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Abstract: Recently, biocompatible energy harvesting devices have received a great deal of attention
for biomedical applications. Among various biomaterials, viruses are expected to be very promising
biomaterials for the fabrication of functional devices due to their unique characteristics. While other
natural biomaterials have limitations in mass-production, low piezoelectric properties, and surface
modification, M13 bacteriophages (phages), which is one type of virus, are likely to overcome these
issues with their mass-amplification, self-assembled structure, and genetic modification. Based on
these advantages, many researchers have started to develop virus-based energy harvesting devices
exhibiting superior properties to previous biomaterial-based devices. To enhance the power of these
devices, researchers have tried to modify the surface properties of M13 phages, form biomimetic
hierarchical structures, control the dipole alignments, and more. These methods for fabricating
virus-based energy harvesting devices can form a powerful strategy to develop high-performance
biocompatible energy devices for a wide range of practical applications in the future. In this review,
we discuss all these issues in detail.
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1. Introduction

Recently, energy harvesting from biomechanical movement has attracted a great deal of interest in
wearable, sustainable, and biomedical technologies [1–3]. Especially, piezoelectric devices have been
actively studied for bio-implantable application, because they can easily generate energy by using
simple motions and vibrations without any other external source [4–6]. General piezoelectric materials
have the ability to generate electrical charges from applied mechanical stress. Although the energy
output from piezoelectric generators may not be as large as that from other alternative energy sources,
these also have their own advantages, such as simple device structures and various material groups.

After Jacques and Pierre Curie discovered piezoelectricity from quartz in 1880, various piezoelectric
materials were developed from ceramics to natural biomaterials. Among them, ceramic materials
such as lithium niobate (LiNbO3) [7], potassium niobate (KNbO3) [7], lithium tantalate (LiTaO3) [8],
barium titanate (BaTiO3) [9], lead zirconate titanate (Pb[ZrxTi1−x]O3) [10], and etc., were most
investigated due to their superior piezoelectric properties. Lead zirconate titanate (PZT) has become
the most common piezoelectric material in practical application today. However, as the issue of toxicity
in lead-containing devices is starting to appear, extensive study has been conducted to replace it with
lead-free piezoelectric materials [11]. For this purpose, several ceramics (bismuth ferrite (BiFeO3),
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sodium niobate (NaNbO3), barium titanate (BaTiO3), bismuth titanate (Bi4Ti3O12), quartz, etc.) [12–14]
and organic materials (polyvinylidene fluoride (PVDF), polyvinylidene chloride (PVDC), etc.) [15,16]
were found. Particularly, single-crystal zinc oxide (ZnO) nanostructures with wurtzite structure exhibit
larger piezoelectric constants than those of bulk ZnO. However, the poor biocompatibility and brittle
characteristics of these piezoelectric materials limit their applications in wearable and biomedical
applications [17].

Otherwise, biomaterials have been regarded as promising alternative materials due to their
good biocompatibility, non-toxicity, and environmental friendliness. After the first discovery of
the piezoelectric effect of bone, the piezoelectric properties of diverse natural biomaterials such
as wood, bone, hair, dentin, tendon, and collage were investigated [18–23]. Since these natural
materials exhibit very weak piezoelectricity and are difficult to mass-produce, there is a limit to use for
practical applications. Recently, there has been a growing interest in the biopiezoelectric materials
to overcome these limitations. Polysaccharide materials [24–27], viruses [28–31], and self-assembled
biomaterials [32,33] have been identified as good candidates, because their piezoelectric constants are
higher than those of previous natural biomaterials, and they are possible to mass-produce. Especially,
it has been found their physical and chemical properties can be modulated by their morphology,
surface charges, and phases, and the piezoelectric response is directly related to these. Furthermore,
the discovery of piezoelectricity in bone [34–36], which has been the most frequently studied tissue,
aroused great interest because it seemed to provide an important key to understanding bone physiology.
Researchers hypothesized that bone’s piezoelectric signal by physical stimulation could regulate bone
growth, repair, wound healing, and tissue regeneration [37–39]. In addition, piezoelectric biomaterials
also have several advantages for use in sensors [40], energy storage [41], energy harvesting, and other
areas [42]. Despite these advantages of biopiezoelectric materials and their potential applications,
a comprehensive review of virus-based piezoelectric energy harvesting devices have not been reported.

