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Neuronal metal ions such as zinc are essential for brain function. In particular synaptic
processes are tightly related to metal and protein homeostasis, for example through
extracellular metal-binding proteins. One such protein is neuronal S100B, a calcium and
zinc binding damage-associated molecular pattern (DAMP), whose chronic upregulation
is associated with aging, Alzheimer’s disease (AD), motor neuron disease and traumatic
brain injury (TBI). Despite gained insights on the structure of S100B, it remains unclear
how its calcium and zinc binding properties regulate its function on cellular level.
Here we report a novel role of S100B in trace metal homeostasis, in particular the
regulation of zinc levels in the brain. Our results show that S100B at increased
extracellular levels is not toxic, persists at high levels, and is taken up into neurons, as
shown by cell culture and biochemical analysis. Combining protein bioimaging and zinc
quantitation, along with a zinc-binding impaired S100B variant, we conclude that S100B
effectively scavenges zinc ions through specific binding, resulting in a redistribution of
the intracellular zinc pool. Our results indicate that scavenging of zinc by increased levels
of S100B affects calcium levels in vitro. Thereby S100B is able to mediate the cross talk
between calcium and zinc homeostasis. Further, we investigated a possible new neuro-
protective role of S100B in excitotoxicity via its effects on calcium and zinc homeostasis.
Exposure of cells to zinc-S100B but not the zinc-binding impaired S100B results in an
inhibition of excitotoxicity. We conclude that in addition to its known functions, S100B
acts as sensor and regulator of elevated zinc levels in the brain and this metal-buffering
activity is tied to a neuroprotective role.
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INTRODUCTION

Metal ions play an important physiological role in synapse plasticity and function and thus
their homeostasis is tightly regulated by transporters and metal-binding proteins. Recent
evidence has revealed that several neuronal metalloproteins are candidates for prime regulators
of metal homeostasis at the synapse (Bush, 2013; Cristóvão et al., 2016). In particular, trace
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elements such as iron, copper and zinc bind to these proteins,
thereby influencing their conformation and functions (Leal et al.,
2013). Disturbance of these processes leads to altered metal
homeostasis and cellular distribution, which is a common feature
of several neurodegenerative and neuropsychiatric diseases
(Barnham and Bush, 2014).

S100 proteins are a family of regulatory, calcium-binding
proteins that have been shown to have a tissue- and cell-specific
expression and to act in a concentration-dependent manner
(Donato et al., 2013). Calcium binding via EF-hand motifs
induces conformational changes that underlie some of the
functional interactions with other proteins. S100 proteins are
also known to form functional and amyloidogenic assemblies
(Yanamandra et al., 2009; Fritz et al., 2010; Carvalho et al., 2013,
2014).

S100B is mainly expressed in the central nervous system
(CNS) where it accounts for 0.5% of soluble protein in the brain
(Sorci et al., 1998; Donato and Heizmann, 2010; Ostendorp et al.,
2011). At low concentrations (nM), S100B promotes neuronal
survival (Villarreal et al., 2011) the induction of neurogenesis
after traumatic brain injury (TBI) (Kleindienst et al., 2013), and
the stimulation of neurite outgrowth (Huttunen et al., 2000;
Villarreal et al., 2011; Saleh et al., 2013). Through activation
and secretion at high concentrations (µM), S100B can also
act extracellularly as signaling protein in an autocrine and
paracrine manner (Sorci et al., 1998; Ponath et al., 2007; Villarreal
et al., 2014). There, S100B acts via the RAGE (Receptor for
Advanced Glycation End-Products) signaling pathway (Bianchi
et al., 2011; Villarreal et al., 2014). RAGE activation increases
extracellular S100 concentrations via NF-κB activation, which
leads to a positive feedback cycle (Leclerc et al., 2010). Thus,
neural S100 proteins are increased during processes activating
NF-κB, such as inflammatory processes (Donato et al., 2013)
and other insults to the brain. In particular, release of S100B
was reported in response to excitotoxicity (Mazzone and Nistri,
2014).

In vitro studies have shown that S100B is an important
factor in maintaining calcium homeostasis in astrocytes (Donato
et al., 2009). Interestingly, besides calcium binding sites, various
S100 proteins have additional regulatory binding sites for zinc
and copper. S100B is able to bind two zinc ions per homodimer
(Wilder et al., 2005; Charpentier et al., 2008) and by that the
protein affinity for calcium increases (Baudier et al., 1986).

Zinc is one of the most prevalent trace metals in the brain
and plays an important role as modulator of neurotransmission
and signaling ion at synapses, thereby influencing processes
such as synapse formation, maturation and plasticity. While
most of the total brain zinc exists in a protein-bound state,
‘‘free’’ zinc ions can be found predominantly within synaptic
vesicles (Palmiter et al., 1996; Cole et al., 1999), where zinc gets
released together with glutamate from glutamatergic presynaptic
terminals (Frederickson and Moncrieff, 1994; Frederickson
and Bush, 2001). Alterations in brain zinc homeostasis have
been reported associated with various disorders of the CNS.
For example, abnormal levels of zinc have been implicated
in neurodegenerative, neurological, and neuropsychological
disorders such as mood disorders, autism spectrum disorders

(ASD), Alzheimer’s disease (AD), Parkinson’s disease (PD),
Huntington’s disease (HD), multiple sclerosis (MS), TBI and
amyotrophic lateral sclerosis (ALS) (Pfaender and Grabrucker,
2014; Prakash et al., 2015). Intriguingly, an increase in S100B
has been reported to occur in these disorders as well. Although
excess of intracellular zinc is potentially neurotoxic, findings
suggest that zinc acts protectively in situations of glutamate
excitotoxicity via crosstalk to calcium signaling (Takeda,
2010).

It is well known that S100B binds and regulates protein
targets as well as other calcium-signaling proteins in a calcium-
dependent manner (Zimmer and Weber, 2010). Here, we
investigate the zinc binding abilities of S100B dimer and
tetramer and followed the question whether S100B may not
only act as calcium but also zinc sensor, and whether zinc
binding is necessary for physiological functions of S100B such
as crosstalk with calcium signaling. Further, we followed the
question whether high levels of S100B are able to affect local zinc
concentrations by scavenging free zinc ions, which may lower
toxic effects of zinc in situations of high zinc release such as
over-excitation of glutamatergic neurons.

