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INTRODUCTION 
 

Aging is defined as a progressive decline in physiological 

function, which results in increased risk of chronic 

diseases such as cancer, diabetes, and Alzheimer’s [1]. 

Geroscience has identified that environmental and 

genetic factors influence aging process. Genetically 

regulated longevity mechanisms have been identified to 

be evolutionarily conserved in Caenorhabditis elegans, 
Drosophila melanogaster and Mus musculus [2, 3]. 

Endocrine signaling is the most studied modulator of 

longevity in animal models [4–7]. Specifically, disruption 

of the growth hormone (GH) and insulin-like growth 

factor (IGF-1) pathways are linked to increased lifespan 

in mice [6, 8, 9]. In humans, a recent study showed  

that familial longevity is associated with lower GH 

secretion [10].  

 

Ames and Snell mice are dwarf due to mutations in the 

Prophet of Pit-1 (Prop-1) and pituitary factor-1 (Pit1) 

genes, respectively, in the anterior pituitary [11, 12]. 

These mutations result in suppression of GH signaling in 

mice, which causes delayed aging, improved longevity, 

and increased insulin sensitivity. In addition, these mice 

have reduced age-related loss of cognitive function and 

decreased occurrence of neoplastic disease [13]. 

Additionally, in these models prolactin (PRL) is absent 

and levels of thyroid-stimulating hormone (TSH) is 

greatly reduced in the plasma [14, 15]. GH receptor/GH-

binding protein (GHR/GHBP) knockout mice, which 

were made in the Kopchick lab, have higher levels of 

serum growth hormone in both sexes [16].  

 

To generate an isolated growth hormone deficiency 

model, the Salvatori lab used traditional embryonic stem 
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ABSTRACT 
 

Our previous study demonstrated that the loss of growth hormone releasing hormone (GHRH) results in increased 
lifespan and improved metabolic homeostasis in the mouse model generated by classical embryonic stem cell-
based gene-targeting method. In this study, we targeted the GHRH gene using the CRISPR/Cas9 technology to 
avoid passenger alleles/mutations and performed in-depth physiological and metabolic characterization. In 
agreement with our previous observations, male and female GHRH-/- mice have significantly reduced body weight 
and enhanced insulin sensitivity when compared to wild type littermates. Dual-energy X-ray absorptiometry 
showed that there were significant decreases in lean mass, bone mineral content and density, and a dramatic 
increase in fat mass of GHRH-/- mice when compared to wild type littermates. Indirect calorimetry measurements 
showed dramatic reductions in oxygen consumption, carbon dioxide production and energy expenditure in GHRH-

/- mice compared to wild type mice in both light and dark cycles. Respiratory exchange ratio was significantly 
lower in GHRH-/- mice during the light cycle, but not during the dark cycle, indicating a circadian related metabolic 
shift towards fat utilization in the growth hormone deficient mice. The novel CRISPR/Cas9 GHRH-/- mice are 
exhibiting the consistent and unique physiological and metabolic characteristics, which might mediate the 
longevity effects of growth hormone deficiency in mice. 
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cell (ESC) based gene-targeting method to knock out 

growth hormone-releasing hormone (GHRH), which is a 

hypothalamic peptide that controls both the synthesis 

and secretion of GH [17, 18]. These mutant mice have 

significantly decreased body weight and possess 

increased insulin sensitivity and prolonged lifespan 

indicating GH deficiency is primarily responsible for 

longevity extension [5]. This GHRH-/- model was 

generated using 129SV agouti color mice resulting in the 

co-segregation of GHRH-/- and agouti alleles. Agouti is 

an important component of several biological pathways, 

including body weight homeostasis, regulation of food 

intake and, energy expenditure [19]. In addition, its 

expression was associated with metabolic syndrome 

[20]. Our goal for this study is to delineate the direct 

physiological and metabolic consequences of GH 

deficiency. To achieve this goal, we knocked out the 

GHRH gene with CRISPR/Cas9 technology, preventing 

the agouti gene from acting as a passenger allele. We 

produced our experimental knockout model on mixed 

genetic background to avoid any phenotype resulting 

from strain-specific inbreeding. This is the first in-depth 

metabolic and physiological profiling of GH-suppressed 

mice generated with CRISPR/Cas9 technology on mixed 

genetic background. 