In this short review, we provide an overview of M13 bacteriophages (phages) as superior
biopiezoelectric materials for piezoelectric energy harvesting applications. In addition, we discuss in
detail the piezoelectric properties of M13 phages and the fabrication of M13 phage-based piezoelectric
energy harvesting devices. It is expected that this review will inspire the design of novel biomaterials
and the development of functional devices for energy harvesting, sensing, biomedical applications,
and other applications.

2. Biological Building Block for Piezoelectric Energy Harvesting Devices: M13 Bacteriophages

Due to their unique structural, biological, and physical properties, the M13 phage is the most
attractive candidate in biomaterials for mimicking natural structures and developing novel piezoelectric
energy harvesting devices. Especially, from the engineering point of view, M13 phages have several
advantages, such as (1) structural similarity with collagens; (2) mass-producibility by bacteria infection
and mass-amplification; (3) surface tunability through genetic engineering; (4) possibility of forming a
highly-ordered structure via self-assembly; and (5) superior piezoelectric properties.

The M13 phage is a filamentous bacteriophage composed of circular single-stranded
deoxyribonucleic acid (ssDNA) and capsid proteins. ssDNA is encapsulated in approximately
2700 copies of the helically arranged major coat protein pVIII, and five to seven copies of two different
minor coat proteins (pIX, pVI, pIII, pVII) on the ends (Figure 1a). The diameter and length of M13
phages are about 6.6 nm and 880 nm, respectively [43]. Since the structural characteristic of phages is
very similar to the structure of the human collagen, the M13 phages are quite capable of mimicking
nature’s hierarchical structures based on collagen [44]. These M13 phages, which are perfectly identical
copies, can be mass-produced using the living characteristic of viruses. M13 phages are any group of
viruses which carry out a lysogenic infection in which the phage inserts its genome into the bacterial
genome. The minor coat protein pIII attaches to the receptor of the host bacteria and infects the bacteria.
A huge amount of phages can be produced in an infected bacteria using the metabolic reactions of the
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host cell (Figure 1b). The infected cells are not involved in the cell lysis, but a decrease in the rate of
cell growth [45].
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Figure 1. Schematic diagram showing the main characteristics of M13 bacteriophages (phages).
(a) Structural similarity between natural collagen and M13 phages. Both biomaterials are filamentous
structures with high aspect ratio and have right-handed helical structures. (b) Infection and
mass-amplification of M13 phages. A huge amount of phages can be produced in infected bacteria
by using the metabolic reactions of the host cell. (c) M13mp phage vector and surface modification
through genetic engineering. We can design the molecular structures of the phage’s outer surfaces in
accordance with the desired properties and display the related peptide motif on the coat proteins of
M13 phages. (d) Liquid crystalline phase transition of M13 phages. M13 phages exhibit a lyotropic
liquid crystalline phase transition due to their helical structure, nanofibrous shape, monodispersity, and
functional motifs. (e) Piezoelectric properties of M13 phages, which enable us to make piezoelectric
energy harvesting devices.

Recent advances in genetic engineering make it possible to modulate the peptide sequence of
phage proteins as desired. By using the recombinant DNA technique and M13mp phage vectors,
we can design the molecular structures of surfaces according to the required properties and easily
display the related peptide motif on the coat proteins of M13 phages (Figure 1c). This ability of M13
phages is a unique feature that distinguishes them from other nano and biomaterials [45].

In addition, M13 phages exhibit a lyotropic liquid crystalline phase due to their helical structure,
nanofibrous shape, monodispersity, and expressed functional motifs (Figure 1d). According to the
concentration of the phage suspension, the resulting structures of M13 phage films change from an
isotropic phase to a cholesteric phase in a controlled manner [43]. Owing to these characteristics,
we can prepare highly-ordered crystalline structures in a large area, which allows us to fabricate
functional devices.

Lastly, recent studies have shown that M13 phages have excellent piezoelectric properties, which are
larger than other natural biomaterials [28]. This makes it possible to fabricate high-performance
piezoelectric energy harvesting devices (Figure 1e).

