenon
that vanishes once the reverberatory activity ceases. On the other
hand, the formation of structural traces through repeated co-
occurrence proceeds slowly, lest it be so volatile that regularities
of the sensory environment (such as the digits 0–9) could not
be stably represented over time. Indeed, his theory seemed to
predict that novel sequences of random digits exceeding the
finite capacity of the reverberatory system, could not be “learned”
at all over a sufficiently short period! To explore this seeming
paradox Hebb devised the (now eponymously named) “Hebb
repetition paradigm.” In this task, a human subject is asked to
repeat back a sequence of nine digits over a series of trials; where
unbeknownst to the subject, one of the digit sequences repeats
on every third trial. His paradigm attempts to expose a lacuna
is his own theory, and therefore constituted a strong test of the
“dual trace” theory of short- and long-memory. What Hebb, and

many subsequent authors have found (4–7), was that indeed,
human subjects are able to accumulate gains in the ability to
recall the repeated sequence, compared to the interspersed novel
filler sequences.

With this historical overview of the Hebb repetition
paradigm in mind, we turn to a brief discussion of cognitive
psychological and neuroscientific views of the architectural and
neuroanatomical foundations of short-term or working memory
maintenance. The Working Memory model of Baddeley (8) and
Baddeley and Hitch (9) posits that sensory information can be
held for brief intervals in domain dependent buffer systems
(i.e., dependent of the type of information, e.g., phonological or
visuospatial), and that information stored within such buffers
is amenable to “refreshing,” rehearsal, and reactivation directed
from higher-order motor control regions. One can see a clear
resemblance between such interacting sensory-motor systems
of Working Memory and Hebb’s reverberatory loops (10).
Indeed, the “buffers” of Baddeley’s Working Memory may
be viewed simply as the storehouses of Hebb’s activity traces
and are therefore purely temporary mechanisms for guiding
behavior in the just-immediate future. Cognitive neuroscience
investigations into the neuroanatomical locations underlying
short-term memory storage have identified areas that show
elevated activity during the temporary maintenance of various
kinds of informational elements (e.g., words, faces, spatial
elements). For example, short-term storage of phonological
information has been consistently found to rely on the left lateral
temporoparietal area, a finding that has been observed in PET
studies (11, 12), fMRI (13, 14), magnetoencephalography (15),
electrocorticography (16, 17), and neuropsychological studies of
patients with selective verbal short-term memory deficits.

There has been some debate, however, about the precise
role of such working memory “storage” and “maintenance”
regions in the verbal working memory tasks. For example, some
have argued for a classic “buffer” interpretation of delay period
activity observed in higher-order association areas generally
(18), and in the temporoparietal area in the specific context
of phonological short-term memory [e.g., (12, 19, 20)]. A
more general argument has, moreover, been made that some
sort of purely temporary buffer system is required for a
functional working memory system, especially when multiple
tokens of the same type must be maintained in short-term
memory (21). On the other hand, we have argued (10), that
the apparent buffer-related activity observed in temporoparietal
cortex reflects the operation of a more general sensory-motor
integration system that serves as a mediating node between
auditory and motor systems involved in speech production and
speech perception. By this view (22–24), phonological working
memory emerges from reverberatory interactions between
regions supporting the acoustic representations of speech, those
supporting articulatory representations of speech, and a system
supporting the mediation or mapping between these dual codes.
Furthermore, throughmore precise single-subject fMRImapping
(13, 25) and meta-analyses (24), we have clearly localized the
hypothesized auditory-motor interface to the posterior most
portion of the left planum temporale, a region we have called
Spt (Sylvian-parietal-temporal).
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If Spt is involved in sensory-motor integration in the auditory
domain and in the learning of new sequential word and sound
forms, then it seems likely that the region should not only be
important for “temporary maintenance” of novel verbal/auditory
stimuli, but also should be important for long-term learning of
such forms (23, 26). This implies that Spt should be capable
of forming “structural traces” of multielement auditory stimuli
that emerge as a function of auditory-motor experience. The
formation of these structural traces can be observed using
the classical Hebbian repetition paradigm, as demonstrated
by Kalm et al. (27). Through the repeated presentation of a
letter sequence intermixed with novel sequences, they observed
the gradual formation and stabilization of repeated-sequence
specific representations in the left hippocampus over successive
repetitions. In the present study we use a modified version of
the classic Hebb Repetition paradigm using 9-element supraspan
tone sequences as working memory stimuli. We choose tones,
rather than digits or letters, because they are less susceptible to
semantic chunking (e.g., common letter strings, such as CIA,
FBI, NBA) and place a high load on auditory-motor integration
(25). Furthermore, we were interested in whether Spt and other
regions of the language network are important for the learning
of non-phonological auditory sequences. We hypothesize that
Spt and possibly other regions in the auditory-motor network,
should show evidence of repetition effects that are sequence-
specific, a finding that would be consistent with the formation of a
structural—or at least persistent—trace across trials. On the other
hand, if Spt is only needed for temporary binding or storage of
auditory sequence stimuli, then we should not find any evidence
of such persistence. To test these ideas, we use representational
similarity analysis (RSA) to analyze the relationships between
multivariate patterns among repeated and non-repeating trials
as a way to examine whether coherent patterns emerge for
sequences that repeat across trials.