 

Our novel GHRH-/- mice have decreased body weight 

and higher insulin sensitivity despite having normal 

glucose tolerance. GH deficiency resulted in dramatically 

decreased bone mineral density (BMD), bone mineral 

content (BMC), and lean mass. However, GHRH-/- mice 

have significantly increased fat mass compared to 

littermate controls. Indirect calorimetry allowed us to 

measure physiological respiratory parameters, which 

were used to calculate respiratory exchange ratio (RER) 

and energy expenditure. RER data demonstrated a 

significant difference in metabolism between GHRH-/- 

and wild type (WT) mice during light cycle. GHRH-/- 

mice had significantly lower energy expenditure during 

both light and dark cycles. Our GH-deficient mouse 

model has physiological characteristics consistent with 

our previous study and similar to other GH-related 

mutants. It was hypothesized that slowing the biological 

process of aging is associated with GH deficiency. Our 

model helps understand key physiological and metabolic 

characteristics that are involved in the process of aging.  

 

RESULTS 
 

Utilizing CRISPR/Cas9-mediated gene-editing method, 

we generated homozygous GHRH-/- mice (Figure 1A). In 

a litter of 10 G0 pups, 8 carried indels and large deletions 

in the GHRH locus. Our targeted allele (#28528) is a 291 

base pairs deletion that eliminates the splice donor site at 

exon 2, intron 2-3 and a large part of Exon 3 (77 base 

pairs out of 102 base pairs); this allele was selected based 

on, successful germline transmission (Figure 1A, 1B). 

Predicted translation of the resulting sequence suggests 

an in-frame mutation leading to a loss of 26 amino acids, 

including 21 amino acids required for full activity 

(RMQRHVDAIFTTNYRKLLSQLYARKV). The line 

was used in all subsequent studies. We measured body 

weight and food consumption of GHRH-/- and WT 

littermates longitudinally. Male and female GHRH-/- 

mice were significantly lighter than their littermate 

controls (Figure 1C, 1D). In addition, GHRH-/- mice 

consumed dramatically fewer calories than WT 

littermates (Figure 1E, 1F).  

 

Previously, knockout of GHRH gene was shown to 

result in significant reduction of GH expression in 

pituitary and IGF-1 expression in liver [17]. To assess 

loss of function of GHRH, we measured mRNA levels 

of GH in pituitary and IGF-1 in liver. We observed that 

expression of both GH and IGF-1 genes were 

significantly decreased in GHRH-/- mice compared to 

WT littermates (Figure 2A, 2B, 2E, 2F). These results 

confirm the reduction in GH/IGF-1 signaling. However, 

we did not observe significant change in prolactin 

expression in the pituitary (Figure 2C, 2D).  

 

The effect of GH signaling on body weight (Figure  

3A, 3B) and composition is well documented in GH 

related mutant mice [21–23]. Therefore, we performed 

dual-energy X-ray absorptiometry (DXA) to study the 

effects of reduced GH signaling on body composition 

parameters in our knockout model of GHRH. Absolute 

BMD, BMC, and lean mass values were significantly 

lower in both male and female GHRH-/- mice compared 

to WT littermates (Figure 3C–3H). In order to account 

for the significant body weight differences between 

GHRH-/- and WT mice, we used analysis of covariance 

(ANCOVA) method, which revealed that BMD, BMC, 

and lean mass were significantly reduced (Figure  

4A–4F), whereas, fat mass was significantly increased in 

GHRH-/- mice (Figure 4G, 4H).  

 