MATERIALS AND METHODS

Materials
Zinpyr-1 was purchased from Sigma-Aldrich or Santa Cruz.
Primary antibodies were purchased from Sigma-Aldrich (Map2,
S100B), Invitrogen (tau), Synaptic Systems (S100B, Map2) and
Origene (DDK). Secondary antibodies Alexa488, Alexa568 and
Fluo4AM were purchased from Life Technologies. Secondary
HRP antibodies were from DAKO. Unless otherwise indicated,
all other chemicals were obtained from Sigma-Aldrich.

Hippocampal Culture from Rat Brain
Pregnant rats were purchased from Janvier Labs. All
animal experiments were performed in compliance with
the guidelines for the welfare of experimental animals issued
by the Federal Government of Germany and approved by the
Regierungspraesidium Tuebingen and the local ethics committee
at Ulm University (Ulm University, ID: O.103). The preparation
of hippocampal cultures was performed essentially as described
before (Grabrucker et al., 2009) from rat (embryonic day-
18; E18). After preparation the hippocampal neurons were
seeded on poly-l-lysine (0.1 mg/ml; Sigma-Aldrich) glass
coverslips in a 24 well plate at a density of 3 × 104 cells/well
or 10 cm petri dish at a density of 2.5–3 × 106 cells/dish. Cells
were grown in NeurobasalTM medium (Life Technologies),
complemented with B27 supplement (Life Technologies),
0.5 mM L-Glutamine (Life Technologies) and 100 U/ml
penicillin/streptomycin (Life Technologies) and maintained at
37◦C in 5% CO2.

Cloning of Myc-DKK Tagged S100B and
Mutagenesis of Zinc Binding Amino Acids
The pLenti S100B vector (Origene) was used for the mutagenesis
of S100B zinc binding sites and carries a C-terminal Myc-DKK
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tag. Mutations were introduced at p.His15Ser, p.His25Ser,
p.Cys84Ser and p.His85Ser through site directed mutagenesis
(Agilent Technologies, QuikChange II XL Site-Directed
Mutagenesis Kit) and this Myc-DKK tagged construct is
thereafter referred to as S100B mut. Afterwards the Myc-DKK
tagged S100B constructs (WT and zinc mutant) were cloned into
a pGEMEX expression vector for protein production in E. coli.

Recombinant Expression and Purification
of S100B
Human wt S100B was expressed in E. coli and purified
to homogeneity in dimeric and tetrameric forms using
previously established protocols (Botelho et al., 2012a,b)
either in non-tagged and Myc-DKK tagged versions. The Zn
S100B mutant was purified with a strong anion exchange
chromatography (HiPrep Q FF 16/10, GE Healthcare), followed
by a gel filtration (HiLoad 16/600 Superdex 75, GE Healthcare)
and finalized with other strong anion exchange chromatography
(HiPrep Q FF 16/10, GE Healthcare). Demetallated forms of
wt S100B and S100B mutant were generated by incubating the
protein with 0.5 mM EDTA and 300 fold excess of DTT for
1 h at 37◦C and followed by elution in a gel filtration (24 mL
S75 Tricorn, GE Healthcare).

Circular Dichroism (CD) Spectrometry
Circular Dichroism (CD) measurements were performed on
a Jasco J-1500 spectropolarimeter equipped with a Peltier-
controlled thermostated cell support. Far-UV CD spectra
(200–260 nm) and thermal denaturation curves (at 1◦C/min
from 20 to 90◦C) were recorded for Myc-DDK-tagged wt S100B
and S100B mut at 0.1 mg/ml in 50 mM mTRIS pH 7.4.

Zinc Binding 4-(2-pyridylazo)resorcinol
(PAR) Assay
Binding of zinc to either Myc-DKK tagged variants of wt
S100B and S100B mutant was assessed spectrophotometrically
using the 4-(2-pyridylazo)resorcinol (PAR) assay (Hunt
et al., 1985; Säbel et al., 2009). The absorbance for the
ZnHxPAR2 complex was measured at 494 nm on a
SpectrostarNano (BMG Labtech) with quartz cuvettes of
1 cm path length and complex concentration estimated
using ε = 71500 M−1.cm−1 (Kocyła et al., 2015). Zn-S100B
protein interaction was carried out as described in Bajor
et al. (2016). In brief, 10 µM Myc-DDK-S100B wt or Myc-
DDK-S100B mutant were titrated with 0–40 µM ZnSO4 in
presence of 50 µM PAR. Control titrations were performed
with 50 µM PAR in 50 mM TRIS pH 7.4. The absorption
spectra were collected from 200 nm to 600 nm at 25◦C.
The relationship between the concentration of the zinc ion
associated with the complex and the absorbance at 494 nm
allow qualitative estimation of zinc affinity of S100B protein
variants (Bajor et al., 2016). Relative zinc binding is given by
1+[(Abs(ZnHxPAR2•S100B) − Abs(ZnHxPAR2))/Abs(ZnHx
PAR2)], where Abs(ZnHxPAR2•S100B) is the PAR absorbance
at 494 nm in the presence of S100B.

ANS Fluorescence Kinetics
Binding of calcium to S100B variants was assessed
spectrofluorimetrically using real time 8-Anilino-1-
naphthalenesulfonic acid (ANS) fluorescence emission at
495 nm on a Jasco FP-8200 spectrofluorimeter equipped with a
Peltier-controlled thermostated cell support set for 25◦C, upon
excitation at 370 nm. Calcium binding assays were performed
with 5 µM of S100B variants in 50 mM TRIS pH 7.4, then adding
10-fold of CaCl2 after 10 min. Two-fold of ANS was added at the
beginning of the assay.

Lentivirus Production
Lentivirus was produced by transfecting pLenti S100B and
packaging plasmids into HEK293T cells (grown in DMEM + 10%
fetal bovine serum) using Lenti-vpak Packaging Kit (Origene). In
brief, transfections were conducted 2.5 × 106 overnight plated
HEK293T cells using 5 µg of pLenti S100B and 6 µg packaging
plasmids DNA per 10 cm plate. Culture medium was changed
after 18 h. After 2 and 3 days of transfection, the first and the
second batch virus-containing medium was collected, combined,
passed through a 0.45 µm filter to remove cell debris, and frozen
at −80◦C. The viral titer was determined by Lenti X qRT-PCR
Titration Kit (clontech).

