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Single-cell DNA methylation data has become increasingly abundant and has uncovered many genes with a positive corre-

lation between expression and promoter methylation, challenging the common dogma based on bulk data. However, com-

putational tools for analyzing single-cell methylome data are lagging far behind. A number of tasks, including cell type

calling and integration with transcriptome data, requires the construction of a robust gene activity matrix as the prerequisite

but challenging task. The advent of multi-omics data enables measurement of both DNA methylation and gene expression

for the same single cells. Although such data is rather sparse, they are sufficient to train supervised models that capture the

complex relationship between DNAmethylation and gene expression and predict gene activities at single-cell level. Here, we

present methylome association by predictive linkage to expression (MAPLE), a computational framework that learns the

association between DNA methylation and expression using both gene- and cell-dependent statistical features. Using mul-

tiple data sets generated with different experimental protocols, we show that using predicted gene activity values signifi-

cantly improves several analysis tasks, including clustering, cell type identification, and integration with transcriptome

data. Application of MAPLE revealed several interesting biological insights into the relationship between methylation

and gene expression, including asymmetric importance of methylation signals around transcription start site for predicting

gene expression, and increased predictive power of methylation signals in promoters located outside CpG islands and

shores. With the rapid accumulation of single-cell epigenomics data, MAPLE provides a general framework for integrating

such data with transcriptome data.

[Supplemental material is available for this article.]

Recent advances in single-cell genomics provide the opportunity
to capture a variety of epigenomic signatures at single-cell resolu-
tion, including histone modification (Grosselin et al. 2019),
DNA methylation (Smallwood et al. 2014; Urich et al. 2015; Luo
et al. 2017, 2018; Mulqueen et al. 2018), chromatin accessibility
(Buenrostro et al. 2015; Chen et al. 2018), and long-range chroma-
tin interaction (Nagano et al. 2013; Stevens et al. 2017). In partic-
ular, single-cell DNAmethylome analysis can provide quantitative
and high-resolution measurement of cell type–specific epige-
nomic landscape in both development and disease, because the
mammalian embryonic development is associated with dynamic
changes in DNA methylation at cis-regulatory elements and ge-
nome-wide deregulation of DNA methylation is associated with
many types of cancer (Greenberg and Bourc’his 2019).

Identifying genome-wide methylation signatures at single-
cell resolution with an unbiased technique such as bisulfite se-
quencing (BS-seq) comes with unique challenges. Technically,
the data are sparse and genomic coverage is rather limited (∼5%
of the genomeper cell on average), even for deeply sequenced sam-
ples with more than 5 million reads per cell (Luo et al. 2017).
Biologically, the interpretation of methylome signal is context de-
pendent. Whole-genome DNA methylome data suggest that gene
body methylation is positively correlated with gene expression in

embryonic stem cells (Lister et al. 2009; Greenberg and Bourc’his
2019); in other cell types such as post-mitotic neurons, genic
methylation is negatively correlated with gene expression (Lister
et al. 2013; Lee et al. 2019). These observations indicate that the
regulatory roles of DNA methylation are both genomic feature–
and cell type–specific. Single-cell multi-omics studies suggest sig-
nificant correlation (both positive and negative) between expres-
sion and gene body methylation for only a limited number of
genes (Hu et al. 2016; Angermueller et al. 2016a). Additionally,
mean promoter methylation is significantly negatively correlated
with gene expression only for a fraction of promoters in individual
cells (Angermueller et al. 2016a; Clark et al. 2018; Argelaguet et al.
2019).

The lack of well-defined association between DNA methyla-
tion and gene expression poses obstacles for the analysis and inte-
gration of this type of epigenomic data. Identifying cell types is
relatively straightforward in scRNA-seq data using clustering tech-
niques and marker genes. However, the same approach does not
work well for single-cell DNA methylation data because of the
lack of clear association between methylation and gene expres-
sion. Consequently, it is difficult to use marker genes to assign
cell types in this case. In terms of data integration, several compu-
tational methods have been developed for integrating different
types of single-cell data (Korsunsky et al. 2019; Stuart et al. 2019;
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Welch et al. 2019; Tran et al. 2020). However, without accurate in-
put representing gene activities in single-cell methylation data,
these methods cannot achieve reliable integration except for cer-
tain cell types, such as neurons, which have strong methylation
signals in the gene bodies. Therefore, a robust estimate of methyl-
ation-based gene activity score remains a bottleneck for accurate
integration of DNA methylation data with other types of single-
cell omics data. Resolving this bottleneck can pave the way for
comparative analysis of gene regulation mechanisms across cell
populations in a complex tissue.