METHODS

Participants
Twenty-six right-handed young adults (age 18–34; 14 female)
with normal or corrected-to-normal vision and no history of
neurological or psychological disease were recruited through the
Baycrest subject pool, tested and paid for their participation.
Informed consent was obtained, and the experimental protocol
was approved by the Rotman Research Institute’s Ethics Board.
Subjects were either native or fluent English speakers and had no
contraindications for MRI. Data from three of these participants
were removed due to data acquisition errors or excessive head
movement (>3mm framewise displacement).

Behavioral Procedure
On each trial, participants were presented with two successive
sequences of tones (a target sequence and a probe sequence),
separated by a variable delay, and were asked to determine if the
two sequences were identical (e.g., “match” or “mismatch”). The
variable delay interval was used to achieve greater decorrelation
in the hemodynamic response evoked by different task phases.
Tone sequences were presented over 3 s, and consisted of nine

tones, each lasting 200ms with a 150ms silent gap between each
tone. The target (encoded) tone sequences were generated by
choosing tones spanning the frequency range between 300 and
2,600Hz, using proportional increments of 30%. The sequences
were then pseudorandomly shuffled to generate unique tone
strings. The probe sequences on each trial were defined in one of
two ways: for “match” trials the target and probe sequences were
identical; and for mismatch trials, two elements of the target tone
sequence were transposed, altering the ordering of the sequence
but retaining the set of frequencies. The presentation of the study
sequence and probe sequence were separated by a silent delay
period (3, 6, or 9 s). Participants responded with a button press
during the test phase following the variable delay, by pressing (1)
match, (2) non-match on an MRI compatible box using the right
index and middle finger, respectively.

Crucially, three unique sequences (S1, S2, and S3) were
repeated throughout the task at as study sequences (participants
were not informed of this manipulation), intermixed with novel
sequences. The same repeating sequence (e.g., S1–S1) was never
repeated back to back across the encoding phases of two
successive trials. We used three repeating sequences, rather than
one as was used in the original Hebb paradigm, with the intention
to minimize awareness of the repetition manipulation as it has
been demonstrated that multiple sequences can be learned in
the classic Hebb repetition paradigm at no cost (28, 29). In
all, there were four trial types: (1) repeat match, (2) repeat
mismatch, (3) novel match, (4) novel mismatch, across three
different levels of delay for a total of 12 conditions. The actual
composition of the repeating sequences was not the same for each
subject; two versions of the task were created, each with different
pseudorandomly generated repeating sequences, and each given
to half of the subjects.

Participants completed eight scanning runs consisting of 18
trials each, for a total of 144 trials across all runs (36 repeat
match, 36 repeat mismatch, 36 novel match, 36 novel mismatch).
Over the course of the experiment, each repeating sequence was
presented as a target in 24 trials. Trials were separated by an inter-
trial interval that was jittered between 4 and 10 s (average: 7 s).