Treatment of Hippocampal Cells
Treatment with S100B
For the toxicity profile of S100B dimer and S100B tetramer
primary neurons were treated with either dimer or tetramer in
concentration range between 100 nM and 30 µM at DIV10 for
24 h or with 30 µM for 24, 48 and 72 h. Saturation assays were
performed with 30 µM of S100B dimer or tetramer and 60 µM of
different metal ions including ZnCl2 and CaCl2, DIV10 for 24 h.
S100B dimer and tetramer were incubated with metal ions 1 h
on ice previous to neuronal exposure. For S100B uptake study
neurons were incubated on ice or at 37◦C for 5 min previous to
10 min exposure to 60 µM S100B dimer or tetramer.

Glutamate Excitotoxicity Assay
Primary hippocampal neurons were treated with 10 µM ZnCl2
for 24 h previous to excitotoxicity assay to ensure presynaptic
vesicle loading with Zn. To induce glutamate-dependent
excitotoxicity, cell culture medium of DIV14 hippocampal
neurons was replaced by fresh medium and neurons were
exposed to 10 µM L-Glutamic acid or 10 µM L-Glutamic
acid in combination with 30 µM S100B wildtype or
mutant protein at 37◦C for 1 h. Alternatively, 30 µM
S100B wildtype or mutant protein were pre-incubated
with 60 µM ZnCl2 on ice for 1 h previous to neuronal
exposure to saturate zinc binding sites. Afterwards
medium was removed and cells were rinsed twice with
HBSS.

Immunocytochemistry
For immunofluorescence, the primary cultures were fixed
with 4% paraformaldehyde (PFA)/4% sucrose/PBS at 4◦C for
20 min and processed for immunohistochemistry. After washing
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2 × 5 min with 1× PBS with 0.2% Triton X-100 at RT, blocking
was performed with 10% FBS/1× PBS at RT for 1 h, followed
by the primary antibody at RT for 2 h. After a 3 × 5 min
washing-step with 1× PBS, incubation with the second antibody
coupled to Alexa488, or Alexa568 followed at RT for 1 h. The cells
were washed again in 1× PBS for 10 min and counterstained with
DAPI for 5 min and washed with aqua bidest and mounted with
Vecta Mount.

Measurement of Trace Metal
Concentrations
For fluorescent Zn-staining and Ca-staining of cultured
neurons, growth medium was discarded and the cells were
washed with PBS. Coverslips were incubated with a solution
of 5 µM Zinpyr1 or 4 µM Fluo4AM, respectively, in PBS
for 1 h at RT. To validate zinc-binding capacity of mutated
S100B, infected primary neurons were incubated with
25 µM Zinquin ethyl ester (Sigma Aldrich) at RT for 1 h.
Afterwards, coverslips were rinsed with PBS and neurons
were fixed with 4% PFA/4% sucrose/PBS at 4◦C for 20 min,
counterstained with DAPI and finally mounted with Vecta
Mount.

Protein Biochemistry
Dot blot analysis was performed using a PVDF membrane
wetted with 100% methanol. The membrane was incubated
with transfer buffer for 2–3 min and protein lysate spotted
on and incubated overnight. Subsequently, the membrane was
washed 2× with TBST buffer 0.05% and blocked with TBS
containing 5% non-fat dry milk for 30 min at RT on a shaker,
followed by application of the primary antibody for 2 h at
RT on shaker. After washing four times for 5 min each with
TBST buffer 5%, incubation with secondary HRP antibodies was
performed for 1 h at RT. Immunoreactivity was visualized using
the SuperSignal detection system (Pierce, Upland, CA, USA)
and blots imaged using a MicroChemi Imaging System from
Biostep.

Statistics
Statistical analysis was performed using Microsoft Excel and
averages tested for significance using SPSS version 20. For
comparisons, analysis of variance (ANOVA, one way or Welch’s)
was performed followed by Bonferroni or Tukey post hoc
tests for within group comparisons. For comparisons of two
independent groups, student’s t-tests was used. Data are shown
as mean ± SEM. Significance levels were set at p < 0.05
(<0.05∗; <0.01∗∗; <0.001∗∗∗).

Fluorescent Measurement
Acquisition and evaluation of all images were performed under
‘‘blinded’’ conditions. Fluorescence images were obtained using
an upright Axioscope microscope equipped with a Zeiss CCD
camera (16 bits; 1280 × 1024 ppi) using Axiovision software
(Zeiss) and ImageJ 1.51j.

RESULTS

S100B at Increased Extracellular Levels Is
Not Toxic, Persists at High Levels and Is
Taken up into Neurons
S100B proteins have intra and extracellular roles and are found in
a dynamic range of concentrations and oligomeric states (Sorci
et al., 1998; Donato, 2001; Donato et al., 2009; Leclerc et al.,
2009). While S100B occurs in cells mostly as homodimers, the
presence of higher-order S100B multimers (tetramers, hexamers
and octamers) has been clearly demonstrated in human brain
extracts (Ostendorp et al., 2007). In particular, upon neuronal
injury, S100 proteins are secreted actively from astrocytes and
oligodendrocytes accumulating extracellularly at micromolar
levels, mostly as oligomers (Donato et al., 2013). Thus, to
determine effects modeling the full scope of extracellular S100B
biology, we exposed primary rat hippocampal cell cultures to
both S100B dimers and tetramers.

In a first set of experiments, we treated neuronal/glial cell
co-cultures from rat with highly pure recombinant S100B for
24 h (Figure 1A; Supplementary Figures S1A–D). No significant
impairments in cell health assessed by quantitative analysis of
apoptotic and necrotic cells vs. healthy cells were observed after
treatment at a physiological S100B concentration of up to 30
µM dimeric or 30 µM tetrameric S100B (Figure 1A), even
if cells were exposed to S100B for up to 96 h (Figure 1B;
Supplementary Figure S1E). Neuron morphology remained
unaltered even after longer exposure to S100B dimers and
tetramers, confirming that high levels of S100B do not affect
neuronal health. Native gel and SDS-PAGE, as well as size-
exclusion chromatography analyses showed that the 4ary
structure of added S100B remained stable when added to cultures
(data not shown).