3. Introduction to Piezoelectric Effect

Piezoelectricity is a phenomenon of coupling between the electrical and mechanical states of a
material by crystal deformation. When piezoelectric materials are mechanically stressed and deformed,
the positive and negative charge centers shift in the materials, which then results in an external electrical
field and a current flow. The opposite can also happen. When an electrical field is applied to the
materials, the piezoelectric materials are stretched or compressed (Figure 2a).
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Figure 2. Schematic diagram showing the working mechanism of the piezoelectric effect.
(a) Diagrammatic demonstration of the piezoelectric effect. (b) Schematic illustration showing the
working mechanism of the piezoelectric effect in crystal structures. In equilibrium, the charges of the
unit cell are neutral (no net dipole moment). When mechanical stresses are applied, a net dipole moment
and electrical polarization arise in piezoelectric materials. (c) Schematic diagram showing structural
characteristics of M13 bacteriophages. M13 phages have five-fold rotational symmetry, two-fold screw
symmetry, and no inversion center. Schematic illustrations showing the working mechanism of the
piezoelectric effect based on M13 phages when the stress is applied along the phage long axis (d) and
phage short axis (e,f).

This direct piezoelectric effect was first discovered in 1880 by Paul-Jacques Curie, Pierre, and Marie
Curie. They combined the knowledge of pyroelectricity with their understanding of crystal structures
and behavior, and demonstrated the first piezoelectric effect by using crystals of quartz and Rochelle
salt. Since then, many researchers have discovered and reported the piezoelectric properties of
organic [15,16], inorganic [7–14,17], and biomaterials [18–33].

These piezoelectric characteristics originate from the deformation of the crystal structure and
charge rearrangement within the material. In the equilibrium state, the arrangement of charges within
the material lattice is neutral. However, there will be a charge redistribution within the unit cell and
this induces net charges on the faces of the unit cell under the mechanical stress, which results in a net
dipole moment. The sum of these dipole moments from all the unit cells leads to charge separation
and generates electrical polarization in piezoelectric materials (Figure 2b). The most important thing
in this system is that the materials must not have a center of symmetry, because the sum of net dipole
moments is zero if the materials have a symmetry center.

Fortunately, M13 phages have structural properties that can make them suitable for piezoelectric
properties. M13 phages are composed of ssDNA and capsid proteins, and each capsid protein has a
dipole moment because these capsid proteins are made up of three parts—a positively charged area,
a neutral charged area, and a negatively charged area. Especially, 2700 pVIII major coat proteins,
which are the body-coat proteins, are assembled on the ssDNA with a 20◦ tilt angle with respect to the
phage long axis and are arranged in right-handed helical structures. These major coat proteins form a
pentagonal structure, which means that M13 phages have five-fold rotational symmetry, two-fold screw
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symmetry, and no inversion center (Figure 2c) [46,47]. Therefore, M13 phages can have piezoelectric
properties. Interestingly, these complex structural characteristics of M13 phages allow us to use various
piezoelectric properties. When stress is applied along the phage long axis, net dipole moments and
electrical polarization are generated along the direction of applied stress (Figure 2d). On the other
hand, when the stress is applied along the body (phage short axis), net dipole moments and electrical
polarization are generated in two different directions (Figure 2e,f). Due to these characteristics, various
types of piezoelectric energy harvesting devices can be developed.

4. Surface Modification of M13 Bacteriophages through Genetic Engineering

One of the great advantages of M13 phages as functional materials is the possibility of surface
modification through genetic engineering. The most frequently used and well-established method
to modify the genes of phages is recombinant DNA technology, which involves the insertion of
foreign genes into the bacterial plasmids. Especially, M13mp phage vectors are usually used for
engineering M13 phages. By incorporating foreign DNA, converting certain DNA into foreign DNA,
and deleting specific DNA with enzymes, a high density of functional peptides and proteins can be
simultaneously displayed on the M13 phage’s coat proteins [45]. This technique enables us to design
the surface molecular structures of M13 phages according to their purpose. For example, J.-W. Oh et al.
developed the highly trinitrotoluene (TNT)-selective sensors based on phage colorimetric structures by
expressing the AXXXWHWQXXDP (WHW) peptide sequence (which shows excellent binding affinity
to TNT molecules) on pVIII major coat proteins [48]. J. Wang et al. reported that RGD phages induce
osteogenesis and angiogenesis by activating the endothelialization and osteogenic differentiation of
mesenchymal stem cells. In this work, RGD and RGD/PHSRN (combination of RGD and PHSRN)
peptides, which interact with integrin, have a key role in adhesion with fibronectin [49,50].

