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Abstract: Recent studies have shown that the mediator complex (MED) plays a vital role in tumorige-
nesis and development, but the role of MED16 (mediator complex subunit 16) in breast cancer (BC) is
not clear. Increasing evidence has shown that the mTOR pathway is important for tumour progression
and therapy. In this study, we demonstrated that the mTOR signalling pathway is regulated by
the expression level of MED16 in ER+ breast cancer. With the analysis of bioinformatics data and
clinical specimens, we revealed an elevated expression of MED16 in luminal subtype tumours. We
found that MED16 knockdown significantly inhibited cell proliferation and promoted G1 phase cell
cycle arrest in ER+ BC cell lines. Downregulation of MED16 markedly reduced the sensitivity of
ER+ BC cells to tamoxifen and increased the stemness and autophagy of ER+ BC cells. Bioinformatic
analysis of similar genes to MED16 were mainly enriched in autophagy, endocrine therapy and
mTOR signalling pathways, and the inhibition of mTOR-mediated autophagy restored sensitivity
to tamoxifen by MED16 downregulation in ER+ BC cells. These results suggest an important role
of MED16 in the regulation of tamoxifen sensitivity in ER+ BC cells, crosstalk between the mTOR
signalling pathway-induced autophagy, and together, with the exploration of tamoxifen resistance,
may indicate a new therapy option for endocrine therapy-resistant patients.

Keywords: MED16; breast cancer; oestrogen receptor-positive; mTOR signalling pathway; autophagy

1. Introduction

Breast cancer (BC) is the leading cause of cancer-related death in women. According
to GLOBOCAN 2020, the incidence and mortality rates of BC in women are 24.5% and
15.5%, respectively [1]. Early diagnosis and treatment of breast cancer is particularly
important. Breast cancer is highly heterogeneous, so more and more attention has been
paid to individualized treatment. It is very important to find new diagnostic markers and
molecular targets for breast cancer treatment. Extensive research has demonstrated that
the altered expression of signalling molecules can lead to breast cancer progression or
treatment failure [2,3].

The treatment of BC varies for different subtypes. Currently, the biological subtypes of
BC are classified on the basis of the expression of steroid receptors (oestrogen receptor (ER),
progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER-2)) by
immunohistochemistry (IHC) [4]. Approximately 70% of BCs express oestrogen receptor
α (ER), and ER-positive (ER+) tumours are predominantly of the luminal molecular sub-
type [5]. The first recommended therapy for ER+ BC is endocrine therapy [6]. Indications
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for endocrine therapy for breast cancer are estrogen receptor (ER) and/or progesterone
receptor positivity. The level and source of estrogen in the human body before and after
menopause is different, the choice of endocrine therapy drugs is also different, and the
prognosis and treatment options for early and late tumors are also different. Tamoxifen is
the first-line adjuvant therapy for premenopausal patients and the most commonly used
endocrine drug. Approximately 30 to 40% of BC patients receiving tamoxifen adjuvant
therapy still experience relapse or disease progression to a fatal advanced stage of metasta-
sis within 15 years of follow-up [7]. The exact mechanism that leads to tamoxifen resistance
during treatment with tamoxifen is still unclear. In recent years, there has been consider-
able evidence that autophagy-related factors, cell cycle modulators and a few transcription
factors play important roles in tamoxifen resistance [8,9].

MED16, mediator complex subunit 16, which encodes a protein that is one of the
constituents of the tail of the mediator complex (MED) [10], enables thyroid hormone recep-
tor binding activity and transcription coactivator activity, and contributes to the positive
regulation of transcription initiation from the RNA polymerase II promoter [11]. Previous
studies have shown that MED plays a role in the expression of ER-regulated genes [12,13].
It is also known that MED mediates organ development, cell differentiation, mutation and
alterations in the process of several diseases. Analysis of the mRNA expression of breast
cancer clinical sample data from GEO (Gene Expression Omnibus) found that most MED
subunits were differentially expressed in cancer and adjacent tissue. Therefore, we focused
on MED16, which was reported in a previous study to be expressed at lower levels in
thyroid cancer tissue than in adjacent normal tissue, and activated the TGFβ/SMAD sig-
nalling pathway [14]. However, whether the change in MED16 gene expression affects the
biological function and therapy response of BC remains unclear. Through this research we
indicated that MED16 overexpression activates the PI3K/AKT/mTOR signalling pathway
in ER+ BC, which might be explored as a potential guide for clinical therapy.