MRI Acquisition
Participants were scanned with a 3.0-T Siemens MAGNETOM
Trio MRI scanner using a 12-channel head coil system.
Functional images were acquired using an Echo-planar imaging
(EPI) sequence sensitive to BOLD contrast (22 × 22 cm field
of view with a 96 × 96 matrix size, resulting in an in-plane
resolution of 2.34 × 2.34mm for each of 24 3.9mm axial slices;
repetition time = 1.37s; echo time = 30ms; flip angle = 62
degrees). A high-resolution whole-brain magnetization prepared
rapid gradient echo (MP-RAGE) 3-D T1-weighted scan (160
slices of 1mm thickness, 19.2 × 25.6 cm field of view) was also
acquired for anatomical localization.

MRI Pre-processing
Results included in this manuscript come from preprocessing
performed using FMRIPREP version stable (30, 31), a
Nipype (32, 33) based tool. Each T1w (T1-weighted) volume
was corrected for INU (intensity non-uniformity) using
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N4BiasFieldCorrection v2.1.0 (34) and skull-stripped using
antsBrainExtraction.sh v2.1.0 (using the OASIS template). Brain
surfaces were reconstructed using recon-all from FreeSurfer
v6.0.1 (35), and the brain mask estimated previously was
refined with a custom variation of the method to reconcile
ANTs-derived and FreeSurfer-derived segmentations of the
cortical gray-matter of Mindboggle (36). Spatial normalization
to the ICBM 152 Non-linear Asymmetrical template version
2009c (37) was performed through non-linear registration
with the antsRegistration tool of ANTs v2.1.0 (38), using brain-
extracted versions of both T1w volume and template. Brain tissue
segmentation of cerebrospinal fluid (CSF), white-matter (WM)
and gray-matter (GM) was performed on the brain-extracted
T1w using fast from FSL v5.0.9 (39). Functional data was slice
time corrected using 3dTshift from AFNI v16.2.07 (40) and
motion corrected using mcflirt (41). “Fieldmap-less” distortion
correction was performed by co-registering the functional
image to the same-subject T1w image with intensity inverted
(42, 43) constrained with an average fieldmap template (44),
implemented with antsRegistration (ANTs). This was followed by
co-registration to the corresponding T1w using boundary-based
registration (45) with six degrees of freedom, using bbregister
(FreeSurfer v6.0.1). Motion correcting transformations, field
distortion correcting warp, BOLD-to-T1w transformation and
T1w-to-template (MNI) warp were concatenated and applied in
a single step using antsApplyTransforms (ANTs v2.1.0) using
Lanczos interpolation.

Physiological noise regressors were extracted applying
CompCor (46). Principal components were estimated for the
two CompCor variants: temporal (tCompCor) and anatomical
(aCompCor). A mask to exclude signal with cortical origin was
obtained by eroding the brain mask, ensuring it only contained
subcortical structures. Six tCompCor components were then
calculated including only the top 5% variable voxels within
that subcortical mask. For aCompCor, six components were
calculated within the intersection of the subcortical mask and the
union of CSF andWMmasks calculated in T1w space, after their
projection to the native space of each functional run. Frame-wise
displacement (47) was calculated for each functional run using
the implementation of Nipype. Many internal operations of
FMRIPREP use Nilearn (48), principally within the BOLD-
processing workflow. For more details of the pipeline see https://
fmriprep.readthedocs.io/en/stable/workflows.html.

Regions of Interest
RSA analysis, the main focus of the present work, examines
distributed patterns of activity over a multivoxel ROI. A key
question in the current investigation is whether Spt shows
evidence of the formation of longer-lasting memory traces as
a function of sequence repetition; however, Spt is traditionally
defined using a univariate conjunction of auditory perceptual
activity and rehearsal or short-term memory related activity
as measured during a silent delay period (25). The Glasser
parcellation (49) defines a region named Perisylvian Language
Area (PSL) that is highly spatially overlapping with area Spt,
and localizes to the parieto-temporal boundary at the back of

the Sylvian fissure. Moreover, its average MNI coordinates (−57,
−41, 24) are very close to the meta-analytically determined peak
coordinates of Spt (−51, −43, 20) (24) (Figure 1). Here we use
the area PSL of the Glasser atlas as a convenient multivoxel
proxy for Spt and which can easily be used to define a consistent
set of voxels for RSA analyses without requiring a complex
subject-specific search strategy. Using the Glasser parcellation
also allows us to easily extend our RSA analysis to other regions
in lateral temporal and frontal regions in the broader auditory-
motor network, as well as for a fully exploratory analyses in the
whole neocortex.