Recently, true multi-omics protocols (i.e., joint profiling of
transcriptome andDNAmethylome of the same cells) have started
to emerge. It has already been shown that several hundreds of cells
can be sequenced for gene expression andDNAmethylation in the
same cell in a single experiment (Angermueller et al. 2016a; Clark
et al. 2018). Here, we aim to take advantage of such data and
develop a supervised learning framework, called methylome asso-
ciation by predictive linkage to expression (MAPLE), for predicting
gene activity score based on single-cell DNA methylation data. To
this end, we aim to develop gene-dependent and cell-dependent
statistical features as the input to an ensemble learning framework.

Results

Overview of the method

We independently verified the findings related to association be-
tween DNA methylation and gene expression by computing the
correlation between the expression and promoter and gene body
methylation in single-cell multi-omics data sets. As a result, we
found that for only a small fraction of the promoters, the negative
correlation between the methylation and the gene expression was
significant. In addition, methylation of many promoters are posi-
tively correlated (Supplemental Fig. S1; Supplemental Tables S1,
S2). Similarly,manymore genes havenegative correlationbetween
body methylation and gene expression than those with positive
correlation. Taken together, both published results and our own
analysis suggest that there is not a straightforward approach for in-
ferring gene activity levels using single-cell DNAmethylation data
sets. Instead, the correlation between the gene expression and
methylation is gene dependent.

We hypothesize that the common patterns of promoter
methylation-gene expression association for groups of genes can
be modeled by using a supervised learning model. We developed
two classes of statistical features as input to the supervised predic-
tor. Promoters overlapping with CpG islands or shores have dis-
tinctive response to methylation (Weber et al. 2007; Deaton and
Bird 2011; Jones 2012; Greenberg and Bourc’his 2019), and overall
promoter CpG frequency has been used as a feature for predicting
gene expression using bulk DNAmethylation data (Kapourani and
Sanguinetti 2016). In MAPLE, we used CpG frequency at higher
resolution, as a vector of CpG frequencies of multiple genomic
bins tiled across the promoter. This step generates the gene-depen-
dent but cell-independent feature set to be used in the learning
model. For the gene- and cell-dependent feature set, we computed
the methylation level of each promoter bin for all cells and genes.

The sparsity of single-cell bisulfite sequencing data poses a
significant challenge for machine learning approaches. Many pro-
moter regions have a limited number of CpG sites covered in each
single cell, and dividing the promoter region into multiple bins
further exacerbates the sparsity problem, resulting in either bins
with no overlapping calls at all, or insufficient calls to make a reli-

able estimation of the methylation level of the bins. To alleviate
this problem, we resorted to the concept of “meta-cell,” essentially
borrowing information from neighboring single cells. Such an ap-
proach has been used to analyze other types of single-cell data
(Wagner et al. 2017; Gong et al. 2018; van Dijk et al. 2018; Zhu
et al. 2020). Each meta-cell represents a group of individual cells
that are in a similar state with a specific cell in the data (Fig. 1A;
Methods). Although this approach results in a slight loss of data
resolution, it provides a reliable estimation of CpG level for the
vast majority of meta-cells, even with small neighborhood sizes
(Supplemental Fig. S2). Moreover, each single cell has its own
unique neighborhood; thus, no two meta-cells are expected to
be identical, and the single-cell nature of the data is preserved.

Once themeta-cells are identified, the CpGmethylation level
for eachmeta-cell is computed for 500-bp bins across the promoter
region, resulting in 20 features for each gene and each meta-cell.
Together with the CpG frequencies of these bins, they constitute
the two classes of features for each gene-meta-cell pair (Fig. 1B;
Methods). These features are used as the input to the supervised
learning model to infer the gene activity level in the meta-cell.
For downstream analysis, a DNA methylation–based gene activity
matrix is constructed, and a desired method can be used to inte-
grate the methylome data with gene expression data, for reliable
assignment of cell types in the data and other joint multi-omics
analyses (Fig. 1C).