2. Materials and Methods
2.1. Patients and Samples

Paired breast clinical human specimens (cancer and paracancerous tissue) originated
from BC patients from the First Affiliated Hospital of Chongqing Medical University. All
patients were diagnosed with BC by pathological biopsy and underwent BC surgery at the
First Affiliated Hospital of Chongqing Medical University. The oestrogen receptor (ER) and
progesterone receptor (PR) status of the patients were determined according to the results
of IHC by the Clinical Diagnostic Pathology Centre of Chongqing Medical University.
The study was approved by the Ethics Committee of Chongqing Medical University. All
patients signed informed consent.

2.2. Bioinformatics Data Analysis

Data showing MED16 in BC tissues and normal tissues were downloaded from The
Cancer Genome Atlas Program (TCGA) (The Cancer Genome Atlas Program—National
Cancer Institute) and the Gene Expression Omnibus database (https://cancerge-nome.
nih.gov) (GEO42568). Data on MED16 expression in different subtypes of BC cells were
obtained from the TCGA database and analysed with R (version 4.0.3, Auckland, New
Zealand). Correlated genes of MED16 in BRCA were obtained from the UALCAN database
(Ualcan.path.uab.edu/analysis). Patients without corresponding clinical information in
the TCGA were excluded, and data for all remaining patients were analysed using the R
package rms.

2.3. Cell Culture

Human ER-positive BC cells (MCF7 and T47D) and triple-negative BC cells (BT-
549, MDA-MB-436, MDA-MB-231 and MDA-MB-468) were cultured in high-glucose
DMEM with pyruvate (Gibco, Thermo Fisher Scientific, Waltham, MA, USA), 10% foetal
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bovine serum (FBS) (ExCell Bio) and 1% penicillin/streptomycin (Thermo Fisher Scientific,
Waltham, MA, USA) at 5% CO2 and 37 ◦C in an incubator.

2.4. Plasmid Construction and shRNA and siRNA Transfection

All siRNA fragments were purchased from Tsingke Biological Technology. The primer
target sequences of si#1, sh#1 and si#2, sh#2 were GAACTGCCTGGCTGTTGAA, CTTTCT-
CAACACGCCTGACAA. pLKO.1 was linearized with Age1 and EcoR1, and inserted into
the shRNA fragment. The CRISPR guide sequences (KO#1 and KO#2 were GGCCAT-
CACCTGCCTGGAGT, GGCCATCACCTGCCTGGAGT) were inserted into lentiCRISPRV2.
To overexpress MED16, the MED16 CDS fragment was directly cloned into a lentiviral
vector, pCDH-CMV-MCS-EF1a-CopGFP-T2A-Puro (System biosciences#CD513B-1). The
forward primer was 5′-3′ CGTTTAGTGACCGTCATGCCACCATGTGTGATTTGCGGCGG,
and the reverse primer was 5′-3′ ATAGTCATTGGTCTTAAAGGTAGTCAGGGGTAGCT-
GAGGGGC. Plasmid DNA transfections were performed using Lipofectamine 3000 (Thermo
Fisher Scientific, Waltham, MA, USA) following standard protocols in accordance with the
manufacturer’s guidelines.

2.5. Cell Proliferation and Drug Sensitivity Assay

Cells were plated in 96-well plates; when monitoring proliferation, approximately
3000 cells/100 µL per well were plated in a 96-well plate. Cell viability was measured with
Cell Counting Kit-8 (CCK-8) reagent (Beyotime, Shanghai, China). After incubation for 2 h,
the absorbance of the cells was measured at 450 nm. For the drug sensitivity experiment,
after 5000 cells were seeded per well, they were incubated for 24 h and then treated with
4-OH tamoxifen for 72 h at different concentrations (0, 3, 6, 9, 12, 15 µM). Cell viability was
measured as described before.

2.6. Colony Formation Assay

MCF7 and T47D ER+ BC cells (~800 cells/well) were seeded in 6-well plates. After
2 weeks of culturing, the cells were fixed with 4% paraformaldehyde for 15 min and then
stained with crystal violet for 20 min at room temperature.