Univariate Analysis of Voxelwise Activity
In the current study, we used univariate analysis to identify
regions of interest to constrain and limit the set of regions that
were examined in the RSA analyses. Our goal was to identify
areas of the brain that are responsive during tone sequence
perception, tone sequence working memory maintenance (e.g.,
delay period activity), and the conjunction of the two. To
that end, we conducted a whole-brain voxelwise univariate
analysis in which encoding phase (0–3 s after trial start),
delay phase (3 s after trial start), and probe phase (6, 9,
or 12 s after trial start, depending on variable delay length)
were modeled with an SPM canonical hemodynamic response
function convolved with a delta function whose width was
equal to the duration of each event type (e.g., encoding:
3 s, delay: 3 s, 6 s, or 9s, probe: 3 s). Separate regressors for
encoding, delay, and probe phases were generated for novel
and repeat trials; and for the probe phases, novel and repeat
trials were further separated depending on whether the probe
tone sequence was a “match” or “mismatch.” Low frequency
drift and nuisance signals were further modeled with a 5-degree
polynomial, and a set of 5 “aCompCorr” (46) components
produced by FMRIPREP. For the purposes of identifying regions
generally active during tone sequence encoding and short-term
maintenance, contrasts were computed to identify regions with
above-baseline levels of activity during these encoding and
delay phases, collapsing across the experimental manipulation
of repetition.

To define sets of ROIs for RSA analyses we first computed the
average beta coefficient across voxels in each of the 360 Glasser
ROIs for the encoding and delay phase regressors. We then
computed one-sample t-test in each ROI for both phases, yielding
360 t-statistics and their associated p-values. FDR thresholds
(50, 51) for each set of (encoding, delay) 360 p-values were then
computed using the R function “p.adjust” with FDR < 0.05. FDR
provides improved sensitivity relative to Bonferroni correction
and flexibly adapts to the observed distribution of p-values.
Finally, three sets of ROIs were constructed as the following
conjunction: “auditory” [p(FDR) encoding < 0.05 and p(FDR)
delay > 0.05], “auditory + memory” [p(FDR) encoding < 0.05
and p(FDR) delay < 0.05], and “memory” [p(FDR) encoding >

0.05 and p(FDR) delay < 0.05]. The three sets of ROIs defined in
this way are displayed in Figure 2.
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FIGURE 1 | Area Spt and PSL. Left: Lateral view of peak coordinates (−51, −43, 20) of Area Spt as reported in Buchsbaum et al. (24) meta-analysis of

auditory-verbal working memory studies. Right: lateral view of PSL (perisylvian language area), a “parcel” fined by a multimodal clustering approach of Glasser et al.

(49). The peak coordinates of Spt are contained within the boundaries of PSL [PSL has a right-hemisphere homolog whereas right-sided Spt activity sometimes

evident in single subjects (25), but often fails to reach significance in group level analyses].

FIGURE 2 | Three groups of ROIs based on univariate analysis. Regions in green are active (FDR < .05) only during encoding phase; regions in red are active both

during encoding and delay period; regions in red are only active during delay period.

Representational Similarity Analysis of
Tone-Sequences
We used RSA analysis (52) to examine whether multivariate
patterns of activity within a given ROI were more similar for the

same repeated tone sequence (during encoding, delay, and probe

phases) than among different repeated tone sequences. We thus

asked whether the set of presentations for repeated sequence S1

showed more similar patterns of activity with one another (e.g.,
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within-sequence similarity) than with the other (e.g., between-
sequence similarity) repeated sequences (S2 and S3). In other
words, were the set of S1 repeated sequences distinguishable from
the set of repeated S2 and S3 sequences?

We constructed a representational dissimilaritymatrix (RDM)
for the set of repeat trials by computing the pairwise similarity
between all repeating tone-sequences using the Earth Mover’s
Distance (EMD) between tone-sequence pairs. The EMD is a
measure of the cost of transforming one tone-sequence into
another, considering the order and magnitude of the frequencies
(53). Two identical sequences naturally have an EMD = 0,
and different sequences have distances which depend on the
difference between the distributions of their frequencies over
lag. The standard way of describing EMD is in terms of the
cost of moving piles of dirt from location to fill up some holes
in the ground in another location. In our case it is “costlier”
to move tones with different frequencies across larger distances
(serial positions).