These genetic modifications are also very useful in fabricating energy harvesting devices.
Most energy harvesting devices (e.g., piezoelectric and triboelectric devices) have a direct correlation
to surface charges and dipole moments. Therefore, the number of charges on the outer surfaces of M13
phages should be increased to improve the power of energy generators. For this purpose, B. Y. Lee et al.
expressed AEGDP (1E), AEEGDP (2E), AEEEGDP (3E), and AEEEEDP (4E) peptide sequences on the
outer surfaces of the pVIII major coat protein of M13 phages (Figure 3a) [28]. In the case of vertically
aligned phages, the HHHHHH peptide sequence was expressed at the N-terminus of the pIII minor
coat protein with a spacer GGGS as a specific binder with Ni-NTA surface (Figure 3b). The YEEE
peptide was also expressed between the first and fourth residues at the N-terminal of the pVIII major
coat protein for enhancing mechanical stability by Y-Y cross-linkage between phages through UV
illumination [29].

Likewise, we can improve the physical and chemical properties and extend the range of applications
through genetic molecular design. In the future, we expect that chemical modification (e.g., bioconjugate
techniques and cross-linking) as well as genetic modification will be used for the further improvement
of physical properties.
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Figure 3. Surface modification of M13 bacteriophages through genetic engineering. (a) AEGDP (1E),
AEEGDP (2E), AEEEGDP (3E), and AEEEEDP (4E) peptide sequences were expressed on the outer
surfaces of the pVIII major coat protein of phages to enhance the piezoelectric properties. The M13
phage is 880 nm in length and 6.6 nm in diameter, which is covered by 2700 pVIII coat proteins and has
five copies each of pIII and pIX proteins. The dipole moment is directed from the N-terminus (blue)
to the C-terminus (red). Reproduced with permission from [28]. Copyright Nature Research, 2012.
(b) HHHHHH peptide sequence expressed at the end of the N-terminus of the pIII minor coat protein
for specific binding of phages on the Ni-NTA surface. The YEEE peptide motif is expressed between
the first and fourth residues at the N-terminal of the pVIII major coat protein to enhance the mechanical
stability by Y-Y cross-linkage. Reproduced with permission from [29]. Copyright American Chemical
Society, 2019.

5. Piezoelectric Properties of M13 Bacteriophages

In general, the M13 phage is covered with 2700 pVIII coat major proteins, and the individual coat
protein of phages is roughly divided into three sections: a positively charged region (C-terminus),
a neutral region, and a negatively charged region (N-terminus). Owing to this adequate arrangement of
charges, each coat protein has a dipole moment which is directed from the N-terminus to the C-terminus.
Furthermore, the positively charged region of coat proteins is bound to central single-stranded DNA
with a 20◦ tilt angle with respect to the phage long axis and α-helical structure when they are released
from the host cell. The resulting structures of assembled pVIII coat proteins have five-fold rotational
symmetry, two-fold screw symmetry, and no inversion center. Based on this fundamental study of
phage structures, we can easily predict that M13 phages can present strong piezoelectric properties
due to their permanent axial polarization caused by the net dipole moment in the pVIII proteins [28].
In 2012, B.Y. Lee et al. successfully observed the piezoelectric properties of M13 phages by using
piezoresponse force microscopy (PFM) (Figure 4a). For this study, they prepared the phage monolayer
sample by vertically pulling an octadecanethiol (ODT)/cysteamine patterned substrate from the phage
suspension at a constant speed. Then, the piezoelectric properties of wild-type, 1E, 2E, 3E and 4E
phages were measured by PFM. Vertical PFM measurements revealed that the effective piezoelectric
coefficients (deff) of the wild-type phage was 0.30 ± 0.03 pm V−1. The coefficients of 1E, 2E, 3E, and 4E
phages were 0.14 ± 0.03 pm V−1, 0.35 ± 0.03 pm V−1, 0.55 ± 0.03 pm V−1, and 0.70 ± 0.05 pm V−1,
respectively. This indicates that the coefficients improve as the surface charges of phages increase [28].
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To further enhance the piezoelectric properties, they fabricated a multilayer phage film with 100 nm
thickness. The multilayer film exhibited an increased effective piezoelectric coefficient (3.9 ± 0.05 pm
V−1). Although this value is lower than the d33 values of periodically-poled lithium niobate (PPLN)
(13.2 pm V−1), it is higher than collagen (1.1 pm V−1) and other natural biomaterials. In addition,
the effective piezoelectric coefficient of M13 phage films is further enhanced by fabricating vertically
aligned phage nanostructures. These vertically assembled phages exhibited unidirectionally oriented
piezoelectric polarization with an effective vertical piezoelectric coefficient of 13.2 pm V−1 (Figure 4b).
Therefore, M13 phages are the best natural biomaterials for developing piezoelectric energy generators
based on biomaterials [28].Nanomaterials 2020, 10, 93 7 of 14 
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monodisperse characteristics. When they overlaid a counter gold-coated flexible substrate on the film 
and embedded the device between two 2.5-mm-thick polydimethylsiloxane (PDMS) matrices, they 
could fabricate phage-based energy generators (Figure 5b). The generating power of the device can 
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Figure 4. Piezoelectric properties of M13 bacteriophages. (a) Schematic of piezoresponse force
microscopy (PFM) measurement (i); AFM topography (ii); height profile (iii); lateral PFM image
along the phage long axis direction (iv); lateral PFM image obtained after changing the scanning
direction by 90◦ (v); and vertical PFM image (vi) of the phage monolayer film. The resulting effective
piezoelectric coefficients of 1E, 2E, 3E, and 4E phages were 0.14 ± 0.03 pm V−1, 0.35 ± 0.03 pm V−1,
0.55 ± 0.03 pm V−1, and 0.70 ± 0.05 pm V−1, respectively. Reproduced with permission from [28].
Copyright Nature Research, 2012. (b) PFM image (i), PFM phase image (ii) of vertically aligned
phages which exhibits unidirectional polarization in the out-of-plane direction, and comparison of
out-of-plane PFM amplitude versus applied voltage along the aligned direction (iii). The resulting
effective piezoelectric coefficients (deff) of 6H vertical phage, 6H film, WT vertical phage, and WT film
were ~13.2 pm V−1, ~3.96 pm V−1, ~0.35 pm V−1 and 1.22 pm V−1, respectively. Reproduced with
permission from [29]. Copyright American Chemical Society, 2019.