Many supervised learningmethods can be used to predict the
gene activity level of the cells. We selected one commonly used,
representative predictor from three broad categories: artificial neu-
ral networks, regression-based models, and decision tree–based
models. Convolutional neural networks (CNNs) is a class of
deep-learning neural networks, which have gained popularity in
image processing and bioinformatics (Alipanahi et al. 2015;
Angermueller et al. 2016b, 2017). Our CNN architecture resembles
the method described in Singh et al. (2016) for predicting gene ex-
pression using bulk histone mark ChIP-seq data. However, instead
ofmultiple histonemarks, we used two classes of features, namely,
CpG dinucleotide frequencies and CpG methylation levels for ge-
nomic bins surrounding the TSS (Fig. 1B; Methods). Elastic net
(EN) is a regularized regressionmethod that combines the least ab-
solute shrinkage and selection operator (LASSO) and ridge regres-
sion models. Random forest (RF) consists of multiple decision
trees, each of which is trained with random subsamplings from
the training data, and the result is obtained by combining the out-
puts of all decision trees in a democratizedmanner. As the baseline
method, we computed the mean promoter demethylation level
(MPD) (ratio of unmethylated CpGs to all CpG calls in the promot-
er) as a predictor of gene activity level.

Supervised learning improves accuracy of gene activity prediction

Webenchmarked the performance ofMAPLE using four published
single-cell multi-omics data sets generated using two different pro-
tocols (Supplemental Table S1). The data sets of Angermueller and
colleagues (Angermueller et al. 2016a) and Hernando-Herraez and
colleagues (Hernando-Herraez et al. 2019) were generated using
single-cell genome-wide methylome and transcriptome sequenc-
ing (scM&T-seq), and the data sets of Clark et al. (2018) and
Argelaguet and colleagues (Argelaguet et al. 2019) were generated
using single-cell nucleosome, methylation and transcription se-
quencing (scNMT-seq). For all data sets, the transcriptome and
DNA methylome were jointly profiled for the same single cells.
To evaluate the overall performance of the ensemble approach,
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we performed both internal and external cross validation, that is,
training a predictor with one data set and predicting the gene ac-
tivity levels using the remaining three data sets.

We evaluated the prediction accuracy using two metrics,
Spearman’s correlation and median squared error. We chose
Spearman’s correlation because it can capture both linear and
nonlinear relationships in the data. We observed that the perfor-
mance of the individual learners was sensitive to the selection of
the training and test set data, especially for CNN and RF
(Supplemental Fig. S3). These two methods performed well on
the data set of Angermueller et al. (2016a) based on internal cross
validation, but poorly based on external cross validation, indi-
cating overfitting. On the other hand, their performance was
low based on internal cross validation using the data set of
Argelaguet et al. (2019), but higher based on external cross valida-
tion using the same data set as the training set. This is possibly
because the Argelaguet data set has the largest number of cells,
which captured the variation in the data better and alleviated
the overfitting to some extent. Hence, the performance of these
two methods is dependent on the training set and not stable.
Finally, the overall performance of EN was the lowest, possibly
owing to the relative simplicity of the model, which is unable to
capture the complexity in the data. Therefore, to achieve a consis-
tently improved performance independent of training and test

data, we applied an ensemble approach
by combining multiple predictors
(Mendes-Moreira et al. 2012).

There are different ways for combin-
ing component predictors to build an en-
semble predictor, such as unweighted
average, weighted average, and stacking
(Methods). We evaluated all three ap-
proaches and found that they have simi-
lar performance across all combinations
of training and test data sets (Supplemen-
tal Fig. S4). Therefore, we chose the un-
weighted average approach because of
its simplicity.

Ensemble-based MAPLE clearly out-
performed MPD in terms of correlation
for the internal cross-validation tests
(Supplemental Fig. S5). Regarding cross-
data set tests, across the 12 training-test
data setpairs,MAPLEachievedanaverage
global Spearman’s correlation of 0.62
across all genes andcells (Fig. 2A). In com-
parison, the baseline predictor using
MPDas the feature gave an average global
Spearman’s correlation of 0.5, which
means MAPLE had 24% average perfor-
mance gainoverMPD (P=0.003, one-sid-
ed t-test), reaching >60% improvement
for certain data sets (Supplemental Table
S3). The Spearman’s correlation across
genes is also higher forMAPLE compared
to the baseline predictor (Fig. 2B; Supple-
mental Fig. S6). We observed the same
trend when using amedian squared error
as an alternative metric (Supplemental
Figs. S7, S8). Taken together, these results
show that a supervised predictor using
both CpG frequency and methylation

level can substantially enhance the accuracy of predicting gene
expression activity at the single-cell level.

Next, we investigated the predictive power of individual fea-
tures by computing a feature importance score using the random
forestmodel.We found that feature importance score distributions
are similar across all four data sets (Supplemental Fig. S9). For both
DNA sequence–based features (CpG ratio) and methylation rate
features, the genomic bins that are closer to the TSS had higher im-
portance. The importance score distribution of sequence-based
features was symmetric around TSS, with the importance score at-
tenuating after ±2 kb. In contrast, importance scores of the meth-
ylation rate features showed asymmetric distribution.Methylation
rate of two bins immediately downstream from TSS had the high-
est predictive power, followed by the bin immediately preceding
TSS. The importance score decreased after 1 kb for the upstream re-
gion and 2 kb for the downstream region.