Because patterns of activity might be driven by tone-sequence
similarity even for non-repeated sequences (e.g., novel trials) we
also generated an RDM using EMD for the set of novel trials.
We used this RDM as a baseline measure of the extent to which
similar tone sequences have similar neural representations, even
when those sequences are only presented once. By subtracting
the “novel RDM” from the “repeat RDM,” we could test
whether repeated sequences have more similar activity patterns
than novel sequences, even after accounting for inter-item
sequence similarity.

To extract estimates of fMRI activity for each phase (encoding,
delay, probe) and trial of the task, we implemented a single trial
beta estimation procedure using partial least squares (PLS). This
involves the following steps: (1) time-series data are first denoised
with the same matrix of nuisance covariates described above (5-
degree polynomial and 5 CompCorr components); (2) a design
matrix, X, was constructed by modeling each event as a separate
regressor, yielding one regressor for each trial; a “fixed effect”
consisting of the row-wise sum of X was added to the design
matrix (addition of this term regularizes the trialwise estimates);
(3) a univariate response vector, Y, was specified as the denoised
time-series for a given voxel; (4) the PLS model was estimated
using the R package [“pls”; (54)] and beta coefficients (i.e.,
trialwise activity estimates) were extracted. The above process
was repeated for each phase (encoding, delay, and probe). These
trialwise beta coefficients could then be matched up in a one-to-
one relationship with the RDMmatrices described above.

RESULTS

Behavioral Analysis of Tone-Sequence
Recognition Memory
The tone sequence discrimination task was designed to be
difficult, as it required the detection of a single transposition
of sequentially adjacent tones between two (target and probe)
nine-tone sequences. Overall accuracy was at 56.75%, which is
above chance performance (p = 0.002, one-sample Wilcoxon
signed rank test). To examine the effect of delay (3, 6, 9s), probe

type (match, mismatch), and sequence type (repeat, novel) we
computed a linear mixed effects model with d-prime as the
response variable, subject as a random intercept, and random
slopes for delay, and sequence type using the R package lme4
(55). There was a main effect of delay [F(2,8.3) = 10.8, p <

0.0048, Satterthwaite approximation for degrees of freedom]
with the best performance at 3s (proportion correct = 0.631;
d-prime = 0.698), intermediate performance at 6 s (proportion
correct = 0.568; d-prime = 0.356) and worst performance at 9s
(proportion correct = 0.504; d-prime = 0.0171). There was no
main effect of sequence repetition [F(1,22.67) = 0.119, p = 0.73],
but there was a sequence type vs. delay interaction [F(2,940.8) =
5.69, p = 0.0035]. Pairwise comparisons across delay conditions,
showed that the sequence type by delay interaction was driven
by greater d-prime for the 3s delay condition in the novel
than in the repeat condition (difference = 0.27, t = 2.34, p =

0.029) and no differences at other delays (6s: difference beta
= −0.19, t = −1.572, p = 0.12; 9s: difference beta = 0.0147,
t= 0.122, p= 0.90).

To test whether performance on repetition trials increased
with block number (e.g., better performance on later blocks),
we ran a second linear mixed model that incorporated “block
number” as a covariate and tested for a block number by sequence
repetition interaction, but there was no effect (p = 0.45). Thus,
performance on repeating sequences was not generally better
than performance on novel sequences and this did not change
with more repetitions.

RSA Analyses of Novel and Repeated
Sequences
To test whether Spt patterns carry sequence specific information
we computed a 3 (phase) × 2 (sequence type) × 2 (hemisphere)
linear mixed effects model where the dependent variable was the
association between the relevant RDM [e.g., novel or repeated;
example matrices shown in Figure 3 (repeated sequences) and
Figure 4 (novel sequences)] and the pattern activity matrix for
each phase and hemisphere. Random effects were including for
the subject intercept and the slope terms for phase (encoding,
delay, probe) and sequence type (novel or repeated). Because
hemisphere was not a significant factor (no main effect or
interactions), we removed it from the model and recomputed
a simpler 3 (phase) × 2 (sequence type) mixed effects model.
Consistent with a specific effect of sequence repetition, there was
a significant interaction between phase and type [F(2,203) = 4.67,
p = 0.0104). As can be seen in the plot of estimated marginal
effects shown in Figure 5, the difference between the RSA effects
for repeated and novel sequences is largest during the encoding
phase, intermediate for the delay phase, and near zero for the
probe phase.