6. Developments and Applications of M13 Bacteriophage Based Piezoelectric Energy
Harvesting Devices

Due to their excellent piezoelectric properties, the group of Prof. Lee at UC Berkeley first
fabricated M13 phage-based piezoelectric energy generators in 2012 [28]. They prepared well-ordered
self-assembled multilayer films based on M13 phages onto gold-coated flexible substrates by using
a drop and evaporation method (Figure 5a). During the evaporation process, M13 phages were
self-assembled and formed long-range ordered smectic-phase liquid-crystalline films by their chiral
and monodisperse characteristics. When they overlaid a counter gold-coated flexible substrate on the
film and embedded the device between two 2.5-mm-thick polydimethylsiloxane (PDMS) matrices,
they could fabricate phage-based energy generators (Figure 5b). The generating power of the device
can be modulated by the surface modification of M13 phages through genetic engineering, and the
device produced a current of 6 nA and a voltage of 400 mV when they use 4E phages (Figure 5c).
This was a sufficient energy output to turn on a liquid-crystal display [28].
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ordered smectic-phase liquid-crystalline film structure. Reproduced with permission from [28].
Copyright Nature Research, 2012. (b) Photograph of an M13 phage-based piezoelectric energy
generator and schematic of piezoelectric energy generation measurement set-up. Reproduced with
permission from [28]. Copyright Nature Research, 2012. (c) Open-circuit voltage and short-circuit
current signal from the M13 phage-based piezoelectric energy generator. The device produced a current
of 6 nA and a voltage of 400 mV when they use 4E phages. Reproduced with permission from [28].
Copyright Nature Research, 2012.