2.7. Immunohistochemistry (IHC) Analysis

The collected human tissue was fixed with a 4% formaldehyde buffer. The embedded
tissue was then sliced into 4 µm thick slices. Tissue sections were incubated at 60 ◦C for 2 h
prior to dewaxing and autoclaving at 115 ◦C for 3 min for antigen repair in citric acid buffer
(pH 6.0), and endogenous peroxidase activity was quenched with 0.3% H2O2 solution for
15 min. Then, the slices were nonspecifically bound to normal goat serum blocking solution
for 45 min and incubated with specific primary antibodies at 4 ◦C (dilution 1:100) overnight.
Subsequently, the slices were treated with goat anti-rabbit secondary antibody for 30 min at
room temperature. Protein expression was visualized using 3,3′-diaminobenzidine (DAB).
Images were captured using a Leica microscope (Leica, Germany).

2.8. RNA Isolation, Reverse-Transcription Reaction and Quantitative Real-Time PCR (qPCR)

Total RNA was extracted from cultured cells with the Total RNA Extraction Kit (Tian-
gen, Beijing, China), and reverse transcription was performed with a 4xRT mix (MedChem-
Express, Shanghai, China). Quantitative RT–PCR was performed in a 10-µL PCR mixture
using SYBR Premix Ex TaqTM II (MedChemExpress) on a Bio-Rad CFX96 Real-Time PCR
System (Bio-Rad Laboratories, Inc., Hercules, CA, USA). An initial cycle of 2 min at 95 ◦C,
then 39 cycles at 95 ◦C for 30 s, a cycle of 30 s at 58 ◦C, and a cycle of 20 s at 72 ◦C.
Three independent experiments were performed per group. Relative gene expression was
normalized to GAPDH and assessed using the 2−∆∆Ct method.
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2.9. Western Blot Analysis

The following antibodies were used: anti-MED16 (THRAP5 polyclonal antibody)
(Invitrogen, PA5-40517), anti-GAPDH (Proteintech, 60004-1-Ig), anti-c-MYC (Proteintech,
67447-1-Ig), anti-CCND1 (Proteintech, 60186-1-lg), anti-LC3A/B (CST, 12741), anti-P62
(Proteintech, 66184-1-Ig), anti-PI3K (BIMAKE, A5635), anti-phospho-PI3KP85α/γ/β (SO-
LAIBIO, K006379P), anti-AKT (Proteintech, 60203-2-Ig), anti-phospho-AKT (Ser473) (Pro-
teintech, 66444-1-Ig), anti-mTOR (Proteintech, 66888-1-Ig), and anti-phospho-mTOR
(Ser2248) (CST, 5536). The cells were collected on ice after two washes with prechilled PBS
(4 ◦C). Protein lysates were prepared using RIPA lysis buffer (Beyotime, Shanghai, China)
containing protease inhibitors (Beyotime, Shanghai, China) and phosphatase inhibitors
(Beyotime, Shanghai, China), and the protein concentration was measured with a BCA
Assay Kit (Beyotime, Shanghai, China). Extracted proteins (20 µg/10 µL/lane) from each
group were separated by 10% sodium dodecyl sulfate–polyacrylamide gel electrophoresis
(SDS–PAGE) (Bio-Rad Laboratories, Inc.). After blocking with fast blocking buffer (New
Cell & Molecular Biotech, Suzhou, China) for 10 min at room temperature, the membrane
was incubated with the specific primary antibody (dilution 1:1000) overnight at 4 ◦C. Then,
after washing three times with Tris buffered saline containing Tween-20 (TBST), the mem-
brane was incubated with the secondary antibody (dilution 1:1000) for 60 min at room
temperature. Proteins were visualized by chemiluminescence using enhanced chemilumi-
nescent substrates (Bio-Rad Laboratories, Inc.). Immunoreactive bands were developed
using a chemical imaging system. GAPDH was used as a control.

2.10. 5-Ethynyl-2′-Deoxyuridine (Edu) Staining

The proliferation of BC cells was detected using the BeyoClickTM EdU Cell Prolifera-
tion Kit (C0075S, Beyotime, Shanghai, China) according to the manufacturer’s instructions.
Briefly, 2 × 105 cells were seeded in a 12-well plate for 24 h and incubated for 2 h at 37 ◦C
with Edu working solution (10 µM) in the dark. After incubation, the cells were washed
twice with PBS and fixed with 4% paraformaldehyde for 15 min. Next, the cells were perme-
abilized with 0.1% Triton X-100 for 15 min and washed three times with PBS. The cells were
then incubated with DAPI (C0075S, Beyotime, Shanghai, China) for 5 min. Images were
captured with a fluorescence microscope (Leica, Germany), where cells undergoing DNA
replication during incubation showed red fluorescence, while nuclei were represented by
blue fluorescence.