To explore the effect of GH deficiency on metabolic 

phenotype of mice, we measured RER using indirect 

calorimetry. Figure 5A, 5B provides overview of RER 

values for each hour recorded for 6 days for female and 

male mice, respectively. Notably, the RER of both male 

and female GHRH-/- mice decreased much more rapidly 

during the transition between dark and light cycles 

compared with WT littermates (Figure 5A, 5B). RER 

measurements collected for 6 days were averaged into a 

single day (Figure 5C, 5D). These results indicate lower 

RER for both male and female GHRH-/- mice compared 

to WT littermates during the light cycle, but not the dark 

cycle (Figure 5C, 5D). Comparisons of RER confirm 

that the significant differences in metabolism functions 

in a circadian manner (Figure 5E–5H).  
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Figure 1. GHRH knockout with CRISPR technology. Location of guide RNAs with respect to exon 2 and exon 3 of GHRH and DNA 
sequencing chromatogram of mutant GHRH gene between exon 2 and intron 3. (A) Identification of mutations introduced by CRISPR/Cas9 in 
GHRH gene in founder animals by PCR analysis. (B) 10 G0 pups were tested for indels or deletions. 28528 had a 291 base pairs deletion that 
eliminates the splice donor site at exon 2, intron 2-3 and a large part of Exon 3 (77 base pairs out of 102 base pairs), showed successful 
germline transmission. (B) Body weights of female (C) and male (D) WT and GHRH-/- mice from weaning to adulthood. Food intake per mice 
per day of female (E) and male (F) WT and GHRH-/- mice. Female WT n=11, GHRH-/- n=14, male WT n=11, GHRH-/- n=15. Each bar represents 
mean ± SEM. Statistical analysis was performed by unpaired Student’s t-test with Welch’s correction; ****p<0.0001. 
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Figure 6A, 6B, 6E, 6F show mean hourly oxygen 

consumption (VO2) and carbon dioxide production 

(VCO2) of male and female mice for 6 days. All mice 

presented diurnal rhythm of higher VO2, VCO2 during 

the dark cycles compared to VO2, and VCO2 measured 

during the light cycles. Figure 5C, 5D, 5G, 5H show 

VO2 and VCO2 measurements collected for 6 days were 

averaged into a single day. Overall averages of absolute 

VO2 and VCO2 measurements were significantly lower 

in GHRH-/- female and male mice compared to WT 

littermates in both light and dark cycles (Figure 7A–7H). 

ANCOVA method, which controls for differences in 

body weight, showed male and female GHRH-/- mice 

have significantly lower VO2 and VCO2 compared to 

WT littermates, during both light and dark cycles 

(Figure 8A–8H).  

 

We calculated energy expenditure from the respiratory 

parameters collected by indirect calorimetry to assess the 

effect of GH-deficiency on metabolic rate. Figure 9A, 

9B show energy expenditure of female and male GHRH-/- 

mice compared with WT littermates over 6 days. We

 

 
 

Figure 2. Suppression of growth hormone signaling. Expression of growth hormone gene in pituitary gland in female (A) and male (B) 
WT and GHRH-/- mice. Expression of prolactin gene in pituitary gland in female (C) and male (D) WT and GHRH-/- mice. Expression of IGF-1 
gene in liver in female (E) and male (F) WT and GHRH-/- mice. Expression levels are shown as relative expression compared to WT mice. For all 
biological groups n=5. Each bar represents means. Statistical analysis was performed by unpaired Student’s t-test with Welch’s correction; 
ns= not significant, **p<0.01, ***p<0.001, ****p<0.0001. 
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Figure 3. GH-deficiency alters absolute body composition parameters. Body composition parameters: BMD (C, D), BMC (E, F), lean 
mass (G, H) and fat mass (I, J) were measured by DXA. Female WT n=38, GHRH-/- n=31, male WT n=16, GHRH-/- n=14. Each bar represents 
mean. Statistical analysis was performed by unpaired Student’s t-test with Welch’s correction; ns= not significant, *p<0.05, ****p<0.0001. 
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Figure 4. ANCOVA shows that GH-deficiency alters body composition parameters. Body composition parameters were measured 
by DXA. Body composition parameters are plotted on the y-axis and body weights are plotted on the x-axis (A–H). Relationship between body 
weight and BMD in female (A) and male (B) WT and GHRH-/- mice. Relationship between body weight and BMC in female (C) and male (D) WT 
and GHRH-/- mice. Relationship between body weight and lean mass in female (E) and male (F) WT and GHRH-/- mice. Relationship between 
body weight and fat mass in female (G) and male (H) WT and GHRH-/- mice. Female WT n=38, GHRH-/- n=31, male WT n=16, GHRH-/- n=14. The 
WT and GHRH-/- groups were statistically analyzed with ANCOVA method, which was used to calculate p values, shown on each panel. 
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Figure 5. Respiratory exchange ratio (VCO2/VO2). RER values were calculated by dividing VCO2 with VO2. 6 days of female (A) and male 
(B) WT and GHRH-/- mice RER values are shown. Hourly averaged RER values on day of female (C) and male (D) WT and GHRH-/- mice. Overall 
averaged RER values are shown as light (E, F) and dark cycles (G, H) for female (E, G) and male (F, H) WT and GHRH-/- mice. Female WT n=12, 
GHRH-/- n=12, male WT n=12, GHRH-/- n=11. Each bar represents mean ± SEM. Statistical analysis was performed by unpaired Student’s t-test 
with Welch’s correction; ns= not significant, a; *p<0.05, b; **p<0.01, c; ***p<0.001, d; ****p<0.0001. 
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Figure 6. Absolute VO2 and VCO2 recordings in GHRH-/ mice. VO2 and VCO2 were measured by indirect calorimetry. Hourly averages of 
respiratory parameters measured for 6 days for female (A, E) and male (B, F) WT and GHRH-/- mice. 6 days of VO2 and VCO2 data were 
averaged into a single day for female (C, G) and male (D, H) WT and GHRH-/- mice. Female WT n=12, GHRH-/- n=12, male WT n=12, GHRH-/- 
n=11. Each bar represents mean ± SEM. 
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averaged this data into a single day (Figure 9C, 9D). 