Predicted gene activity improves identification of cell types

Because one of the most important utilities of single-cell data is to
identify different cell types/states in a heterogeneous population,
we next evaluated our trained predictor on a single-cell DNA
methylation data set containing 3377mouse neurons that were se-
quenced with the single-nucleus methylcytosine sequencing

B

A

C

Figure 1. Schematic overview of the computational framework. (A) Generation of meta-cells from sin-
gle-cell DNA methylation data. The gene-by-cell DNA methylation matrix is used for principal compo-
nent analysis (PCA) to reduce the dimensionality. Each point in the PCA plot is a single cell. A meta-
cell is the set of k-nearest cells to an individual cell in the PCA space. (B) Prediction of gene activity level
by combining DNA methylation and sequence information in promoter. (TSS) Transcription start site;
(ML) methylation level. Each horizontal box represents a genomic bin. Each circle represents a CpG
site; a filled circle represents methylated cytosine, and an empty circle represents unmethylated cytosine
in a meta-cell. CpG ratio is defined as the percentage of CpG dinucleotides in a genomic bin. CpGmeth-
ylation level is defined as the ratio of the number of methylated CpG calls to all CpG calls. (C) Integration
of single-cell methylation and single-cell RNA-seq data based on predicted gene activity scores using sin-
gle-cell DNA methylation data.

Integration of single-cell methylome data
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(snmC-seq) protocol (Luo et al. 2017). In this study, Luo et al.
(2017) identified different neuronal subtypes using gene body
non-CpG (mCH)methylation, which is known to be inversely cor-
related with the expression level in adult neurons (Mo et al. 2015).

When we used the CpG (instead of non-CpG to be general)
MPD values of all genes for dimensionality reduction, we observed
no separation of cell types in the data, and the MPD values of the
marker genes for the neuronal subtypes were indistinguishable
across the cell populations (Fig. 3A,B; Supplemental Fig. S10). In
contrast, when we clustered the cells using gene activity levels of
all genes predicted by MAPLE (trained on data from Clark et al.
[2018]), we identified twomain clusters that were clearly separated
(Fig. 3C). The larger cluster showed higher gene activity for excit-
atory neuron markers, such as Tyro3, Slc17a7, Tbr1, and Itpka,
and the smaller cluster showed higher gene activity for inhibitory
neuronmarkers, such as Slc6a1 and Erbb4 (Fig. 3D). The clustering
result was consistent with that reported by Luo et al. (2017), with
>99% of the cells in the excitatory neuron cluster and 95% of the
cells in the inhibitory cluster matching those reported by the orig-
inal study, respectively. We observed a similar trend in a larger set
of excitatory and inhibitory marker genes (Supplemental Figs.
S11–S14).

To further evaluate the utility of predicted gene activity for
cell type identification, we applied MAPLE to identify cell clusters
in the embryoid body (EB) population in the multi-omics data set
byClark et al. (2018) using data fromAngermueller et al. (2016a) as
the training set. In this study, Clark et al. (2018) differentiated
mouse embryonic stem cells to EB. Using expression data, they re-
ported that the differentiated population clusters into two main

B

A

Figure 2. Prediction accuracy of gene expression using DNA methyla-
tion data and ensemble learning. (A) Heatmap showing global
Spearman’s correlation coefficients between observed gene expression
and predicted gene activity for all genes across all cells in a data set.
Rows represent training data sets, and columns represent test data sets.
Row and column Roman numerals correspond to the data sets shown.
(B) Distribution of Spearman’s correlation coefficients across genes using
the data set of Clark et al. (2018) as the training set. Each data point rep-
resents one cell. MAPLE (EL) correlations are significantly higher than those
of MPD (P<10−16, one-sided t-test for all three comparisons).

BA

C D

Figure 3. Predicted gene activity using methylome data improves cell subtype identification for neurons. (A) UMAP of clustering result generated using
mean promoter demethylation (MPD) as the input. (B) Violin plot of MPD values for marker genes for excitatory (Tyro3, Slc17a7, Tbr1, Itpka) and inhibitory
(Slc6a1, Erbb4) neurons. (C) Same as A but using predicted gene activity (PGA) as the input. (D) Same as B but using predicted gene activity as the input.
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clusters, one is labeled as pluripotent due to high expression of plu-
ripotency genes and the other represents differentiated cells with
the opposite pattern.

