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Abstract

In the past few decades, there has been a rapid growth in the concentration of nitrogenous

compounds such as nitrate-nitrogen and ammonia-nitrogen in rivers, primarily due to

increasing agricultural and industrial activities. These nitrogenous compounds are mainly

responsible for eutrophication when present in river water, and for ‘blue baby syndrome’

when present in drinking water. High concentrations of these compounds in rivers may

eventually lead to the closure of treatment plants. This study presents a training and a selec-

tion approach to develop an optimum artificial neural network model for predicting monthly

average nitrate-N and monthly average ammonia-N. Several studies have predicted these

compounds, but most of the proposed procedures do not involve testing various model

architectures in order to achieve the optimum predicting model. Additionally, none of the

models have been trained for hydrological conditions such as the case of Malaysia. This

study presents models trained on the hydrological data from 1981 to 2017 for the Langat

River in Selangor, Malaysia. The model architectures used for training are General Regres-

sion Neural Network (GRNN), Multilayer Neural Network and Radial Basis Function Neural

Network (RBFNN). These models were trained for various combinations of internal parame-

ters, input variables and model architectures. Post-training, the optimum performing model

was selected based on the regression and error values and plot of predicted versus

observed values. Optimum models provide promising results with a minimum overall regres-

sion value of 0.92.
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Introduction

Human activities have altered the presence of nitrogenous compounds in rivers. Industrializa-

tion and the intense use of fertilizers in agricultural fields represent the main causes of the

enhancement of these compounds in rivers’ water. The excessive use of high nitrogen content

fertilizers has increased the rate of release of these compounds, especially nitrate-nitrogen, in

the environment. As such, adverse impacts on the environmental system and human health

have been observed [1, 2]. In rivers, surplus nitrogenous compounds lead to magnification of

algae on the water surface [3], which restricts the contact of water with light and air and also

reduces the oxygen supply for aquatic lives. These compounds lead to different types of cancer

[4] and two types of birth defects [5, 6]. Nitrates in drinking water causes “blue baby syn-

drome” in infants [4] and also various tumours in the human body [4, 7]. Proper monitoring

and maintenance of the water quality is required to control the nitrogen level in rivers. Lack of

monitoring systems may result in an abrupt rise of nitrogen concentrations in rivers that

could lead to the closure of water treatment plants as most of the plants are not designed for

the complete removal of nitrogen. In Malaysia, an abrupt rise in nitrogenous compounds levels

in various rivers has led to the frequent closure of water treatment plants [8]. These plants

often have complicated processes and require total control over the system [9, 10]. Information

on the concentrations of such pollutants are therefore, critical to ensure the continuity of oper-

ations of these treatment plants. Hence, there comes a need for a model, which predicts the

level of nitrogenous compounds in advance. In the last few years, a number of models have

been designed to predict hourly, daily and monthly data for different pollutants other than

nitrogen in Malaysian rivers.

Artificial Neural Network (ANN) models, a computational intelligence model, have been

extensively used for prediction over the last few decades [11]. These models form a network

similar to the neurons system in the human brain. They mathematically relate the input to the

desired output, forming a completely data-driven model. An ANN model trains itself with the

historical data of the desired output and using the training parameters, it predicts the upcom-

ing data. It has various internal parameters (such as hidden layers, nodes in hidden layers,

maximum epochs, spread values, etc.) that need to be adjusted to get the results with high

accuracy. ANN has the unique feature of learning the crests and troughs of the historical data

used for a model training. He, Oki [12] reported that, ANN models are used for reservoir oper-

ations [13–17], water resources management [18, 19] and hydrological processes [20, 21].

Several studies, including [15, 22–25], used ANN for predicting nitrogenous compounds in

rivers across the world. As used by Fiyadh, AlSaadi [26], authors have searched on Science

Direct and Google Scholar to find these relevant studies. Most of these studies have not consid-

ered the application of different architectures of ANN, such as multilayer, RBFNN and GRNN.

In addition, none of the models have been trained for the Malaysian hydrological conditions.