The analyses of energy expenditure representing the  

6 light and the 6 dark cycles confirmed the dramatic 

downward shift of metabolic rate in GH-deficient mice 

(Figure 10A–10D). Controlling for the effect of 

significant differences in body weight, ANVOCA 

method, showed significant reduction in metabolic rates 

of both male and female GHRH-/- mice compared to 

WT littermates in light and dark cycles (Figure 9E, 9H). 

We further measured voluntary physical activity of 

mice during our indirect calorimetry study. Overall 

pattern indicates both male and female GHRH-/- mice 

have reduced activity compared to WT littermates 

during light and dark cycles (Figure 11A–11D). 

 

 
 

Figure 7. GH-deficiency decreases absolute VO2 and VCO2. VO2 (A–D) and VCO2 (E–H) values measured on light and dark cycles were 
averaged. WT female n=12, KO female n=12, WT male n=12, KO male n=11. Each bar represents mean. Statistical analysis was performed by 
unpaired Student’s t-test with Welch’s correction; ****p<0.0001. 
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Figure 8. ANCOVA shows that GH-deficiency decreases VO2 and VCO2. Overall averaged VO2 (A–D) and VCO2 (E–H) values are 
plotted on the y-axis and body weights are plotted on the x-axis. Relationship between body weight and VO2 in female (A, C) and male (B, D) 
WT and GHRH-/- mice during light cycle (A, B) and dark cycle. (C, D) Relationship between body weight and VCO2 in female (E, G) and male  
(F, H) WT and GHRH-/- mice in light cycles (E, F) and dark cycles. (G, H) Female WT n=12, GHRH-/- n=12, male WT n=12, GHRH-/- n=11. The WT 
and GHRH-/- groups were statistically analyzed with ANCOVA method, which was used to calculate p values, shown on each panel. 
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Figure 9. ANCOVA shows that GH-deficiency reduces metabolic rate. Energy expenditure values for 6 days for female (A) and male 
(B) GHRH-/- and WT mice. 6 days of energy expenditure data were averaged into a single day for female (C) and male (D) mice. Analysis of 
energy expenditure with body weight as a co-variant for female (E, G) and male (F, H) GHRH-/- and WT mice in light cycles (E, F) and dark 
cycles. (G, H) Female WT n=12, GHRH-/- n=12, male WT n=12, GHRH-/- n=11. Each bar represents mean ± SEM. The WT and GHRH-/- groups 
were statistically analyzed with ANCOVA method, which was used to calculate p values, shown on panels E-H. 
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To assess insulin tolerance, we performed intraperitoneal 

insulin injections and measured blood glucose levels. 

Upon injection with insulin, glucose concentrations 

significantly decreased in GHRH-/- female and male 

mice compared to their littermate controls (Figure 12A, 

12B). Area under the curve (AUC) data were 

significantly lower GHRH-/- female and male mice than 

their littermate controls (Figure 12C, 12D). To evaluate 

the glucose homeostasis in vivo, we performed 

intraperitoneal glucose tolerance test (IPGTT) with mice 

fasted overnight. We did not observe any significant 

differences in blood glucose levels throughout the 2-

hour period following glucose injection (Figure 12E, 

12F). AUC analyses did not reveal any statistical 

significance due to loss of GHRH (Figure 12G, 12H). 