2.11. Cell Cycle Assay and Flow Cytometry Analysis

The culture supernatant was aspirated and rinsed once with PBS containing no calcium
or magnesium ions. Pancreatic enzyme digestion was stopped after 2–5 min. The sample
was transferred to a centrifuge tube, centrifuged at 1000 r/min for 5 min, and washed and
centrifuged 1–2 times; the cell concentration was adjusted with the wash to 1 × 106/mL,
and the sample was transferred to a BD FACS Verse Flow Cytometer for detection. The
data were analysed using FlowJo software.

2.12. Mammosphere Formation Assay (MSF)

Breast cancer cells were seeded at 10,000 cells/mL in a 6-well ultralow attachment
cell culture plate (Corning, Corning, NY, USA) and supplemented with 20 ng/mL bFGF
(Peprotech, East Windsor, NJ, USA), 20 ng/mL EGF (Peprotech, East Windsor, NJ USA) and
2% B27 (Invitrogen, Waltham, MA, USA) in DMEM/F12 medium (Gibco, Thermo Fisher
Scientific) that does not contain phenol red. Spheroid formation of the cells was observed
daily for 10 days. On day 4, images were taken with a microscope (Leica, Wetzlar, Germany).

2.13. Statistical Analysis

All data were expressed as the mean ± SD of at least three independent experiments.
GraphPad Prism 8.0 software (San Diego, CA, USA) was used for data analysis. Student’s
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t-test or one-way ANOVA was used to analyse differences between groups, and p * < 0.05
was considered statistically significant.

3. Results
3.1. MED16 Expression Is Markedly Upregulated in BC

We examined BRCA datasets from the TCGA and GEO databases to evaluate the
differential expression of MED16 between BRCA and normal tissues. Analysis from TCGA
BRCA datasets indicated that MED16 expression was higher in BC tissues (n = 1102) than in
normal tissues (n = 113) (Figure 1A), and this was also shown in data from the GEO database
(Figure 1B). The increased expression of MED16 in BC tissues was also demonstrated by the
RT–qPCR of clinical specimens (Figure 1C) and (Table 1). Next, we measured the MED16
expression in different subgroups data from TCGA. As shown in Figure 1D, MED16
was upregulated in HR+ BC tissues, which was also shown in western blotting and the
RT–qPCR of different cell lines (Figures 1E,F and S3A). We also detected the MED16
expression in ER+ BC tissues and normal paracancerous tissues by IHC, and MED16 was
mainly expressed in the cytoplasm of cancer cells (Figure 1G).

Table 1. Patients characteristics: ER estrogen receptor, PR progesterone receptor, HER2 human
epidermal growth factor receptor 2.

Characteristics HR Positive
(N = 18)

HR Negative
(N = 7) Total (N = 25) p Value FDR

Age (years) 0.01 0.09
>50 6 7 13
≤50 12 0 12

Tumour size (cm) 0.79 1
>2 10 5 15
≤2 8 2 10

Histological grade 0.52 1
II 12 3 15
III 6 4 10

Lymph node metastasis 0.37 1
Negative 5 4 9
Positive 10 2 12

Unknown 3 1 4
ER status 0.000047 0.00047
Negative 1 7 8
Positive 17 0 17

PR status 0.01 0.09
Negative 6 7 13
Positive 12 0 12

HER2 status 0.34 1
Negative 10 6 16
Positive 8 1 9

Ki-67 (%) 0.56 1
>30 5 3 8

Positive 2 0 2
≤30 11 4 15

Molecular subtypes 0.00005 0.00047
HER2 positive 0 1 1

Luminal A 10 0 10
Luminal B 8 0 8

Triple Negative 0 6 6
Adjuvant therapy 0.31 1

No 11 2 13
Yes 7 5 12
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Figure 1. The expression of MED16 is associated with breast cancer tumorigenesis. (A,B) Gene
expression data of MED16 in breast cancer and normal tissues from the TCGA and GEO databases
showed that MED16 mRNA level was overexpressed in human breast cancer (C) RT-PCR was
adopted to detect the mRNA expression level of MED16 in tumour and adjacent tissues (n = 25). (The
values are compared to normal group and are represented as the means ± S.E.M (ns: not significant,
** p < 0.01). (D) MED16 expression in breast cancer subtypes from the TCGA cohort. (E,F) Western
blot and RT-qPCR were used to detect the MED16 expression in different subtype BC cell lines.
(G) IHC staining of MED16 expression in normal and ER+ BC tissues (the bar on the figure represents
50 µm), mostly located in the cytoplasm.
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3.2. Diagnostic and Survival Value Analysis of MED16