Using the MPD levels of promoters as the input for clustering
did not recapitulate the heterogeneity observed using the tran-
scriptome data. On the other hand, the same analysis using
MAPLE-predicted activities of all genes as the input resulted in

two clusters that have similar sizes to
the clusters defined using transcriptome
data alone. Moreover, Esrrb, a pluripo-
tency marker gene showed high levels
of activity in one cluster, whereas tran-
scription factor T, a differentiationmark-
er, displayed the opposite pattern (Fig.
4A,B), consistent with the pattern of het-
erogeneity based on the transcriptome
data. Similar separation was evident for
many additional marker genes for the
two cell types (Supplemental Figs. S15,
S16). To test the reliability of the separa-
tion of the cell types in theMAPLE input,
we computed the dimensionality reduc-
tion with different parameter settings,
and we observed that the separation
was evident across all parameter settings
(Supplemental Figs. S17, S18).

In summary, these results show that
use of a predictive modeling approach
can significantly improve our ability to
identify cell types and reveal hetero-
geneity in single-cell methylation data.
Notably, even in this case of extremely
small number of cells, using the meta-
cell approach to predict gene activity
did not lead to loss of resolution that
could impede analysis of heterogeneity.

Predicted gene activity enhances

integration with scRNA-seq data

We reasoned that accurate prediction of
gene activity level can significantly en-
hance the integration of single-cell
methylome data with transcriptome
data. To test this hypothesis, we took ad-
vantage of published true multi-omics
data sets in which DNA methylome and
transcriptome were measured for the
same single cells. Therefore, we know
the ground truth about the matching of
the two data types for a given cell. We
first used the data set by Clark et al.
(2018) that is composed of differentiated
embryoid body cells and undifferentiat-
ed embryonic stem cells (ESCs). Using
predicted gene activity levels by either
MAPLE or theMPDmethod, we integrat-
ed the methylome and transcriptome
data using Seurat (Stuart et al. 2019).
We then clustered the cells using the
coembedded transcriptome and methyl-
ome data produced by Seurat. We com-

puted the fraction of cells in the methylome data that were
assigned to the correct cluster, using a k-nearest neighbor (k-NN)
classifier and cells from single-cell RNA data. In contrast to MPD,
clusters computed based on MAPLE-predicted gene activity
showed higher homogeneity (i.e., greater fraction of the cells in
each cluster belongs to the same type) (Fig. 4C–H; Supplemental
Fig. S19), suggesting improved accuracy in data integration.

E

F

B

A

C D

G H

Figure 4. Predictive modeling improves integration with transcriptome data of cell lines. (A) Cell het-
erogeneity based on transcriptome and DNA methylome data. (Left) UMAP using RNA-seq data as the
input. Color scale represents the log-normalized (using Seurat) expression level (read counts) of Esrrb
for EBs. (Middle) UMAP using mean promoter demethylation as the input. Color scale represents the
MPD (1 −meanmethylation level) level of the Esrrb gene. (Right) UMAP usingMAPLE-predicted gene ac-
tivity based on DNA methylation data as the input. Color scale represents the MAPLE-predicted gene ac-
tivity levels of Esrrb. (B) Same as A, but for the T gene. (C) UMAP based on integrated RNA-seq and DNA
methylation data.Mean promoter demethylation (MPD) was used as the input for data integration using
Seurat. (EB) embryoid body; (ESC) embryonic stem cell. (D) Density clustering of the data shown in the
UMAP in C. (E) Confusion matrix plot based on the clustering result shown in D, illustrating the agree-
ment between cell type assignment based on clustering and true cell type. Size of each quadrant is pro-
portional to the number of cells classified. (F ) Same as C, but using predicted gene activity as the input.
(G) Same as D, but using predicted gene activity as the input. (H) Same as E, but using predicted gene
activity as the input. χ2 test P-value for the confusion matrices in G and H is 0.002.
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We further evaluated the performance of data integration us-
ing a larger data set on primary tissue. The data set includes 850
cells from four different embryonic time points (Argelaguet et al.
2019) during mouse gastrulation. Each cell was sequenced with
multiple modalities, including chromatin accessibility, DNA
methylation, and RNA expression. We integrated the single-cell
methylome data with the expression data, as described above,
and computed the fraction of cells in the methylome data that
were assigned to the correct cluster. Using gene activity predicted
byMPD, neither linear (PCA) nor nonlinear (UMAP) dimensional-
ity reduction methods on the integrated data resulted in accurate
matching of cells from the same developmental stage (Fig. 5A,B;
Supplemental Fig. S20). In comparison, using MAPLE data as the
input for integration, the resulting integrated data showed much
higher fractions of matched cells based on the two data types for
all four developmental stages (Fig. 5C,D; Supplemental Figs.
S20, S21). Although part of the populations from E6.5 and E7.5
has some overlap in the integrated data based on MAPLE input,
this outcome results from the biological nature of the data, as it
is observed in all data modalities including gene expression
(Argelaguet et al. 2019).