One of effective strategy for enhancing the power of phage-based energy generators is modulating
the film morphology. Recently, K. Heo et al. reported a novel biomimetic assembly method for
fabricating phage-based hierarchical structures with diverse surface morphologies by mimicking
nature’s self-assembly system [30]. They modulated the meniscus by controlling the thermodynamic
and kinetic parameters (i.e., phage concentration, ionic concentration, phage surface charge, and pulling
speed) and created a hierarchically organized phage film with diverse morphology in a controlled
manner as the meniscus can serve as a transient scaffold to guide phage self-assembly (Figure 6a).
In this process, the shape of the meniscus can be systematically modulated due to a combination
of multiple factors, such as fingering instability, Rayleigh instability, and elastocapillary instability.
All of the resulting phage structures were long-range-ordered chiral phage films showing multiple
levels of hierarchical organization from nano- to macro-scale (single phage–phage filaments–fiber
bundles–mesoscale periodic structure–macroscale band) (Figure 6b) [30]. When they fabricated
piezoelectric energy generators based on these hierarchically organized phage films, the device power
was improved compared to previous drop-casted phage films. The continuous and line film patterns
exhibited 6.3 and 56 nA short-circuit current and 0.36 and 0.75 V open-circuit voltage, respectively
(Figure 6c). The 2D-dot patterns showed the highest piezoelectric performance, which exhibited peak
values of 94 nA current and 0.95 V voltage. They claimed that these enhanced piezoelectric properties
of 2D-dot phage patterns were mainly due to the enhanced crystallinity of the phage nanofilaments
that were periodically organized in an active array, in contrast to other films. The enhanced power was
available to display the words “VIRUS” and “LEE LAB” on a liquid-crystal display.
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and pulling speed. Reproduced with permission from [30]. Copyright Elsevier, 2019. (b) Hierarchical
structures of the phage-based films from nanoscale to macroscale. (single phage–phage filaments–fiber
bundles–mesoscale periodic structure–macroscale band). (c) Piezoelectric characterization depending
on phage structures. The 2D-dot patterns showed the highest piezoelectric performance, exhibiting
peak values of 94 nA current and 0.95 V voltage. Reproduced with permission from [30]. Copyright
Elsevier, 2019.

Another strategy for improving the piezoelectric power is to change the direction of the mechanical
force applied to the phage. As mentioned in Section 3, if we consider the direction of the dipole moment
in the individual M13 phages, it is predicted that the accumulated charges are maximized when
the mechanical force is applied in the vertical direction rather than the lateral direction (Figure 2d).
However, we could not carry out the related research because of the absence of an effective process to
vertically align the phages. Recently, D.-M. Shin et al. developed a robust and facile method to prepare
vertically aligned the phages for the first time (Figure 7a) [31]. They extruded phage suspension
into a porous anodic aluminium oxide (AAO) template at precisely controlled speeds and repeated
this process until all holes of the porous template were completely filled with phages, resulting in
the formation of phage nanopillars (PNPs). During this process, negatively charged 4E phages were
randomly adsorbed on the positively charged inner surface of the porous template and spontaneously
accumulated inside the pores due to their liquid-crystalline characteristics. Afterwards, they deposited
bottom and top Au electrodes on the AAO template including the PNPs and encapsulated the whole
device using PDMS to improve their stability. The 4E PNP-based energy generator produced a 232 mV
open-circuit voltage and 1.1 nA short-circuit current (Figure 7b) [31]. The relatively low power of
this device compared to what was expected is presumed to be a result of the difficulty of forming
well-ordered liquid crystalline phage structures, and the direction of the dipole moments of individual
phages is therefore randomly oriented.

To overcome the limitation of the dipole alignment at the vertically oriented phage structures,
J.H. Lee et al. developed a powerful method by combining the self-assembly of phages in a micro-fluidic
channel and the surface modification of phages through genetic engineering (Figure 8a) [29]. To align
the phages in the vertical direction, they tried to use a PDMS mold with micro-channels. When they
dropped the phage suspension on the substrate and put on the PDMS mold, phage suspensions
were infiltrated inside the micro-channels. The phages were vertically assembled on the wall of the
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PDMS micro-channels and cross-linked with each other as the solvent was evaporated with UV light
exposure. The morphology and filling density of vertical phage structure could be controlled by the
initial phage concentration. Furthermore, they controlled the direction of the dipole moment of the
phages by changing the peptide sequence of minor coat proteins at the same time. Because they
inserted hexa-histidine (6H) at the N-terminal of the minor coat protein (pIII) of the phages through
genetic modification, the pIII proteins of all phages were strongly specifically bound with the
nickel-nitrilotriacetic acid (Ni-NTA) modified substrate, which polarized the dipole moment of the M13
phages. Finally, they fabricated piezoelectric energy harvesters using the resulting vertically aligned
and unipolarized phages, and the peak voltage reached 2.8 V, with a current of 120 nA (Figure 8b).
This is the largest power among phage-based energy generators. Five integrated energy generators
demonstrated the operation of a liquid-crystal display reading “UC Berkeley” [29].
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permission from [29]. Copyright American Chemical Society, 2019.