To determine the prognostic role of MED16 in BC patients, we analysed the relationship
of MED16 expression with individual cancer stages, nodal metastasis status and patient
age (Figure 2A). We downloaded the clinical information from TCGA-BRCA datasets. In
this study, we used the R software package rms, integrated data on survival time, survival
status, age, sex, stage, TNM and MED16 expression, and established nomograms using
the Cox method to assess the prognostic significance of these features in 1023 samples
(excluding the unknown information samples) (Figure 2B). We used the R software package
MaxStat (maximally selected rank statistics with several p value parity version: 0.7–25).
The optimal cut-off value of the risk score was calculated (Supplement Table S1), with a
minimum sample size greater than 25% and a maximum sample size less than 75%, and
the optimal cut-off value was 0.429860830447361. Based on this, patients were divided
into high and low groups, and the survival software package was further used. The
survfit function of R was used to analyse the difference in prognosis between the two
groups, the log-rank test was used to evaluate the significance of the difference in prognosis
between different groups, and a significant difference in prognosis was finally observed
(p = 0.0000000000000008) (Figure 2C). In conclusion, by calculating the risk coefficient of
clinical characteristics related to MED16 expression, we divided the group into a high-risk
group and a low-risk group and found that the group with a higher risk coefficient related
to MED16 had a lower survival rate.
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Figure 2. The prognostic value of MED16 in BC patients in different databases. (A) Gene expression
data of MED16 in different clinical features in TCGA databases from UALCAN. (B) Nomograms were
established using the Cox method, and the prognostic significance of these features in 1023 samples
was assessed. (C) Log-rank test method was used to evaluate the significance of the prognostic
differences between different groups of samples with Risk score.
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3.3. Knockdown of MED16 Inhibits ER+ BC Proliferation

To analyse the function of MED16 in BC, we used shRNA after validating the efficiency
using the designed siRNA (Supplementary Figure S1A). The transfection of sh-MED16#1/2
into MCF7 and T47D cells was implemented to silence MED16 expression. RT–qPCR and
western blotting showed that MED16 expression was markedly elevated and reduced in
BC cells versus vector cells, respectively (Figures 3A,B and S3B). We also used CRISPR
to construct MED16 knockout MCF7 cells (Supplementary Figure S1B). In addition to
the function of MED16, we explored its regulatory mechanism in BC cells. CCK-8 assay
showed that the proliferation of BC cells was decreased by the downregulation of MED16
(Figures 3C and S1C). The number of colonies was increased and decreased by MED16
upregulation and downregulation, respectively (Figure 3D). Moreover, Edu experiments
confirmed that MED16 depletion decreased cell viability (Figure 3E). To further explore
the effect of MED16 downregulation on BC growth, we examined the cell cycle effect of
MED16 knockdown on MCF7 and T47D cells by flow cytometry, and the results showed
that cell proliferation was slightly arrested in the G1 phase and that the number of cells in
the S phase decreased during the experiment (Figure 3F). Moreover, c-MYC and CCND1
are markers of cancer cell proliferation and cell cycle progression, and western blotting
showed that the expression of c-MYC and CCND1 was higher in the MED16 overexpression
group (Figures 3G and S3C). In a word, MED16 promotes ER+ BC cell proliferation in vitro
according to previous biological functional experiments.