The above analysis established that activity patterns
systematically differ between repeated and novel trials and
that the effect is phase-dependent. We can also test whether the
RSA effects for repeated sequences are >0 by removing the novel
conditions from the model. To do this we conduct a second
linear mixed model analyses including only repeat trials and
compute contrasts against zero for each level of the phase factor.
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FIGURE 3 | Example representational dissimilarity matrix for repeated sequences. An example RDM for repeated sequences in a single run (for ease of visualization).

White squares show pairs of trials involving the identical repeated sequence (and therefore have a dissimilarity of 0). Red and orange squares show the dissimilarity

between pairs of non-identical repeating sequences (e.g., Seq1 and Seq2). The notation [tn] refers to the trial number within a run. [t1] refers to “trial 1” and [t2] refers

to “trial 2”, etc. (e.g. Seq_2[t7] denotes that Seq2 was presented on trial 7).

The RSA effect for the encoding phase was significantly >0 (t =
3.03, df = 22, p = 0.006); the delay phase showed a trend level
effect (t = 1.53, df = 22, p = 0.14); and there was no effect for
the probe condition (t = 0.43, df = 22, p = 0.66). This general
pattern is also evident from in the plot shown (blue line) in
Figure 5.

The above analyses examine RSA sequence similarity effects
for repeated and novel trials and establish that the relationship
between tone-sequence similarity and trialwise pattern similarity
within PSL is greater for repeated than novel trials. This analysis
pools over all trials and therefore does not establish whether this
(repeated—novel) RSA effect increases as a function of repetition
number, which would be consistent with a gradually increasing
separation between the repeated sequences. To examine whether

the RSA effect changes with repetition number, we recomputed
the RSA effects for novel and repeated conditions separately for
each scanning run (1–8). This resulted in eight RSA effects for
each combination of subject, phase (encode, delay, probe), and
sequence type (repeated or novel). To test for RSA increases
as a function of repetition, we computed a linear-mixed effects
model as before except now adding the addition “run” variable
as a linear covariate, yielding a 3 (phase) × 2 (sequence type) ×
run (1–8) regression. This analysis revealed that the differential
RSA effect (repeat—novel) increased as a function of run number
(sequence type by run interaction: t = 2.508, p = 0.009). The
positive t-statistic indicates that the slope of RSA effects over runs
was greater for repeated than for novel trials. This trend effect did
not, however, interact with phase (see Figure 6).
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FIGURE 4 | Example Representational Dissimilarity Matrix for novel sequences in a single run (for ease of visualization). The dissimilarity between any pair of

sequences is indicated by the color of in the cells of the matrix.

Representational Similarity Analysis in
Auditory-Motor Network
The foregoing sections show that Spt contains information about
repeated tone sequences in its trial-to-trial activity patterns. Here
we examine whether other regions also contain such information,
and how RSA effects relate to broad univariate responses profiles
in ROIs grouped in terms of their univariate response properties.
In previous work examining auditory-verbal short-termmemory
with fMRI, we have identified sets of regions that activate
during (1) auditory input (but not during memory retention),
(2) auditory input and memory maintenance, and (3) only
during memory maintenance [e.g., (13, 25)]. Here we examine
whether the activity patterns associated with repeating tone
sequences differ according to the groups of ROIs defined above

(and depicted in Figure 2). We conducted a linear mixed effects
model with RSA effect (averaged over each ROI group within
subject) as the dependent variable, and with phase (encoding,
delay, probe) and ROI group (auditory, auditory+memory, and
memory) as the independent variables. There was also a random
intercept term for subject and random slopes for ROI group
and phase. We found significant effects of ROI group [F(2,34.5)
= 6.38, p = 0.004] and an ROI group by phase interaction
[F(4,7,228) = 3.38, p = 0.008); and the pattern of effects are
displayed in Figure 7. Generally, the auditory and auditory
+ memory ROI groups showed similar patterns, where all
phases were significantly above zero. In contrast, the “memory”
ROI group showed effects at all phases that overlapped with
zero, indicating no evidence for sequence specific activation
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FIGURE 5 | Pattern of RSA effects in Spt/PSL for repeated sequence and novel sequence RSA analyses. Error bars are 95% confidence intervals.

patterns in the average effect for these ROIs (blue areas in
Figure 2).