Dot-blot experiments show that after application of
exogenous S100B dimer and tetramer, a high amount of
protein remains extracellular (Figure 1C). Noteworthy, S100B
proteins supplied to the culture were also taken up into
neurons (Figures 1C–E). Although glial cells have a much
higher S100 signal intensity and astrocytes are the cell type
expressing the majority of S100B in vivo, under control
conditions, also neurons show S100B signals in vitro (Figure 1E).
After application of S100B, S100B positive signals appear
in vesicle-like structures in astrocytes as well as neurons
(Figures 1D,E). These signals co-localize with Caveolin, but also
Clathrin (data not shown). The concentration of S100B in cell
lysates from hippocampal neurons increases after application
of exogenous S100B dimer or tetramer (Figure 1C) and the
level of intracellular immunoreactive S100B signals increases
significantly in neurons (Figures 1D,E). This increase is
abolished by blocking endocytotic mechanisms by shifting cells
to 4◦C (Figure 1E). S100B uptake has previously been described
in astrocytes, differentiated SH-SY5Y cells and Helix pomatia
neurons (Kubista et al., 1999; Yu and Fraser, 2001; Lasič et al.,
2016).

From these results, we conclude that extracellular added
S100B is not toxic to neurons and persists at high levels in
cultures, in agreement with its known extra- and intracellular
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FIGURE 1 | Exogenous application of S100B is non-toxic and leads to active uptake of the protein into cells. Treatment of hippocampal cultures with 30 µM dimeric
and with 30 µM tetrameric S100B for 24 h at DIV10 was performed. (A) No significant differences in cell health were detected after application of 30 µM S100B
dimer and tetramer. Apoptotic cells were identified using Annexin V—FITC (green signals), necrotic cells (red signals) by ethidium homodimer III and the total number
of cells (blue signals) was assessed using Hoechst 33342 labeling all nuclei. A total of six optic fields of view per condition were analyzed. Ethanol treatment was
used as positive control (Welch’s ANOVA, F = 312.579; p < 0.001; Post hoc analysis: control healthy cells vs. dimer healthy cells, p = 1.000; control healthy cells vs.
tetramer healthy cells, p = 0.965; control healthy cells, dimer healthy cells, and tetramer healthy cells vs. 70% EtOH healthy cells, p < 0.001). (B) One time treatment
of hippocampal neurons for 24 h, 48 h and 72 h also reveals no significant influence of S100B on cell health (one way ANOVA, F = 1.824; p = 0.085), assessed by
DAPI staining of nuclei and visualization of dendrites by MAP2. Right panel: exemplary images showing MAP2 staining. (C) Dot-blot experiments show that after
application of exogenous S100B dimer and tetramer, a high amount of proteins remains extracellular (upper panel). Weaker signals observed when cell lysates are
used indicate that some of the protein is taken up into cells (middle panel). Medium and lysate of untreated cells were used as control. To confirm specificity of the
antibody reaction, purified Amyloid-β, S100B dimer and tetramer were used (lower panel). (D,E) Hippocampal neurons show S100B immunoreactive puncta within
their dendrites and cell soma. (D) Confocal fluorescent microscopy using z-stacks confirms the presence of intracellular exogenously applied S100B protein in
vesicular like structures. (E) The S100B signal of neuronal soma increases significantly after application of exogenous S100B. This increase is abolished by
interference with endocytotic processes by temperature reduction (Welch’s ANOVA, F = 31.823; p < 0.001; Post hoc analysis: control 37◦C vs. S100B dimer 37◦C,
p = 0.061; S100B dimer 37◦C vs. S100B dimer 4◦C, p = 0.021; control 37◦C vs. S100B tetramer 37◦C, p = 0.004; S100B tetramer 37◦C vs. S100B tetramer 4◦C,
p = 0.043). For quantification 10 cells per optic field and 5 optic fields per conditions were analyzed. Exemplary images are shown in the right panel. Neurons were
visualzed using anti-MAP2 staining (red). Cell nuclei were labeled with DAPI (blue), and S100B (green) was labeled using anti-S100B antibody. MAP2 negative and
S100B positive cells are astrocytes present in the cultures.
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activities. Although in untreated control cells no S100B positive
vesicle-like structures are visible in neurons, it cannot be
excluded that even untreated neurons take up S100B in some
situations.

S100B Expressed in Neurons Leads to
Sequestration and Intracellular
Redistribution of Zinc
Considering that S100B is a calcium and zinc binding protein,
we then tested the hypothesis that high extracellular levels of this
protein influence the homeostasis of these neuronal trace metals.
Thus, in the next set of experiments, we investigated whether
elevated levels of S100B are sufficient to induce alterations in
cellular zinc contents. To that end, we generated a mutant
S100B protein variant (S100B mut), with Serine replacements
of the amino acids involved in putative zinc binding (His15,
His25, Cys84 and His85) (Wilder et al., 2003; Ostendorp et al.,
2011), which are mostly located on S100B helices I and IV
(Figure 2A). We used far-UV CD analysis to confirm that the
Myc-DKK tagged S100B wt and S100B mut are expressed as
folded proteins, retaining the S100-fold canonical α-topology
(Figure 2B). Slightly decreased secondary structure content is
observed in S100B mut, which is compatible with some structural
loss caused by the four mutated residues in the protein, which
nevertheless do not compromise the conformational stability,
as both proteins exhibited comparable thermal denaturation
profiles (data not shown). Impaired zinc binding by S100B mut,
which was retained by the Myc-DDK tagged S100B wt was
confirmed using the competition assay with the chromogenic
Zn2+ ion chelator 4-(2-pyridylazo)resorcinol (PAR; Figure 2C).

We then expressed these Myc-DDK-tagged mut and wt S100B
in neuronal cultures by Lenti-virus infection to analyze effects on
cellular zinc pools, using uninfected cells as control. Interestingly,
zinc ions and Zinquin signals were detected co-localizing
with S100B, labeled by anti-DDK staining (Figures 2D–F).
Zinquin ethyl ester is a cell-permeable, fluorescein-based
probe that selectively detects free and weakly bound zinc.
Hippocampal cell cultures expressing the wt protein show
significantly increased Zinquin signals at DDK-S100B wt
positive puncta compared to Zinquin signals within uninfected
cells, further confirming the ability of S100B to sequester
zinc ions. Hippocampal cells expressing the mutant protein
show significantly lower Zinquin signals at DDK-S100B mut
positive sites compared to DDK-S100B WT positive puncta,
supporting the results of impaired zinc binding to mutated
S100B (Figures 2D,E). Remaining zinc signals at DDK-S100B
mut positive sites may be produced by recruitment of wildtype
S100B expressed by cells in culture into complexes with
mutated S100B or endocytotic vesicles. Exogenous addition of
zinc by treatment with ZnCl2 significantly increased Zinquin
fluorescence in control cells (Figure 2F insert), but did
not lead to further enhancement of signals associated with
wt S100B (Figure 2E), indicating that under physiological
conditions, S100B is mostly zinc-bound. Again, significantly
lower Zinquin signals were detected co-localizing with mutated
S100B (Figure 2F).