3.4. Knockdown of MED16 Reduces Tamoxifen Sensitivity

To understand the relationship between MED16 expression and specific treatment
in ER-positive BC, we investigated the role of MED16 gene expression and sensitivity to
tamoxifen. Tamoxifen is an oral endocrine agent for early and premenopausal BC patients
which has been commonly used for more than 30 years [15]. It competes with oestrogen
for ERα and inhibits oestrogen’s stimulating effect on tumour growth and metastasis.
We first explored the expression of the MED16 gene in the tamoxifen resistance database
GSE125738 (Figure 4A). MED16 expression was remarkably lower in tamoxifen-resistant
T47D cells (T47D-TAMR) than in wild-type cells. We generated 4OH-tamoxifen-resistant
T47D cells and treated T47D and tamoxifen-resistant T47D cells with various doses of
4-hydroxytamoxifen (4-OHT), which is the active metabolite of tamoxifen, for 72 h to
verify the efficacy of tamoxifen-resistant cells. CCK-8 assays detected cell viability and
showed resistance to 4-OH tamoxifen (Figure 4B). Western blot analysis showed that
MED16 expression was downregulated in T47D-TAMR cells (Figures 4C and S3D). As the
time of 4-OHT exposure increased in MCF7 and T47D cells, the expression level of MED16
decreased (Figures 4D and S3E). We next investigated the role of MED16 in tamoxifen
sensitivity. MED16 overexpression enhanced the inhibitory effects on cell viability in 4-
OHT-treated MCF cells; conversely, MED16 downregulation in MCF7 cells reduced the
sensitivity to 4-OHT (Figures 4E and S2A). The colony formation assay also demonstrated
that the viability of MED16 knockout MCF7 cells was higher when the cells were treated
with 1 µM 4-OHT (Figure 4F). It has become widely accepted that cancer stem cells (CSCs)
play a vital role in cancer progression and in the resistance to chemotherapy [16]. To
investigate whether MED16 targeting affects the stemness phenotype, we performed a
mammosphere formation assay and found that MED16 knockout increased mammosphere
growth compared to that in parental cells (Figure 4G). Based on these findings, we proved
that low MED16 expression contributes to tamoxifen resistance.
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Figure 3. Knockdown of MED16 hinders proliferation of BC cells. (A,B) RT−qPCR and west-
ern blot revealed the expression of MED16 was overexpressed and inhibited remarkably in MCF7
and T47D. (C) Growth curve of MCF7 and T47D cells infection of MED16−negative control and
MED16−knockdown was displayed. Relative proliferation ratio against day 0 were observed
for 5 days (* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001). (D) Colony formation of
MED16−overexpression cells and MED16-knockdown cells compared with MED16-negative control
cells. (E) Representative fluorescence images of Edu staining of MCF7 and T47D cells. Proliferating
MCF7 and T47D positively stained with Edu showed red colour. Cell nuclei stained with DAPI
showed blue colour. The length of bar represents 750 µm, chart of proliferating cells (red) to total
cells (blue). (F) Knockdown of MED16 induced G1−phase cell cycle arrested. Flow cytometric
assay was employed to analyse the cell cycle distribution. Percentage of cells in the G1 phase was
evidently increased, compared with the control group. (G) c-MYC, cyclinD1 protein expression in
MCF7 and T47D cells with control (Vector) and MED16-overexpressed cells, control (shNC) and
MED16−knockdown cells (sh1, sh2).
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Figure 4. Downregulation of MED16 reduces tamoxifen sensitivity in ER+ breast cancer cells.
(A) Gene expression data of MED16 in T47D wild-type and tamoxifen-resistant T47D from GEO
database (GSE125738). (B) 4OH-Tamoxifen sensitivity of tamoxifen-resistant T47D. (ns: not signif-
icant, * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001) (C) Protein level of MED16 in WT and
TAMR of T47D. (D) The MED16 protein expression levels of different time gradients at 1 µM 4OHT
treatment. (E) Effect on control (vector) and MED16-OE, control (Parental) and MED16 knockout
(KO1, KO2) MCF7 cells with different doses of 4OH-TAM at 72 h respectively. (F) Colony formation
assay of untreated and treated with 4OHT (1 µM)in control (Parental) and MED16 knockout (KO2)
MCF7 cells. (G) A micrograph showing mammosphere formation in control (Parental) and MED16
knockout (KO2) MCF7 cells. The length of bar represents 750 µm.

3.5. Biological Functional Analysis of MED16-Related Genes

Since the function of MED16 in BC was confirmed, we investigated the pathways
related to BC and molecular functions in different databases. First, we explored the genes
positively and negatively correlated with MED16 in the UALCAN database (Supplement
Table S2). For the gene set functional enrichment analysis, we used the KEGG rest API to
obtain the latest KEGG pathway gene annotation, which was used as the background to
map genes into the background set. The R software package clusterProfiler (Version 3.14.3,
Guangzhou, China), was used for enrichment analysis to obtain the results of gene set
enrichment (Figure 5A,B). The minimum gene set size was set as 5, and the maximum gene
set size was set as 5000. A p value of 0.01 and an FDR of 0.25 was considered to indicate
statistical significance. In positive enrichment GO plots, the phospholipase D signalling
pathway and endocytosis were significantly enriched, and autophagy, the mTOR signalling
pathway, and endocrine resistance were also enriched. The cell cycle, PI3K/AKT and
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AMPK signalling pathways and endocrine resistance were enriched in genes negatively
correlated with MED16 in the BRCA database.
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3.6. Knockdown of MED16 Induces Autophagy by Inhibiting the PI3K/AKT/mTOR
Signalling Pathway