Discussion

Although recent advances in single-cell DNAmethylome sequenc-
ing technologies improve our ability to study epigenetic heteroge-
neity, data analysis poses unique challenges, especially the issue of
connecting the methylome and transcriptome data. Here, we ad-

dressed this challenge by developing a
supervised learning approach to infer-
ring gene activity based on DNAmethyl-
ation data. The inferred gene activity
score acts as an intermediate input for in-
tegrating the two types of data. A similar
approach is commonly used to integrate
single-cell ATAC-seq data with transcrip-
tome data in which summed chromatin
accessibility signal in the promoter and
gene body is used as a proxy to gene activ-
ity and intermediate input for data inte-
gration. However, simply using summed
DNA methylation signal in the promoter
region does not work, as we showed
using the mean promoter demethylation
method, owing to the more complex
relationship between DNA methylation
and gene expression. Instead, we showed
that predictive modeling better captures
the relationship between DNA methyla-
tion and gene expression. As a result, the
predicted gene activity score helps im-
prove cell type identification in the meth-
ylome data as well as integration with
transcriptome data.

For constructingmeta-cells, we used
the PCA that is computed with methyla-
tion levels of the variably methylated
promoters (VMPs) as the input. It might
be argued that the presence of CpG-
poor promoters can affect quality of con-
structed meta-cells. We evaluated this is-

sue by computing the overlap between the VMPs and CpG-poor
promoters (10% of all promoters having the lowest number of
CpG sites). We found that a very small fraction of VMPs are
CpG-poor (0.6%) and their removal has little effect (7.5%) on
the adjacencymatrix (Supplemental Table S4), demonstrating reli-
ability of meta-cells.

Despite the fact that using information from neighboring
cells may lead to minor loss of resolution, the reliability gained
by using meta-cell for predicting gene activity outweighs its cost.
The ability of MAPLE to identify subpopulations with a very small
number of EB cells (Clark et al. 2018) shows that the use of meta-
cells does not significantly impede the ability of our method for
detecting heterogeneity.

Although MAPLE consistently outperforms MPD for all data
sets we studied, the performance gain varied across the training
and test data sets used. It has been reported that expression of
genes having CpG island promoters have low sensitivity to DNA
methylation change (Antequera 2003; Fan and Zhang 2009). We
therefore investigated whether different gene sets contributed to
the performance differences by MAPLE by categorizing genes
into four groups: genes having promoters overlapping with CpG
islands, CpG shores, CpG shelves, and open sea (all remaining
genes). We found the performance of MAPLE is highest using
genes in the open sea and lowest using genes with CpG islands
(Supplemental Fig. S22). This result suggests that the expression
of genes located in CpG islands, shores, and shelves has low sensi-
tivity to changes in methylation signal. In contrast, genes in the
open sea have a more dynamic expression pattern in response to
methylation change.

BA

C D

Figure 5. Predictive modeling improves integration with transcriptome data of primary tissues. (A)
UMAP plots for integrated expression and DNA methylation data. Mean promoter demethylation
(MPD) was used as the input for data integration using Seurat. (B) Same as A, but using MAPLE-predicted
gene activity as the input. (C) Pie chart showing the percentage of correctly and misclassified cells using
scDNA-methylation data, based on k-nearest neighbor (k-NN) classification on the scRNA-seq cells for
the MPD-based UMAP in A. (D) Same as C, but for the MAPLE-based UMAP in B. χ2 test P-value for the
comparison between correct and misclassifications in C and D is 3.6 × 10−10.
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Our analysis revealed some interesting biological insights.
First, for many genes, promoter methylation and gene expression
are positively correlated, which is inconsistent with the observa-
tion based on bulk data. This result suggests a more nuanced rela-
tionship between gene expression and promoter methylation that
is dependent on cell type or state and not previously captured by
bulk data. Second, we found that the importance of CpG methyl-
ation in predicting gene expression is not symmetric around TSS.
Overall, the downstream region has higher predictive power
than the upstream region. Furthermore, CpG methylation of the
500-bp region immediately downstream of the TSS has the greatest
predictive power.