Next, to investigate the consequences of the presence
of increased amounts of S100B on global intracellular zinc
and calcium levels, we again exposed primary hippocampal
neuronal/glial cell co-cultures from rat to 30 µM dimeric or
30 µM tetrameric S100B for 24 h. We then assessed the
intracellular zinc concentration by the analysis of Zinpyr1 signal
intensity levels (Figure 3). Zinpyr1 is another cell-permeable,
fluorescent probe that selectively detects free and weakly bound
zinc, and that was used here because of its emission wavelength
within the green spectrum. We found a significant decrease in
intracellular zinc levels in cells exposed to both S100B dimer
and tetramer (Figures 3A,B). Similar to the results obtained with
Lenti virus based S100B expression, Zinpyr1 signals co-localize
with S100B signals after exogenous application of the protein
(Figure 3C).

Pre-incubation of S100B dimers or tetramers with zinc prior
to application did not result in alterations in intracellular
zinc levels. As referred above, application of dimer (as trend)
and tetramer (significantly) reduced intracellular Zinpyr1 signal
intensity. However, no such decrease was seen after application
of the dimer or tetramer saturated with zinc (Figure 3D).
Similarly, application of S100B mutant unable to bind zinc does
not significantly reduce intracellular Zinpyr1 signal intensity
(Figure 3E). Therefore, we conclude that S100B, either expressed
in cells or added extracellular, effectively scavenges zinc ions
through specific binding resulting in a redistribution of the
intracellular zinc pool.

S100B Mediates the Cross Talk between
Calcium and Zinc Homeostasis: Increased
Neuronal S100B Only Significantly Affects
Calcium Levels upon Zinc Scavenging
in Vitro
S100B protein binds both zinc and calcium ions and it is
known that binding of zinc facilitates calcium binding. Thus,
we next investigated whether not only zinc but also calcium
levels are affected by the presence of increased levels of
S100B. To that end, we applied S100B tetramer to primary
hippocampal neurons. Application of S100B again significantly
decreased the intracellular zinc concentration measured by
Zinpyr1 fluorescence intensity. As seen before, pre-incubation of
S100B with 60 µM zinc leads to a significantly less decrease of
intracellular zinc levels after treatment with S100B (Figure 4A).
Treatment of neuronal cultures with calcium alone slightly
increases the intracellular zinc concentration (Figure 4A),
possibly due to heightened pre- and post-synaptic zinc release
following spontaneous neuronal activity (Grabrucker et al.,
2014). Pre-incubation of S100B with 60 µM calcium leads to
no significant decrease of intracellular zinc levels after S100B
treatment. However, the zinc scavenging effect of S100B may be
masked by unbound calcium present in the medium that slightly
elevates zinc levels.

Calcium levels in turn remain unchanged after exposure
of neurons to S100B tetramer (Figure 4B). However, binding
of zinc increases the affinity of the S100B calcium sites.
Thus, saturation of the zinc-binding site before application of
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FIGURE 2 | S100B sequesters zinc ions in hippocampal cells in vitro. (A) Illustration of the structure of S100B (PDB code 3d0y) showing the α-fold and zinc (purple
sphere) and calcium (green spheres) binding sites; the enlargement represents the structural positions of residues involved in zinc interactions that were mutated to
serines in the S100B mut variant. (B) Far-UV Circular Dichroism (CD) spectra of purified Myc-DDK-tagged wt S100B and mutant S100B at 0.1 mg.mL−1 in 50 mM
TRIS-HCl pH 7.4, with typical α-helix minima observable at 208 and 222 nm. (C) Relative zinc binding to Myc-DDK tagged wt S100B (dark gray squares) is
abolished in the Myc-DDK tagged S100B mutant (light gray squares), as inferred from PAR titration assays of S100B proteins (10 µM) with increasing ZnSO4 (at up
to 40 µM) concentration. (D) Hippocampal neurons were infected at DIV1 with Lenti virus mediating expression of DDK-S100B wt, or DDK-S100B mut. The mean
signal intensity of Zinquin fluorescence normalized to the co-localizing S100B fluorescence intensity is shown at DIV14. S100B is visualized by its anti-DDK tag. Cells
expressing the mutant protein show significantly lower Zinquin signals at DDK-S100B mut positive sites compared to DDK-S100B WT positive puncta (one-way
ANOVA, F = 19.347; p < 0.001; Post hoc analysis: control vs. S100B wt, p < 0.001; control vs. S100B mut, p = 0.004; S100B wt vs. S100B mut, p = 0.032).
(E) Exemplary images showing infected cells. Zinquin signals are shown color-coded. Fluorescence intensities are assigned RGB colors. In S100B wt expressing
neurons, a co-localizing Zinquin signal can be seen for S100B (upper panel). In cells expressing the mutated S100B, the fluorescence intensity of the Zinquin signal is
significantly reduced (lower panel). S100B was visualized by anti-DDK antibody labeling (shown in magenta). (F) Addition of ZnCl2 has no effect on Zinquin signals
associated with wild type S100B, and also does not lead to an increase in Zinquin signal associated with mutated S100B. Infected hippocampal cultures were
treated with 60 µM ZnCl2 for 1 h. Addition of zinc significantly increases Zinquin fluorescence in control cells (insert; t-test, p < 0.0001). No further increase in
Zinquin signal intensity was seen for wt S100B or mut S100B that showed significantly lower co-localizing Zinquin signal intensity (n = 10 cells; one-way ANOVA,
F = 3.988; p = 0.03; Post hoc analysis: control vs. S100B mut, p = 0.024).