The above functional enrichment analysis shows that autophagy and its related pathways
are enriched in genes related to MED16. Autophagy is thought to induce resistance to antioe-
strogen treatment in BC cells [17]. Thus, to explore the effect of MED16 on autophagy, we first
determined the expression levels of LC3 and P62 in the tamoxifen-resistant cells we constructed.
The ratio of LC3B to LC3A protein expression level in T47D-TAMR cells was increased com-
pared to that in wild-type cells, and P62 was decreased (Figures 6A and S3F). We also detected
the protein levels of P62 and LC3 in the MED16 overexpression and knockdown groups, and
western blotting experiments showed elevated autophagy levels after MED16 gene knockdown
(Figures 6B, S2B and S3G,H). We also found that the ratio of the autophagy-related marker
LC3B/A ratio decreased in tamoxifen-resistant T47D cells overexpressing MED16, demon-
strating that MED16 affects the change in autophagy levels in BC cells (Supplementary Fig-
ure S2C). The functional enrichment analysis of genes related to MED16 showed that the
PI3K/AKT/mTOR signalling pathway may be involved (Figure 5A,B), and our GSEA enrich-
ment analysis also shows the enrichment of the mTOR pathway (Supplementary Figure S2D).
Several studies have proven that the PI3K/AKT/mTOR pathway is a key regulatory pathway
for cell growth and resistance to tumour treatment. Next, to verify whether autophagy is
the cause of MED16 knockout resulting in reduced sensitivity to tamoxifen, we performed
a recovery experiment with the autophagy inhibitor chloroquine (CQ). With the addition of
CQ, autophagy was suppressed, reversing MED16 knockout caused by decreased sensitivity
to tamoxifen (Figures 6C,D and S3J). We also explored the changes in the autophagy-related
PI3K/AKT/mTOR signalling pathway after MED16 expression was changed. After MED16
was overexpressed in MCF7 cells, this signalling pathway was activated, while after MED16
expression was inhibited in MCF7 cells, the result was reversed (Figures 6E and S3K). We set out
to explore whether an increase in drug resistance was caused by an increase in autophagy levels
by inhibiting mTOR. MHY1485 is a potent cell-permeable mTOR activator that targets the ATP
domain of mTOR. It inhibits autophagy by suppressing the fusion between autophagosomes
and lysosomes. When MHY1485 was used, mTOR was activated, and the autophagy level
decreased, thus reversing tamoxifen resistance caused by the decreased expression level of
MED16 to a certain extent (Figure 6F).
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Figure 6. Knockdown of MED16-induced autophagy and inhibited PI3K/AKT/mTOR pathway in
ER+ BC cells. (A) Autophagy marker P62, LC3A/B protein expression in T47D-WT and TamR-T47D.
(B) Autophagy-related marker P62, LC3A/B protein expression in overexpression of MED16 and
knockdown of MED16 in MCF7 and T47D. (C) The effect on control (Parental), MED16 knockout (KO2)
and autophagy inhibitor CQ treated (KO2 + CQ) MCF7 cells with different doses of 4OH-TAM at
72 h. (ns: not significant, ** p < 0.01; *** p < 0.001) (D) Autophagy marker LC3A/B protein expression
in 4OH-TAM and CQ treated in control (Parental), MED16 knockout (KO2) MCF7 cells. (E) mTOR,
phospho-mTOR, PI3K, phospho-PI3K, AKT, phospho-AKT protein expression in overexpression of
MED16 and knockdown of MED16 compared with control MCF7 cells. (F) Effect on control (Parental),
MED16 knockout (KO2) and mTOR activator-treated (KO2 + MHY1485) MCF7 cells with different
doses of 4OH-TAM at 72 h.