In our framework, we used promoter methylation because it
can be directly associated with genes. It has been reported that
gene-distal transcriptional enhancers also have uniqueDNAmeth-
ylation signature (Lister et al. 2009; Stadler et al. 2011; Hon et al.
2013).We anticipate that inclusion of enhancer DNAmethylation
signals can further improve the accuracy of the predictive model.
To this end, a major challenge is associating distal enhancers
with their target genes. This question has been addressed exten-
sively for bulk data using both experimental and computational
approaches (He et al. 2014; Javierre et al. 2016; Cao et al. 2017;
Jung et al. 2019). However, owing to unique challenges in single-
cell data, additional research is warranted to address this important
question. Finally, we used an ensemble learning approach in our
method. Although we chose three representative predictors as
components of the ensemble predictor, benefits of adding more
predictors can be explored in future work.

Methods

Processing of public data sets

Data sets used in this study are listed in Supplemental Table S1.
Briefly, we used four single-cell multi-omics data sets generated
by two different experimental protocols, scM&T-seq (Angermuel-
ler et al. 2016a) and scNMT-seq (Clark et al. 2018). In addition,
we used the snmC-seq (Luo et al. 2017) data set as the methyla-
tion-only data. We used Bismark methylation call files (COV files)
when available from the authors or converted the methylation
calls into Bismark COV format (Krueger and Andrews 2011). For
each data set, we only used cells for which both scRNA-seq
and sc-Methylome data were available.

For the single-cell RNA-seq data, we normalized the number
of reads by the total number of reads per cell and obtained counts
permillion (CPM). CPM values were log transformed andwere fur-
ther normalized by the maximum log expression value in the data
set to fit all data sets into the same range and make training and
test sets compatible.

Computing meta-cells

To alleviate the problem of data sparsity, we combinedDNAmeth-
ylation data from neighboring cells into meta-cells as follows. We
first counted the CpGmethylation calls in the ±5 kbp region flank-
ing the transcription start site (TSS) of the genes and computed the
methylation level as the ratio of methylated CpGs to all CpG calls
in those regions. For regions with no cytosine calls for a particular
cell, we used the mean methylation level across all promoters of
that cell. Next, we performed principal component analysis on
this methylation level matrix using the top 5000 promoters with
highest variance of methylation across the cells. We then used
the top d=10 (d is an adjustable parameter in our method) princi-
pal components as the feature space to compute the Euclidean dis-

tance between each cell pair, because the total variance explained
after the 10th principle component was minimal (Supplemental
Fig. S23). Based on the distance, we defined the local neighbor-
hood of each cell as the k-nearest cells. Each meta-cell corresponds
to an actual cell in the data set, that is, the number of meta-cells is
the same as the number of single cells in the data. Because we ob-
served that there is minimal improvement in terms of non-empty
bins for k larger than 20 (Supplemental Fig. S24) for all data sets in
this study, we used k=20.

We evaluated the effect of CpG-poor promoters for meta-cell
as follows. First, we determined the 20 nearest neighbors of each
cell using the top 10 dimensions of PCA and built an adjacency
matrix. Next, we repeated this procedure when CpG-poor promot-
ers are removed from the input gene set when computing the PCA.
Then, we determined the number of changes in the two matrices
with and without the CpG-poor promoters. Finally, we calculated
the ratio of the number of changed edges to the total number of
edges in the original adjacencymatrix (with CpG-poor promoters)
as the percentage of adjacency difference.

Calculation of DNA methylation rate

Transcription start sites (TSSs) were defined based on the
GENCODE annotation (release vm23) for mouse genome (release
GRCm38). “Promoter” was defined as the region spanning 5 kbp
upstream of and downstream from the TSS.

To compute CpGmethylation rate, we first divided each pro-
moter into 20 bins of 500-bp length. For each meta-cell, the num-
bers of methylated and unmethylated CpG sites for each bin were
counted. Themethylation rate of each bin was calculated by divid-
ing the total number of methylated cytosines to all cytosines in
that bin, considering all the cytosine calls for all cells in the corre-
sponding meta-cell.

Selection of the bin size may have an effect on the perfor-
mance. Very large bin sizes can lead to loss of resolution, whereas
too small bin sizes will result in many bins with few CpG calls,
leading to inaccurate estimates of methylation rates. To evaluate
this issue, we performed external cross validation using different
bin sizes.We found that there is aminor difference in performance
using different bin sizes (Supplemental Fig. S25).