This data strongly supports the notion that GH 

deficiency improves insulin sensitivity, but not glucose 

homeostasis in vivo. 

 

DISCUSSION 
 

Previously, GHRH was knocked out in mice using a 

neomycin resistance cassette to replace parts of both exon 

2 and 3 [17]. This approach introduces the possibility of 

passenger flanking alleles/mutations, which may be 

responsible for phenotypic variations between mice 

generated with CRISPR/Cas9-based gene-editing and 

classical knockout method [24, 25]. Agouti gene and 

GHRH-/- alleles co-segregate in the mouse model 

generated by Salvatori lab [17]. Previously, GHRH-/- 

mice were shown to have increased adiposity and insulin 

sensitivity, which are the two key parameters linked to 

longevity in different knockout models of the growth 

hormone pathway. However, insulin resistance and 

obesity are both linked to agouti gene expression [20]. 

We generated a ‘clean’ model for GHRH loss of function 

mutation in mice using the CRISPR/Cas9 system, which 

provides precise genome-editing without leaving any 

exogenous DNA sequences behind, eliminating the 

possibility of passenger alleles/mutations influencing the 

phenotype resulting from the GH-deficiency [26]. It has 

been shown in the literature that CRISPR/Cas9 method 

can result in off-target mutations. We have outcrossed 

our mice several generations to minimize the possibility 

of off-target mutations in the genome. Some of the 

phenotypic variability observed in transgenic animals has 

been attributed to the genetic background of animal 

models [27, 28]. To rule out this possibility, we used 

GHRH-/- mice on mixed genetic background for this 

study. 

 

Indirect calorimetry provides highly sensitive, accurate, 

and noninvasive measurements of energy expenditure 

and substrate utilization in live animals [29]. One 

important technical issue for indirect calorimetry is the 

duration of acclimation and data acquisition period. 

 

 
 

Figure 10. GH-deficiency results in decreased absolute metabolic rate. Overall averaged energy expenditure of WT and GHRH-/- are 
shown as light (72 hours; A, B) and dark cycles (72 hours; C, D). WT female n=12, KO female n=12, WT male n=12, KO male n=11. Each bar 
represents mean. Statistical analysis was performed by Student’s t-test with Welch’s correction; ****p<0.0001. 
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Generally, data collection by indirect calorimetry is 

limited to 24 hours, which usually takes place after a 24 

hours acclimation period [5, 30, 31]. Temperature within 

the cage is thought to be closer to the thermoneutral zone, 

where energy expenditure required for maintaining body 

temperature is at its lowest. Moving mice from group 

housing to single housing is expected to increase their 

expenditure [32]. For this reason, it is critical for mice to 

adjust to cold stress before any respiratory measurements 

are performed. In order to obtain accurate and reliable 

results from indirect calorimetry, we acclimated mice in 

the respiratory chambers for 7 days and subsequently, 

collected the measurements for 6 days. 

Interpretation of metabolic and physiological parameters 

has been problematic due to differences in body weight 

in some genetic models [33]. In order to compensate for 

these differences, researchers have argued for different 

methods of analysis, including ratio-based normalization 

and allometric scaling [34]. Studies illustrated that these 

methods are improper and result in flawed conclusions 

[33–36]. ANCOVA method has been promoted as the 

suitable method of analysis for physiological parameters 

that are influenced by variables such as body weight [35, 

37, 38]. We utilized this unbiased statistical approach to 

control for the influence of body weight on body 

composition and indirect calorimetry data. 

 

 
 

Figure 11. GH-deficiency results in decreased physical activity. Locomotor activity (A, B) and ambulatory activity (C, D) of WT and 
GHRH-/- mice for 6 days are shown. WT female n=12, KO female n=12, WT male n=12, KO male n=11. 
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The inverse relationship between lifespan and body size 

within species has been observed not only in mice but 

also, in rats, dogs, horses and humans [6, 39–41]. 