An ANN model trained for a particular set of input data for some locations cannot be used effi-

ciently at different locations as the pattern of the historical input data may not be same as the

previous ones. In other words, such ANN models are site specific and may not be implemented

before further training on other sites. Hence, there is a need for the development of an efficient

model for the Malaysian rivers.

In Malaysia, ANN models have been used to predict various hydrological parameters, but

none have addressed the prediction of the nitrogenous compounds in Malaysian rivers. Unlike

available literature, this study proposes a new training approach and a selection procedure of

the optimum performing ANN model. The developed model fulfils the existing needs for

nitrate-N and ammonia-N predictions in Malaysian rivers.
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The objectives of this investigation are to present the application of ANN for the prediction

of the monthly average nitrate-N and monthly average ammonia-N levels in the Langat River

basin in Selangor, Malaysia.

Artificial neural network

ANN is black-box model which establishes a relation between input variables and desired out-

put variables [27]. Inside the black-box, a network is formed within the neurons which is simi-

lar to that of the nervous system in human brain [23, 24, 28]. The advantages of the ANN

models include: (i) generalization of the unseen situations [29, 30], (ii) ability to perform

model-free function estimations, (iii) ability to learn from data relationships that are not other-

wise known and, (iv) ability of handling non-linear functions [31, 32]. The ANN model con-

sists of input layer, hidden layer and output layer [33]. Input variables are provided in the

input layer; which are then passed to the inner hidden layers [34], where the weights corre-

sponding to each input variables are adjusted to get a better relationship with the desired out-

put. Fig 1 represents the basic structure of ANN models. In this model there are three input

variables, a, b, and c; with three hidden layers, h1, h2 and h3; and one output layer z. In the cur-

rent study, a, b, c, and z represents the rainfall, water level, discharge, and nitrate-N or ammo-

nia-N, respectively. General Regression Neural Network (GRNN), multilayer perceptron and

Radial Basis Function Neural Network (RBFNN) composed the three model architectures

applied in the current study. These three ANN architectures are the examples of feed-forward

ANNs [35]. Training and testing of these models were conducted on Matlab platform.

Based on non-parametric regression, GRNN is considered as an improved technique in

ANN. It has the same number of the neurons in the input layer as the number of input vari-

ables, and the same number of neurons in the output layer as the number of output parame-

ters. GRNN uses supervised training; which allows the model to compare the predicted output

with the observed output, provided at the time of training [36, 37]. Multilayer perceptron is

the most popular [38, 39] and efficient ANN architecture used nowadays in the field of model-

ling [31, 35]. It follows supervised training and is mostly used for modelling complex relation-

ship between different stochastic variables [31]. Multilayer perceptron has the number of

neurons in input and output layers, as defined by the user during training. RBFNN is mostly

used for the remotely sensed data as it has been proved to be good function approximators and

classifiers. RBFNN is considered as an alternative of the other ANN architectures, as it reduces

Fig 1. Basic structure of ANN model.

https://doi.org/10.1371/journal.pone.0239509.g001
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the training time. The number of neurons in RBFNN depends on the number of training pat-

terns [40].

Study area

This study is based on the Langat River basin in Selangor, Malaysia. This basin has been

selected as the Langat River has been facing the problem of high nitrogen content between

2012 to 2015, which led to the frequent suspension of different water treatment plants during

that time period. As stated by Selangor Water Management Authority, Malaysia, the level of

ammonia-N in the Langat River has exceeded 7.0 mg/l several times between 2012 and 2015

[41], resulting in the suspension of treatment plant operations. A study by AYERS, PENG

[42], stated that the atmospheric deposition of oxides of sulphur and nitrogen in Petaling Jaya,

a city near the Langat River basin, lies within the range 277–480 meq-m-2yr-1, with nitrogen

species contribution of 56%.