S100B leads to a significant decrease in intracellular calcium
compared to controls (Figure 4B). Visualization of S100B
after application reveals extracellular but also intracellular
S100B. Thus, the observed alterations in intracellular zinc
and calcium levels might be caused by both extracellular
S100B and intracellular S100B (Figure 4C). Application of

mutated non-zinc binding S100B does not result in decreased
intracellular zinc levels as seen before, and saturation of the
mutated S100B protein does increase intracellular zinc levels
to a similar amount as application of zinc alone to untreated
cells. Thus, the increase is likely caused by unbound zinc in the
peptide-containing medium. Again, application of calcium alone
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FIGURE 3 | Increased levels of S100B sequester zinc ions. (A) Treatment of hippocampal cultures with 30 µM dimeric and with 30 µM tetrameric S100B for 24 h at
DIV10 significantly reduces the intracellular Zn2+ concentration assessed by the analysis of Zinpyr1 signal intensity levels from 20 cells per condition for both
application of the dimer and tetramer (Welch’s ANOVA, F = 8.084; p = 0.001; Post hoc analysis: control vs. dimer, p = 0.008; control vs. tetramer, p = 0.015).
(B) Exemplary images showing signal intensities of Zinpyr1 in color—coded manner. Note the occurrence of Zn2+ containing clusters within neurons in cells treated
with dimer and tetramer (full arrow) and extracellular Zn2+ positive accumulations (open arrow). (C) S100B signals co-localize with Zinpyr1 signals (full arrow)
associated with Zn2+ after application of 30 µM dimeric or 30 µM tetrameric S100B for 24 h at DIV10. (D) Pre-incubation of S100B with 60 µM zinc leads to partial
saturation of S100B zinc binding before application of 30 µM dimeric and with 30 µM tetrameric S100B for 24 h at DIV10, and thus to a significantly less decrease of
intracellular zinc levels after treatment with S100B (Dimer: one-way ANOVA, F(2,45) = 2.611; p = 0.085; Tetramer: F(2,45) = 5.173; p = 0.01; Post hoc analysis: control
vs. tetramer, p = 0.0045; tetramer vs. zinc saturated tetramer, p = 0.036; n = 16 cells). (E) Treatment of hippocampal cultures with 30 µM Myc-DDK-S100B wt, or
Myc-DDK-S100B mut for 24 h at DIV10 leads to a significant decrease in intracellular Zinpyr1 fluorescence for wt S100B but not for the mutant S100B (one-way
ANOVA, F(2,77) = 8.86; p < 0.0001; Post hoc analysis: control vs. S100B, p = 0.0037; control vs. S100Bmut, p = 0.2469; S100B vs. S100Bmut, p < 0.0001).

increased intracellular zinc levels, as does application of calcium
saturated S100B, most likely due to the presence of unbound
calcium (Figure 4D).

The zinc-dependency of the effect of S100B on calcium levels
was further confirmed using the non-zinc binding S100B mutant.
Application of mutated non-zinc binding S100B pre-incubated
with zinc does not result in changes in intracellular calcium
levels as observed for the wt S100B (Figure 4E), confirming
that enhanced calcium binding by association of zinc with
S100B is necessary to significantly affect intracellular calcium
levels. Interestingly, the zinc-binding mutant of S100B has
impaired calcium binding properties, which was evident from
the purification, as binding of the calcium loaded S100B-mut
to the phenyl sepharose-column was substantially diminished,
indicating that the exposure of hydrophobic patches that takes

place upon calcium binding is decreased. Calcium titration
monitoring Anilinonaphthalene-l-sulfonate (ANS), a dye that
binds to hydrophobic regions on the protein surface that in
the case of S100B should be exposed after calcium binding,
shows that the wt S100B binds calcium. However, calcium
binding is almost absent in S100B with mutated zinc-binding site
(Figure 4F). Calcium alone significantly increased intracellular
calcium levels, as does application of calcium saturated S100B
(Figure 4E).

Taken together, these results show that intracellular calcium
levels of neurons are reacting to the local concentration of the
S100B protein, and that alterations in S100B concentration alter
the availability of calcium for neurons. Our results indicate
that calcium-binding by S100B in neurons is significantly
enhanced by the presence of high zinc concentrations which
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FIGURE 4 | Only S100B saturated with zinc alters calcium levels in neurons in vitro. Hippocampal cultures were treated with 30 µM tetrameric S100B for 24 h at
DIV10. (A) Application of S100B significantly decreases the intracellular zinc concentration measured by Zinpyr1 fluorescence intensity (n = 20 cells). Pre-incubation
of S100B with 60 µM zinc leads to a significantly less decrease of intracellular zinc levels after treatment with S100B. Pre-incubation with 60 µM calcium also leads
to significantly less reduction of intracellular zinc levels after S100B treatment (one-way ANOVA, F = 11.168; p < 0.001; Zn: Post hoc analysis: control vs. tetramer,
p = 0.05; control vs. control + 60 µM Zn2+, p = 0.018; control vs. tetramer saturated with 60 µM Zn2+, p = 1.00; control + 60 µM Zn2+, vs. tetramer saturated with
60 µM Zn2+, p < 0.001; Ca: control + 60 µM Ca2+ vs. tetramer + 60 µM Ca2+, p = 0.573; tetramer vs. tetramer + 60 µM Ca2+, p = 0.006). (B) Application of
S100B does not alter the intracellular calcium concentration measured by Fluo4-AM fluorescence intensity (n = 15 cells). Saturation of the zinc-binding site of S100B
with zinc leads to a significant decrease in intracellular calcium as zinc binding increases the affinity for calcium binding in S100B (one-way ANOVA, F = 29.744;
p < 0.001; Post hoc analysis: control vs. tetramer, p = 1.00; control vs. tetramer saturated with 60 µM Zn2+, p < 0.001, control + 60 µM Zn2+ vs. tetramer
saturated with 60 µM Zn2+, p < 0.001; tetramer vs. tetramer saturated with 60 µM Zn2+, p < 0.001). (C) After treatment, S100B was visualized using ICC and cells
counterstained with MAP2, and cell nuclei with DAPI. The staining reveals extracellular but also intracellular S100B in treated cultures associated with both, neurons
and glial cells. (D) Hippocampal cultures were treated with 30 µM mutated dimeric S100B for 24 h at DIV10. Application of mutated S100B does not decrease the
intracellular zinc concentration measured by Zinpyr1 fluorescence intensity (n = 20 cells). Pre-incubation of mutated S100B with 60 µM zinc leads to a significant
increase of intracellular zinc levels after treatment, similar to the one seen after treatment of cultures with 60 µM zinc alone for 24 h. Pre-incubation with 60 µM
calcium also leads to an increase of intracellular zinc levels (Welch’s ANOVA, F = 50.419; p < 0.001; Post hoc analysis: control vs. control + 60 µM Zn2+, p < 0.001;
control vs. mut S100B saturated with 60 µM Zn2+, p < 0.001; control vs. control + 60 µM Ca2+, p = 0.011). (E) Hippocampal cultures were treated with 30 µM
mutated dimeric S100B for 24 h at DIV10. Application of mutated S100B does not decrease the intracellular calcium concentration measured by Fluo4-AM
fluorescence intensity (n = 20 cells). Pre-incubation of mutated S100B with 60 µM zinc does not lead to a decrease in intracellular calcium levels as after treatment
seen for wt S100B. Pre-incubation with 60 µM calcium leads to a significant increase in intracellular calcium to a similar extent as incubation of cultures with calcium
alone (Welch’s ANOVA, F = 9.475; p < 0.001; Post hoc analysis: control vs. mut S100B, p = 0.066; control + 60 µM Zn2+ vs. mut S100B saturated with 60 µM
Zn2+, p = 0.64; control vs. control + 60 µM Ca2+, p < 0.001; control vs. mut S100B saturated with 60 µM Ca2+, p < 0.001). (F) Kinetics of ANS fluorescence upon
addition of calcium to Myc-DDK-S100B wt and Myc-DDK-S100B mut shows that mutation of the zinc-binding site in S100B impacts the ability of S100B to bind
calcium.