To determine whether these RSA effects change as a function
of repetition, we repeated the analysis computed above for
PSL in which we included “run” as an additional covariate.
We performed three separate 3 (phase) × 2 (sequence type)
× run (1–8) linear mixed effects models, one for each
ROI group (“auditory,” “auditory + memory,” “memory”). In
the auditory and auditory + memory models, we found a
significant sequence type by run interaction (auditory: t =

3.65, p < 0.0004; auditory + memory: t = 2.165, p <

0.04) and in the memory model we found a trend in the
same direction, Thus, generally for all ROI groups RSA effect

increased as a function of run (i.e., there was a significant
difference in the slopes of repeat and novel trials). There
was no higher-order interaction with “phase,” i.e., the positive
differential slope was similar across encoding, delay, and
probe periods.

To examine the specific ROIs that are driving the average
effects for the auditory and auditory + memory groups reported
above, we computed linear mixed model analyses with RSA
effect for repeated sequences as a dependent variable and phase
as an independent variable, for every ROI in the set of three
groups shown in Figure 2. For each ROI (collapsing across
hemisphere) and phase we then computed a contrast to test if
it was significantly above zero and then corrected for multiple
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FIGURE 6 | RSA effect in Spt/PSL split by sequence type and plotted across run. Error bars are 95% confidence intervals.

comparisons using FDR. In Figure 8, we show all regions with
an FDR < 0.05 (orange/red) and all regions with FDR < 0.2
in cooler colors for visualization. For the encoding regions,
two regions showed significant repeated sequence RSA effects,
Glasser ROIs (“MBelt,” “PBelt”) in the medial and posterior
regions of the auditory belt. There were no significant effects for
the delay phase, and one significant effect for the probe phase
in the “A4” ROI in the superior temporal gyrus (see Figure 8,
bottom panel).

Hippocampal RSA Analysis
Finally, we examined RSA effects in the hippocampus due to
its known role in sequence representation and prior work that
has shown sequence specific activity patterns in a version of the
Hebb Repetition paradigm [e.g., (27)]. We used a mask of the
hippocampus based on a probabilistic atlas defined using manual
segmentation in an external group of 40 adult participants
according a published protocol [OAP protocol in (56)] which we
used in a previous study (57). We found significant (p < 0.05)
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FIGURE 7 | Average RSA effect in each of three ROI groups: auditory, auditory + memory, and memory. Error bars are 95% confidence intervals.

RSA effects for sequence repetition in the right hippocampus for
the delay period only; however, this effect did not survivemultiple
comparisons using FDR correction.

DISCUSSION

In the current study we examined whether functional-anatomical
structures that are known to be involved in auditory perception
and short-term maintenance (or both) also show evidence of
long-term learning in a Hebb repetition paradigm with 9-
item tone sequences. We were most specifically interested in
examining whether Spt, a region that has repeatedly been
implicated in tasks requiring the short-term maintenance of
auditory-verbal and auditory-tonal sequences, operates as a
pure “buffer” —wiping its contents clean from trial to trial—
or whether we might detect evidence for the persistence of
sequence-specific representations that spanned across trials.
Indeed, our RSA analysis showed that activity patterns were
more similar within repeated tone sequences, than they were
between repeated tone sequences, especially during the encoding

and probe phases of the task. Moreover, this effect could not
be explained by tone-sequence similarity per se, because we
did not find an overall effect of sequence-similarity among
novel sequences.