Decreased body size is one of the strongest phenotypic 

characteristics of growth hormone deficiency models  

[5, 8]. Our longitudinal study of body weight showed 

that GHRH-/- mice are significantly lighter than the WT 

controls. Analyses of body composition parameters with 

DXA revealed remarkable effects of reduced GH 

signaling on bone, lean, and fat tissues. Absolute BMD, 

 

 
 

Figure 12. Insulin and glucose tolerance tests. GHRH-/- and WT mice were fasted for 4 hours and injected with 1 IU porcine insulin per 
kg of body weight. Blood glucose levels of female (A) and male (B) were measured the following 2 hours. Area under the curve analyses for 
female (C) and male (D) mice are shown. GHRH-/- and WT mice were fasted overnight and injected with 1 g glucose per kg of body weight. 
Blood glucose levels of female (E) and male (F) were measured the following 2 hours. Area under the curve analyses for female (G) and male 
(H) mice are shown. Female WT n=14, GHRH-/- n=13, male WT n=14, GHRH-/- n=13-14. Each bar represents mean ± SEM. Statistical analysis 
was performed by unpaired Student’s t-test with Welch’s correction; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 



 

www.aging-us.com 9775 AGING 

BMC, lean mass measurements are significantly lower in 

GHRH-/- female and male mice compared to littermate 

controls. Reduced absolute lean mass and BMD have 

been documented in the GHR-/- model [23]. Previously, 

Ames dwarf mice were shown to have significantly 

reduced absolute lean mass and BMC [42]. For  

BMC, BMD, and lean mass, comparison of absolute 

measurements and ANCOVA method using body weight 

as a co-variant showed the same results. ANCOVA 

method demonstrated that fat mass adjusted for body 

weight is significantly increased in mice lacking GHRH.  

 

We aimed to utilize indirect calorimetry to investigate the 

metabolic effects, which are associated with reduced GH 

signaling and may be related to improved longevity. 

Analyses of absolute energy expenditure and body 

weight adjusted energy expenditure values lead to the 

same conclusion that our novel GHRH-/- mice have 

significantly decreased metabolic rates compared to  

WT littermates. Previous study using Ames dwarf and  

GHR-/- found significantly decreased absolute energy 

expenditures for both models [30]. Using indirect 

calorimetry, we examined the RER, which is a unitless 

ratio obtained by dividing VCO2 by VO2. RER is close to 

0.7 when mice metabolize fat as an energy source and is 

close to 1.0 when metabolizing carbohydrates [43]. Our 

results demonstrate that GH-deficiency is significantly 

associated with lower RER during the light cycle, but not 

during the dark cycle in both female and male mice. This 

suggests that GHRH-/- mice have a greater level of fat 

utilization, which appears in a circadian pattern. Previous 

studies have shown lower RER for Ames and GHR-/- 

mice during both light and dark cycles [30]. However, 

these animals were only acclimated for 24 hours and data 

were collected in 24 hours. This technical difference is a 

likely cause for the different results.  

 

Our study shows that GHRH-/- mice have decreased 

physical activity compared to their WT littermates. 

Another study showed increased physical activity in 

GHRH deficient mice [44]. This study recorded 

physical activity for only 10 minutes. However, our 

measurements lasted 6 days. This difference in 

methodology might be the likely contributor to the 

difference in results.  

 

In humans, insulin resistance is one of the hallmarks of 

aging and is associated with chronic conditions such as 

diabetes, cancer, and cardiovascular disease [45, 46]. 

One of the physiological characteristics of long-lived 

GH-related mutant mouse models is elimination of 

insulin resistance [5, 47, 48]. In this study, our novel 

CRISPR/Cas9 GHRH-/- female and male mice exhibited 

insulin sensitivity compared to their WT littermates, 

affirming the relationship between growth hormone 

deficiency and increased sensitivity to insulin. 

This study validates our previous findings and 

establishes the GHRH-/- mouse as an important animal 

model to study mechanisms of extended longevity and 

slow aging in mammals. Our next goal is to assess 

impact of high-fat diet, which is expected to shorten 

lifespan and cause metabolic dysfunction, on GHRH-/- 

mice. To achieve this goal, we are conducting a 

longevity study with GHRH-/- and control mice fed 

high-fat and control diet. Preliminary results from the 

ongoing longevity study indicate that our GH-deficient 

model is protected from harmful effects of high-fat diet. 