saturate the zinc-binding site of S100B. This crosstalk potentially
affects multiple downstream synaptic processes but also patho-
physiological events such as excitotoxicity. Intriguingly, S100B
concentrations have been reported high under conditions
facilitating excitotoxicity (Mazzone and Nistri, 2014).

Zinc Binding to S100B Mediates
Anti-excitotoxic Activity Effects
To investigate a possible new role of S100B as a neuro-
protective mediator acting on excitotoxicity via its effects on
calcium and zinc homeostasis, we induced excitotoxicity in
hippocampal neurons in vitro using bath application of glutamate
(Figure 5). We evaluated neuronal health by assessing the

number of neurons showing fragmentation and beading of
dendrites. Rapid, reversible changes in dendritic structure have
been reported before under excitotoxic conditions (Park et al.,
1996; Ahlgren et al., 2014). Consistent with findings of previous
studies, beading of dendrites as early sign of cellular toxicity
is significantly increased in control cultures after induction of
excitotoxicity. Interestingly, in presence of S100B, excitotoxic
effects are abolished. However, our data shows that this is only
the case for S100B protein that retains zinc-binding capabilities,
as non-zinc binding S100B mutant affords no neuroprotective
action (Figures 5A,B). Reversibly, S100B saturated with zinc
prior to exposure to glutamate is able to ameliorate more
significantly the effects of excitotoxicity (Figure 5C).
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FIGURE 5 | Zinc binding to S100B plays a physiological role in anti-excitotoxic activity. Hippocampal cultures were treated with 30 µM dimeric S100B or mutant
S100B for 1 h at DIV14 with and without induction of excitotoxic effects by addition of 10 µM glutamic acid to the medium. (A) Neurons were visualized by DAPI
(cyan) and anti-MAP2 (green) labeling. Fragmentation of dendrites as early sign of cellular toxicity is visible in control cultures after application of glutamic acid and
after application of glutamic acid in presence of mutated S100B (full arrows). Co-application of wildtype S100B and glutamic acid does not induce significant
dendritic fragmentation (open arrow). (B) The average number of healthy neurons assessed by DAPI signal and fragmentations of dendrites is significantly lower in
control cultures treated with glutamic acid as a result of excitotoxicity. Co-application of S100B abolishes excitotoxic effects. Co-application of the zinc binding
mutant S100B does not ameliorate excitotoxicity (one way ANOVA, F = 3.9226; p = 0.0042; Post hoc analysis: control vs. control + glut, p = 0.0329652; mut S100B
vs. mut S100B + glut, p = 0.1169596; n = 10 optic fields of view per condition). (C) Hippocampal cultures were treated with 30 µM zinc-saturated S100B with and
without induction of excitotoxic effects by addition of 10 µM glutamic acid to the medium at DIV14. The average number of healthy neurons assessed by DAPI signal
and fragmentations of dendrites is not significantly different in cultures exposed to zinc-saturated S100B after induction of excitotoxicity (one way ANOVA,
F = 1.2431; p = 0.3045; n = 10 optic fields of view per condition).

Taken together, we conclude that the zinc binding capacity of
S100B results in a physiological anti-excitotoxic function of the
protein.

DISCUSSION

Synaptic biochemistry and function is tightly coupled to protein
and metal ion homeostasis in the brain, where the levels
of synaptic trace metals such as zinc, copper and iron, are
regulated for example by changing the expression levels of
metal binding proteins. This crosstalk is particularly evident in
pathophysiological processes such as those occurring in protein
deposition neurodegenerative diseases, which are also known
to involve alterations in metal ion levels (Leal et al., 2013;

Barnham and Bush, 2014; Cristóvão et al., 2016). For AD it
has been shown that the aggregating amyloid β peptide binds
zinc at physiological zinc levels, thus sequestering zinc ions and
affecting synapse function (Adlard et al., 2010; Grabrucker et al.,
2011).

In the brain, zinc is a potent neuromodulator. Upon
synaptic activity, zinc is co-released with glutamate at ‘‘zincergic’’
synapses and is able to bind and modify postsynaptic receptors.
Additionally, it may enter the postsynaptic compartment
through ion channels. In case of over-excitation of neurons, for
example resulting from seizures, stroke, or brain trauma, zinc
translocation and zinc neurotoxicity may be a key component
of excitotoxic effects (Frederickson et al., 1989, 2004). Both
physiological and pathological transsynaptic movement of zinc
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FIGURE 6 | Hypothetical model for zinc-dependent anti-excitotoxic activity of S100B. In conditions of over-excitation, zinc is released from synapses in high
amounts and calcium levels rise. Under these conditions, also S100B concentrations are found elevated. S100B may act as zinc buffering protein and upon zinc
binding, the affinity for calcium binding is increased. Calcium binding of S100B may lower excitotoxic effects and thus promote neuronal survival. Excitotoxic calcium
signaling was not altered in presence of S100B with mutated zinc binding sites and the effects on cell survival were abolished.
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may be modulated or sensed by extra- but also intra-cellular zinc
binding peptides in the brain.