4. Discussion

BC is now the cancer with the highest incidence and mortality among women in the
world, and details regarding its development and ideas for new treatments are urgently
needed. Cancer progression and even death due to tamoxifen resistance have become
major problems in improving the survival rate of patients with ER+ BC [6]. The exact
mechanism that leads to tamoxifen resistance during treatment with tamoxifen is still
unclear. In recent years, there has been considerable evidence that autophagy-related
factors, cell cycle modulators and a few transcription factors play important roles in
tamoxifen resistance [18,19].
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In this research, the expression level of MED16 in breast cancer and the role for
endocrine therapy were detected for the first time. Previous studies have shown that the
mediator complex (MED) plays a role in the expression of ER-regulated genes [12,19,20]. It
is also known that MED mediates organ development, cell differentiation, mutation and
alterations in the process of several diseases. MED16, mediator complex subunit 16, which
encodes a protein that is one of the constituents of the tail of MED [10], enables thyroid
hormone receptor binding activity and transcription coactivator activity and contributes to
the positive regulation of transcription initiation from the RNA polymerase II promoter [11].
We found that MED16 expression is elevated in breast cancer tissues as well as in cells, and
knocking down its expression inhibits the proliferation of ER+ breast cancer cells.

Additionally, we explored the effect of MED16 on the sensitivity of tamoxifen, the most
common endocrine treatment. We observed that the overexpression of MED16 increases
sensitivity to tamoxifen in ER+ breast cancer and vice versa, we also found that knockdown
of MED16 promotes autophagy levels. Autophagy is a process of using lysosomes to
dissolve their own cytoplasmic proteins and damaged organelles in the regulatory decline
of autophagy-related genes [21,22]. On the one hand, autophagy can accelerate the death
process through self-phagocytosis; on the other hand, autophagy can protect the survival
of stressed and damaged cells by delaying their apoptosis [23,24]. Recent studies have
examined whether tamoxifen-resistant BC cells have a greater degree of autophagy than
sensitive cells [25,26]; the autophagy-correlated signalling pathway PI3K/AKT/mTOR
contributes to tamoxifen resistance [27], and MAPK/ERK pathway activation has also been
demonstrated to be conducive to tamoxifen resistance [28,29].

We further performed an enrichment analysis of similar genes to MED16 and found
that MED16 was associated with the PI3K/AKT/mTOR signalling pathway. Our findings
demonstrated that silencing MED16 could significantly decrease the protein level of mark-
ers of the PI3K/AKT/mTOR signalling pathway. The PI3K/AKT signalling pathway is
overactivated in various tumours and strongly correlated with cell progression, the cell
cycle, apoptosis, and autophagy [30]. Previous studies have demonstrated that inhibition
of the PI3K/AKT signalling pathway is crucial for cell cycle regulation, which can decrease
the phosphorylation of AKT and lead to higher p21 expression, which can in turn lead to G1
phase cell cycle arrest [31]. The mTOR signalling-related pathway also plays a vital role in
tumour occurrence and progression. It has been demonstrated that activation of autophagy
reduces the therapeutic effect of radiotherapy and chemotherapy on BC [32]. Previous
studies also proved that the activation of mTOR signalling inhibits the autophagy-inducing
capacity of autophagy-related protein 1 (Atg-1) [33], which is a node in several different sig-
nalling pathways which regulate autophagy. This result is consistent with the observation
that by inhibiting autophagy and reversing the reduced sensitivity of tamoxifen caused by
the downregulation of MED16, we propose that autophagy inhibitors, in combination with
tamoxifen, may lead to a better prognosis for patients with ER+ breast cancer.

5. Conclusions

In summary, we found that MED16 plays an important role in breast cancer progres-
sion and treatment, and that its mechanism mainly depends on the activation of mTOR.
PI3K/AKT/mTOR inhibition caused by MED16 knockdown may lead to a slower pro-
liferation of breast cancer cells and autophagy enhancement, which leads to a decreased
sensitivity to tamoxifen. For ER+ BC patients with low MED16 expression, it is recom-
mended that tamoxifen be used in combination with autophagy inhibitors to achieve better
results. In the future, the specific activation mechanism of MED16 on the mTOR signalling
pathway may be explored.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/life12101461/s1, Figure S1: Western blot of MED16 knockdown and knockout
certification and cck8 assay; Figure S2: Tamoxifen sensitivity and autophagy level in knockdown of MED16
MCF7 cells; Figure S3: Density analysis of western blot protein band; Table S1: cut-off value of the risk
score; Table S2: Positively and negatively-correlated gene with MED16.
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