Feature set

Two classes of features were computed: gene-dependent and
cell-independent feature, and cell- and gene-dependent feature.
For each gene, we extracted the sequence information for the ±5
kbp region around the TSS. For each 500-bp bin, we computed
the CpG frequency, considering both strands, which resulted in
20 gene-dependent, cell-independent features. Cell- and gene-
dependent features are CpG methylation rates of the 20 promoter
bins of a gene in a given cell. They were calculated by using all
methylation calls for all cells in the corresponding meta-cell.

Training and testing the predictor

We randomly subsampled 100,000 cell-gene pairs from each train-
ing data set to speed up the training process. Three supervised
learners, convolutional neural network (CNN), elastic net (EN),
and random forest (RF), were trained with each of the four multi-
omics data sets. We evaluated the performance with different pa-
rameter settings for individual learners using fivefold internal
cross validation (Supplemental Figs. S26–S28). To avoid bias
caused by different experimental protocols and/or data sets, we
trained and tested the predictors using external cross validation,
that is, training and testing using different data sets.
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We trained the CNNmodels with 50 filters using the ReLU ac-
tivation function for hidden layers and linear activation for the
output layer. Kernel size was set to 5, and max pooling was set to
size of 4. Mean squared error (MSE) was used as the loss function,
and patience for early stopping was set to 10 epochs. Models were
regularized by setting the dropout rate to 0.2 to avoid overfitting
(Srivastava et al. 2014). We used the R keras package for the imple-
mentation of the model (https://cran.r-project.org/web/packages/
keras/).

We trained the EN predictor (Friedman et al. 2010) by setting
the value of alpha to 0.5. The value of the λ was determined using
10-fold internal cross validation.We used the R glmnet package to
train the predictor with cv.glmnet function (https://cran.r-project
.org/web/packages/glmnet/index.html).

Random forest (RF) predictors were constructed with 500
trees, in which each tree was grown with random subsampling
of training data using 80% of the training samples. We used
the R randomForest package (https://cran.r-project.org/web/
packages/randomForest/) to build the RF models.

There are different rules for building an ensemble from the in-
dividual predictors. The unweighted average approach used in this
study is the mean of the outputs of the individual predictors and
does not depend on any prior assumptions on the underlying
models. As an alternative, weighted average prioritizes some of
the predictors over others based on some prior information. We
first calculated themedian correlations between predicted gene ac-
tivity and observed gene expression from the cross validation re-
sults and used them as weights for combining the outputs of the
predictors. In other words, the predictor that was associated with
higher correlation in the training data received higher weight. As
another alternative, we used median accuracy (1 − error) as the
weight for each predictor.

A more complicated combination rule is the stacked learning
(stacking) approach, inwhich a second layer predictor is trained on
the outputs of the first layer predictors (Wolpert 1992; Breiman
1996) using training data. We tested stacking approach with three
different second level predictors (belonging to the same family of
learners used for the first layer): elastic net regression, artificial
neural network, and random forest. This approach gave mixed re-
sults on the different data sets, offsetting the advantage of stability
of ensemble approach. As a result, we decided to use the unweight-
ed averaging approach, which is the simplest ensemblemodel and
does not rely on any prior information. We compared the correla-
tions betweenMAPLE andMPD using t-test, and we replicated the
correlation coefficients achieved using MPD, so that there are the
same number (12) of values for comparison of two matrices.

Feature importance

We computed feature importance scores with the random forest
model using the “importance” function in R random forest pack-
age (https://cran.r-project.org/web/packages/randomForest/). We
used the MSE difference as the importance measure. It was calcu-
lated by training a model using all features, then iteratively per-
muting the values for one feature at a time and computing the
difference between overall MSE and MSE obtained with the per-
muted feature.

Integration of methylome and transcriptome data using predicted

gene activity

We integrated single-cell DNA methylation data with single-cell
RNA sequencing data using Seurat version 3 (Stuart et al. 2019).
Only cells that have both expression and methylation data were
used for the integration. After normalization of both data types,

the top 3000 integration features (genes) were selected using the
“SelectIntegrationFeatures” function. Then the integration an-
chors (cells) were selected with the “FindIntegrationAnchors”
function using the integration features. The k.filter (number of
neighbors) was set to 100, and normalization was set to SCT
(Hafemeister and Satija 2019). The two data types were integrated
by using those anchors and the “IntegrateData” function. Finally,
we ran PCA,UMAP, and clustering on the integrated (coembedded)
data, including cells from both data types.

Software availability

MAPLE software is implemented in R (R Core Team 2019) and is
freely available under the MIT license. Source code is available
as Supplemental Code and at GitHub (https://github.com/
tanlabcode/MAPLE.1.0).
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