Among these zinc-binding proteins are some of the
S100 family members, including S100B protein, which is very
abundant in the brain and which binds both calcium and zinc.
Genetic knockout of S100B results in viable and fertile mice that
develop normally (Nishiyama et al., 2002a,b; Kim et al., 2011;
Bluhm et al., 2015). However, studies revealed a role of S100B in
hippocampal synaptic plasticity represented by its involvement
in hippocampal-dependent learning and memory processes
(Gerlai et al., 1995; Nishiyama et al., 2002a). Nevertheless, more
than S100B depletion, elevated levels of S100B may occur under
physiological and pathological conditions within the brain and
have been implicated in several neurological disorders. The levels
of S100B may rise to high concentration (µM) under some
conditions and because of this, the concentration of S100B has
been proposed as biomarker for pathological conditions of the
brain, including perinatal brain distress, acute brain injury, brain
tumors, neuroinflammatory and neurodegenerative disorders,
and psychiatric disorders (Michetti et al., 2012).

However, so far, although some functions of S100B were
reported to be zinc dependent, its activity has not been
extensively linked to zinc homeostasis, although alterations in
zinc might explain some of the reported functions of S100B.

Here, we made use of a hippocampal cell culture system to
test the hypothesis that S100B plays a role in the regulation of
neuronal zinc. Our results show that elevated concentrations
of S100B indeed scavenge zinc ions in a magnitude that
affects intracellular zinc levels in vitro. Given that measuring
zinc has limited sensitivity using fluorophores, alterations in
zinc levels need to be quite high. Therefore, we used S100B
at high (µM), but non-toxic concentrations. Previously, µM
S100B was reported to be neurotoxic in vitro (Huttunen
et al., 2000; Vincent et al., 2007; Villarreal et al., 2011).
However, the experimental conditions varied (experiments were
not performed in rat primary hippocampal neurons, earlier
time-points than DIV10 and DIV14 were used, and the treatment
had different duration). In addition, studies with chick cerebral
cortex neurons have shown that S100B at a µM concentration
is beneficial for neuronal survival (Winningham-Major et al.,
1989), and µM levels of S100B may occur under physiological
conditions (Donato and Heizmann, 2010; Ostendorp et al.,
2011).

We could show sequestration of zinc into S100B dimers and
tetramers. It is likely that lower amounts of S100B will bind zinc
ions and influence trace metal homeostasis as well. The S100B
dimer coordinates at least two zinc ions (Wilder et al., 2003,
2005). Thus, the demand for zinc that usually occurs in low nM to
pM range as free zinc in the extracellular space (Frederickson and
Bush, 2001; Frederickson et al., 2006) as a result of zinc-buffering
by proteins and ligands, and concentration in the range of pM
in the cytoplasm of neurons, can be considered very high in case
S100B reaches µM levels.

It is therefore likely, that S100B proteins are able to
outcompete other zinc binding proteins with lower affinity for
zinc. On the other hand, S100B may be able to lower elevated
levels of zinc occurring under the same pathological conditions

such as excitotoxic events, where S100B levels were reported
high.

We showed that the effects of S100B on zinc homeostasis are
direct effects resulting from zinc binding, as previous saturation
of S100B zinc sites did not elicit the same alterations in neuronal
zinc levels. In addition, we showed that extracellular S100B, at
least in part, is endocytosed by neuronal cells. Thus, alterations
in intracellular zinc may not only be caused by the generation
of a gradient through increased extracellular concentrations of
S100B, but also due to intracellular presence of the peptide.

Finally, we could confirm that some S100B functions are
indeed influenced by zinc binding and thus may be related to
zinc sensing roles. We established that neuro-protective effects of
S100B are zinc-dependent. Intriguingly, in conditions that favor
excitotoxicity, not only zinc release may be increased but also
S100B concentrations are often reported elevated. S100B may
thereby act as zinc buffering protein. It was shown that zinc
chelators are neuroprotectants in excitotoxicity (Frederickson
et al., 2004) and chelators may mimic a role of S100B in these
conditions. However, S100B may also be activated by zinc-
sensing. Interestingly, zinc-binding to S100B mediates the ability
of S100B to affect calcium levels. Mutation of the zinc-binding
site impairs calcium binding to S100B. Intracellular calcium
levels, and thereby possibly calcium signaling, were thus not
altered in presence of S100B with mutated zinc binding sites, but
intracellular calcium levels showed a decrease after application
of zinc-bound S100B. It was shown before that zinc binding
increases the affinity of S100B for calcium. In our experiments
we could show that high levels of S100B, if saturated with zinc,
may affect intracellular calcium homeostasis. Interestingly, it was
shown that alteration of zinc homeostasis may modify glutamate
excitotoxicity via crosstalk with calcium signaling (Takeda, 2010;
Figure 6).

The effects of extracellular S100B on neurons have been
reported to be mediated by RAGE so far and the activation
of downstream signaling pathways such as ERK and NF-κB
pathways. However, these pathways are also dependent on
the availability of free zinc. For example, altered activation of
ERK1/2 occurs under low zinc levels (Nuttall and Oteiza, 2012),
and zinc has been suggested to be an important regulator of
NF-κB (Kim et al., 2003). Thus, physiological responses to S100B
may involve a crosstalk between the different pathways and trace
metal homeostasis.

Based on our data, S100B knockout animals might be more
susceptible to glutamate excitotoxicity. To our knowledge, this
has not been investigated so far. However, it was shown
that S100B overexpressing mice have a reduced excitatory
postsynaptic response (Gerlai et al., 1995).

We conclude that while high concentrations of S100B dimers
and tetramers are not toxic per se, they are able to induce
changes in the levels of zinc. Abnormal accumulation of S100B
under physiological zinc levels may thus result in local zinc
deficiency. In AD, the presence of amyloid beta (Aβ) peptides
sustains chronic activation of primed microglia resulting in
increased levels of inflammatory factors. S100B proteins have
gained attention in the pathological processes involved in AD
(Wang et al., 2014), as altered levels of S100B have been shown
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to accelerate AD pathology (Mori et al., 2010). Depletion of zinc
might be a contributing factor. In contrast, in conditions favoring
zinc neurotoxicity, S100B acts neuro-protective by buffering zinc,
and zinc-bound S100B may modulate excitotoxicity by altering
calcium signaling.
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Bajor, M., Zaręba-Kozioł, M., Zhukova, L., Goryca, K., Poznański, J., and
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