Our current work provides a practical model for a 

CRISPR/Cas9 system, which leads to improved locus 

specificity and ease of multiplexed targeting in 

mammalian aging and longevity studies.  

 

MATERIALS AND METHODS 
 

CRISPR/sgRNA design and synthesis 

 

Owing to the small size of the mouse GHRH exons 

(17.16 kb with 5 exons), eight CRISPR targets with high 

scores were identified in the sequences flanking exons 2 

and 3, including the intronic sequences, using Benchling 

(https://www.benchling.com/) with the goal of creating 

deletion alleles spanning exons 2 and 3. Single guide 

RNA (sgRNA) molecules were generated using a 

cloning-free method as described earlier [49]. Cas9 

protein was obtained from MacroLabs at UC Berkeley. 

 

Generation of G0 (founder) animals and germline 

transmission of mutant alleles 

 

All animal procedures were performed in accordance 

with the recommendations in the guide for the care and 

use of laboratory animals published by the National 

Institutes of Health. The protocols used were approved 

and conducted according to the University of Alabama 

at Birmingham institutional animal care and use 

committee. Pronuclear injections into C57BL/6J 

zygotes were performed with a solution of sgRNAs (50 

ng/μl each) and Cas9 protein (50 ng/μl per guide). 

Injected zygotes were implanted into pseudo-pregnant 

CD1 recipients. Genomic DNA obtained from tail 

biopsies of putative founder (G0) animals were assessed 

for the presence of mutations in the targeted genes. G0 

animals were bred to WT C57BL/6J mice for germline 

transmission of mutant alleles. 

 

Detecting the presence of indels 
 

Genomic DNA from mouse-tail biopsies was obtained 

by digesting in lysis buffer (50 mM Tris-HCl pH 8.0, 

100 mM EDTA pH 8.0, 100 mM NaCl, 1% SDS) with 

proteinase K (0.3 mg/ml), followed by a phenol: 

chloroform extraction and ethanol precipitation 

https://www.benchling.com/


 

www.aging-us.com 9776 AGING 

procedure. PCRs were set up using the oligonucleotide 

primers MmGhrh-gen-F1: 5’-CTTGCTTCTCTCACA 

CTTGC-3’; MmGhrh-gen-R1: 5’-TTAAAGGGTCGG 

AGCAGTAG-3’ with NEB Taq 2x Master Mix. The 

amplicons (795 base pairs) were subjected to 

denaturation-slow renaturation to facilitate formation of 

hetero-duplexes using a thermocycler. These samples 

were then resolved on polyacrylamide gels (6%) and the 

resulting mobility profiles used to infer efficiency of 

CRISPR-Cas9 nuclease activity. Indels or deletions 

were detected by heteroduplex mobility analysis (HMA) 

from tail genomic DNA of potential founder animals. 

PCR amplicons were cloned using the TOPO-TA 

cloning kit (ThermoFisher/Invitrogen, Carlsbad CA). 

Colonies were picked from each plate and grown in 1.5 

ml liquid cultures to isolate plasmid DNA using an 

alkaline lysis procedure. Plasmid DNA was sequenced 

using M13 forward or reverse primers. 

 

Breeding 

 

Mice were housed under standard conditions (12-hours 

light and 12-hours dark cycles at 20–23°C) with  

ad libitum access to food and water and fed with NIH-

31 rodent formula. A GHRH heterozygous (+/-) G0 

mouse obtained from the University of Alabama at 

Birmingham (UAB) genomics core was crossed with a 

BALB/cByJ for increased genetic diversity, increased 

fecundity, and reduced aggression. To obtain 

experimental animals, mice heterozygous for GHRH 

mutation were crossed with littermates to obtain 

homozygous GHRH mutant and homozygous GHRH 

wild type animals, which served as controls. 

Experiments were performed with age-matched mice. 

Females were 6 months old and males were 8 months 

old at the time of the experiments.  

 

DXA 

 

The mice were scanned using the GE Lunar PIXImus 

DXA with software version 1.45. The mice were 

anesthetized using an Isoflurane (3%) and oxygen 

(500ml/min) mixture, delivered by a Surgivet 

anesthesia machine, and then placed in a prostrate 

position on the DXA imaging plate and scanned. 