In an exploratory analysis that examined the set of ROIs
that showed an elevated average univariate response during
(a) encoding alone, (b) during encoding and delay, and
(c) delay alone, we found that the average RSA effect in
the first two ROI groups (a and b) was >0 for all three
trial phases, suggesting that sequence-specific information
for repeated items is widely distributed across auditory-
motor regions of the frontal and temporal lobes. Moreover,
we found that multivoxel activity for the repeated tone
sequences became more differentiated in Spt and the broader
set of auditory and auditory + memory responsive ROIs,
indicating that the brain’s response was becoming more
stable for repeated sequences as the task progressed (58–60).
Prior work has shown univariate repetition suppression
effects in similar lateral temporal auditory and dorsal
premotor regions during a word-learning task (61) and a
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FIGURE 8 | Regions showing repeated sequence RSA effects in the auditory-motor network. We show all regions with (1–FDR > 0.8); region in orange/red are

significant at the FDR < 0.05 level.

task involving the repetition of unfamiliar lyrical tunes [(62); see
also (63)].

The current study has a direct precursor in the work of
Kalm et al. (27), which used a similar approach to examine
letter-sequence representations in a Hebb repetition paradigm.
They showed that repeated sequence-specific representations
emerged in several brain regions during letter sequence encoding,
including the left hippocampus, bilateral insula, and right
supramarginal gyrus. Interestingly, all of these regions fall outside
the “auditory-motor” zone that we focused our multivariate
analyses on. Although they found univariate repetition sequence-
specific suppression effects in lateral temporal regions in the
STG and STS, these regions did not show multivariate learning
related sequence-specific effects. Thus, the work of Kalm et

al. show that sequence-specific representations emerge outside
the auditory-language zone, we show that learning-related
representations are also evident in the same regions that
process and maintain auditory-verbal information in “online”
processing tasks. These results are not necessarily in conflict.
In order to maximize statistical power to address particular
questions about particular brain region(s), we adopted a strong
a priori approach, focusing first on a single brain ROI (area
Spt/PSL) and then “opening up” our investigations to a
broader, but still limited, set of regions defined by a univariate
analysis—and this set did not contain the hippocampus,
supramarginal gyrus, or insula which were identified by
Kalm et al. (27), Kowialiewski et al. (26) (hippocampus and
insula, only).
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The observed marginally significant RSA effect for repeated
sequences in the right hippocampus is consistent with previous
work that has demonstrated the involvement of this structure in
long-term and working memory for acoustic information (64).
Moreover, in view of the sequential nature of the stimuli used
in the present study, this hippocampal effect aligns with studies
that have implicated the hippocampus in supporting memory for
the temporal order of visually experienced events [e.g., (65–69)];
and points toward a domain general role for the hippocampus
in temporal order memory. More broadly, the hippocampus has
been suggested to process temporal information such as order,
but also duration, in support of memory in its role as a sequence
processor (70, 71).

The “Hebb repetition effect” traditionally refers to an increase
in the number of items recalled as a function of repetition
number; however, in the current study, recognition memory
performance did not increase over the experiment. Nevertheless,
we did observe a repetition-related effect measured at the neural
level, using a method that tracks multivoxel activity patterns. If a
change in the brain was occurring as a function of repetition, why
did we not see this effect in terms of behavioral performance?
We can only speculate that our recognition memory test,
which involved the difficult detection of the swapping of two
tones in adjacent positions, was not sensitive to the associated
neural changes that we picked up with RSA. We suspect that
a tone-sequence learning task with a recall component would
probably reveal significant Hebb repetition effects, but this awaits
empirical examination.

In conclusion, numerous studies have shown short-term
persistence of neural activity during working memory
maintenance—an effect that demonstrates the existence of
something like the Hebbian “activity trace” thought to operate in
the service of sensory-motor control and in bridging temporal
gaps that intercede between perception and action. But do these
brain regions that subserve working memory maintenance act

like eraser boards—holding information for a few seconds before
wiping the slate clean without a trace—or do such regions keep a
kind of representational inventory of the information that passes
through it? Here we show that area Spt, a region often implicated
in short-term memory for auditory-verbal and auditory-tonal
memory, does indeed appear to maintain a record of the past, as
evinced by sequence-specific multivariate pattern activity; and
moreover, that this persistence of pattern information is widely
distributed across auditory-motor regions in the frontal and
temporal lobes.
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