Although the power of phage-based energy generators is improving with diverse strategies,
the power of the devices is still too low. For practical applications of these devices, many ways for
enhancing electrical properties and developing mass-production methods should be contrived.



Nanomaterials 2020, 10, 93 11 of 15

Because these methods are to prepare the M13 phage film by self-assembly, the performance of the
devices may be reduced when they are used for a long time. Fortunately, laterally assembled structures
are very stable and robust, allowing the devices to run reliably for a long time [28,30]. However,
vertically aligned structures are likely to be vulnerable to long-term use. This can be solved by using
chemically cross-linked M13 phages [29] and filling rubbery buffer materials in the empty space.

As this technique is at an early stage of research, studies of the devices’ ideal operating conditions
and toxicity issues have not been adequately carried out. However, by inferring from previous
research based on M13 phages, the characteristics of these device can be predicted. Because the
M13 phage is a biological material, optimized conditions for operating these devices will be room
temperature (30 ◦C–70 ◦C) and low humidity [28]. However, these conditions can be modulated by
surface modification. Through genetic engineering, we can modify the surface peptide motif to increase
the hydrophobicity and cross-link phages to each other. Further, the M13 phage is known to be benign
to humans because its host is Escherichia coli bacteria, not human cells [51–53]. Removing the infection
motif in the pIII protein through genetic modification is also expected to be a good way to block the
toxicity issues. Nevertheless, the study of M13 phages’ toxicity should be conducted in the near future.

Since these technologies are still in their early stages of research, it is too early to discuss
mass-production for practical applications. Most of the techniques discussed here are not suitable
for mass production, because they use new process methods rather than conventional fabrication
techniques. However, because these novel fabrication processes are very simple and facile, there is a
strong possibility of mass-production and scale-up in the future. Although one of the main issues for
scale-up is mass-production of the M13 phages, we can solve this problem using huge fermenters in
the factories, like with biosimilar drug and alcohol manufacturing. Although the manufacturing cost
of these devices is more expensive than existing devices, the M13 phage-based devices have several
strong advantages which are very important in the biomedical fields. The M13 phage has very high
piezoelectric coefficient compared to other biomaterials and their surfaces can be easily modified by
genetic engineering. Further, it is also possible to mass-produce them.

7. Conclusions and Future Perspective

Even though the piezoelectric properties of biomaterials are lower than other inorganic materials,
it is very important to design novel piezoelectric biomaterials and develop functional devices because
of their specific applications in biomedical field. In particular, M13 bacteriophages are very attractive
materials due to their unique features which distinguish them from other materials, such as their
similar structures with collagens, mass-amplification, genetic modification, liquid-crystalline phase
transition, and excellent piezoelectric properties. Recently, taking advantage of these characteristics,
many researchers have made a great deal of efforts to fabricate M13 phage-based piezoelectric energy
harvesting devices. Among these devices, vertically aligned phage films exhibited the highest
performance—a peak voltage of 2.8 V and a peak current of 120 nA [29].

However, it is still a challenge to develop high-performance piezoelectric energy generators based
on M13 phages owing to the limitations of surface modification, structural, and dipole alignment
control. Thus, the novel design of phage structures through genetic and chemical modification may
improve the performance of devices. Further, fabricating triboelectric devices based on M13 phages
will also be an effective way to enhance the power of devices.

Another strategy for enhancing the power of devices is to develop composite structures composed
of organic and inorganic biomaterials. Recently, novel methods for coating inorganic materials
on biomaterial surfaces are attracting the attention of many researchers because of their various
applications in biomedical field. For example, some researchers have reported effective methods to
coat the inorganic materials on M13 bacteriophage surfaces via biomineralization [54–56], while other
researchers developed the strategies to cast metals on the surface of biological materials by using
protein cage systems and self-assembly [57–59]. These methods are expected to be used to produce
precursors for energy-harvesting devices and maximize the power of devices.
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High-performance energy harvesting devices based on biomaterials can be used in various fields,
such as chemical/bio-sensors, artificial skin, bioimplantable energy devices, flexible electronics, soft
robotics, and more (Figure 9). Especially, because there are many reports indicating that the surface
charges and electrical signal can affect tissue regeneration, these piezoelectric biomaterials are also
expected to be utilized for the development of biodegradable scaffolds for tissue engineering in
the future.
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