During the scan, the mice remained anesthetized. For 

all scans, the head was excluded from the analysis and 

the data obtained included BMC, BMD, lean mass and 

fat mass. 

 

Indirect calorimetry 

 

Indirect calorimetry was performed using comprehensive 

lab animal monitoring system (Oxymax-CLAMS; 

Columbus Instruments Co., Columbus, OH). This system 

uses zirconia and infrared sensors to monitor oxygen (O2) 

and carbon dioxide (CO2), respectively. We performed 

indirect calorimetry with 24 mice (12 wild type and  

12 GHRH-/-). We divided mice into 3 groups and 

collected measurements on 8 animals at a time (4 WT 

and 4 GHRH-/-). The mice were housed in separate 

respiratory chambers for 7 days for acclimatization 

before recording the measurements. After a 7-day 

acclimation period, respiratory parameters of mice were 

recorded for 6 days with ad libitum access to standard 

chow and water (12-hours light and 12-hours dark cycles 

at 20–23°C). Respiratory samples were measured every 9 

minutes per mouse, and the data were averaged for each 

hour. RER was calculated by dividing VCO2 by VO2. 

Energy expenditure was calculated by the equation as 

energy expenditure = (3.815 + 1.232 × VCO2/VO2) × 

VO2 [43]. We used infrared beam system in X, Y, and Z 

coordinates to record physical activity of mice. If the 

mouse is standing still and starts a repetitive act, such as 

grooming, it will continuously break the same beam 

indicating locomotor activity. When the currently broken 

beam is different from the previous one, activity is 

counted as ambulatory. 

 

Glucose and insulin tolerance tests 
 

Overnight-fasted mice underwent glucose tolerance test 

by intraperitoneal injection with 1 g of glucose per kg of 

body weight. Blood glucose levels were measured at 0, 

5, 15, 30, 60, 90, and 120 minutes. 4-hours fasted mice 

underwent insulin tolerance test by intraperitoneal 

injection with 1 IU porcine insulin (Sigma-Aldrich, St. 

Louis, MO) per kg of body weight. Blood glucose 

levels were measured at 0, 5, 15, 30, 60, 90, and  

120 minutes.  

 

Real-time quantitative PCR 
 

RNA was harvested from tissues using RNeasy plus kit 

(Qiagen, Hilden, Germany). Total RNA was reverse 

transcribed with LunaScript RT SuperMix Kit (New 

England Biolabs, Ipswich, MA). Real-time quantitative 

PCR was performed using a QuantStudio 3 with a 

PowerUp SYBR green master mix (ThermoFisher 

Scientific, Waltham, MA). Glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) or beta-actin expression  

was used to normalize gene of interest in each sample. 

Real-time quantitative PCRs were set up using the 

oligonucleotide primers Mm GAPDH F1 5-CCTGGAG 

AAACCTGCCAAGTATGATG-3’; Mm GAPDH R1 5-

AAGAGTGGGAGTTGCTGTTGAAGTC-3’, Mm Actb 

F4 5’-TCTTTGCAGCTCCTTCGTTGCC-3; Mm Actb 

R4 5’-CTGACCCATTCCCACCATCACAC-3’, Mm 

IGF-1 F2 5’-CATAGTACCCACTCTGACCTGCTGTG-

3’; Mm IGF-1 R2 5’-CGCCAGGTAGAAGAGGTGT 

GAAGAC-3’; Mm GH F1 5’- TGGCTACAGACTCT 

CGG-3’; Mm GH R1 5’-AGAGCAGGCAGAGCAG 
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GCTGA-3’. Fold change was obtained by calculating  

2-∆∆Ct. 

 

Statistical analyses 
 

The unpaired Student’s t-test with Welch’s correction 

was used for statistical analysis. Statistical significance 

was established at p<0.05, two-tailed. We used 

(generalized linear model) GLM package with R 

software for analysis of indirect calorimetry and  

body composition data. When interaction was not 

found, the code was run without the interaction term. 

Our GLM models were validated with the MMPC’s 

(National Mouse Metabolic Phenotyping Center, 

https://www.mmpc.org/shared/regression.aspx) energy 

expenditure analysis tool. Graphs were generated with 

GraphPad Prism 8 (San Diego, CA).  
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