This basin has a catchment area of about 2400 km2. The Langat River supplies about 65% of

the total water usage in the Selangor state. The Langat Dam (area 41.0 km2) and the Semenyih

Dam (area 56.6 km2) are the two major reservoirs supplying water to the state [43]. As per the

2013 analysis, the Langat River basin has a forest area of about 48,285.0 ha, an agricultural area

of about 142,387.916 ha and a developed area of about 69,056.1 ha [44]. About 72% of the soil

in Malaysia is acidic and highly weathered (Ultisols and Oxisols) [45], which requires fertilizers

for agriculture. The main fertilizers used in Malaysia are urea, ammonium sulphate, calcium

ammonium nitrate, phosphate rock, super phosphates, ammonium phosphate, potassium

chloride, potassium sulphate and NPK, NP and PK compound fertilizers [45]. Along with the

agricultural runoff, livestock wastes also increases the nitrogen content in rivers. Livestock

production in Malaysia consists of pork, poultry meat and eggs; and it has to import milk, beef

and mutton.

The Langat River basin has a hot and humid tropical climate with a 27˚C average annual

temperature, which is uniform throughout the year and a 2470 mm average annual rainfall dis-

tributed throughout the year [46].

Within the course of the Langat River flow, data from two water quality stations (Lui and

Kajang) were acquired from the Department of Irrigation and Drainage, Kuala Lumpur,

Malaysia. The water quality station, Lui, is situated at the river Lui, in the upstream region of

the Langat River basin, as shown in Fig 2. This region is mainly mountainous and is less popu-

lated and hence, has less agriculture and industries activities. The water quality station, Kajang,

is situated at the Langat River in Kajang town. This town is densely populated and is located

near the capital city, Kuala Lumpur. Within the path of flow from Lui to Kajang, the Langat

River receives inflow from various agricultural fields of rubber, paddy and coconuts, and from

various industries as well. These inflows increase the nitrogen content in the Langat River,

which is clearly reflected in the water quality data of Kajang. Nitrate-N at the Lui station has

an average value of 1.34 mg/l (Table 1), which increases to an average value of 7.32 mg/l at the

Kajang station. In addition, ammonia-N at the Lui station has an average value of 0.11 mg/l,

which reaches 1.96 mg/l, at Kajang station.

Methodology

Data collection and interpolation

Water quality (mainly comprising of nitrate-N and ammonia-N), water level (WL) and dis-

charge (Q) data of Lui and Kajang water quality stations and rainfall (RF) data of the nearest

rainfall gauge stations of Lui and Kajang were collected. These data were obtained from

Department of Irrigation and Drainage (DID), Malaysia, for the period of 1981–2017. The
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target variables (i.e. nitrate-N and ammonia-N) obtained were measured on monthly basis. To

align with the target variables, rest of the data were converted from daily data to monthly data,

by considering the 30-day average values as an average value for a particular month. The input

variables selected for the current study are RF, WL and Q, as the concentrations of nitrate-N

and ammonia-N in rivers depend on rainfall, water flow [48] and depth [22]. Nitrate-N con-

centration reduces when river receives short and intense rainfall water and it may increase if

the rainfall is prolonged one, as water leaches through the soil in the latter case, collecting

nitrate-N from the soil. Water flow controls the transformation processes of nitrate-N and

ammonia-N i.e. nitrification and denitrification [48]. Czernuszenko [22] reported that the

concentration of pollutants depend on depth of the river. Concentration of pollutant is lower

for rivers with greater depth.

Being an important step in data standardization [49], data received was pre-processed as it

had some gaps with respect to time. There were also few irrelevant data such as, exceptionally

high values. Such values were adjusted to the relevancy of the surrounding values. For interpo-

lating the missing data, spline curve, normalized spline curve and ANN model were used.

Spline curve and normalized spline curve did not provide satisfactory results, as these curves

interpolated some negative values for nitrate-N and ammonia-N; which are not acceptable.

Fig 2. Langat River basin [47]. Reprinted from [47] under a CC BY license, with permission from PLOS ONE,

original copyright 2017.

https://doi.org/10.1371/journal.pone.0239509.g002

Table 1. Statistical analysis of the data for both stations.

Lui Station Data Kajang Station Data

RF (mm) WL (m) Q (m3/s) Nitrate-N (mg/l) Ammonia-N (mg/l) RF (mm) WL (m) Q (m3/s) Nitrate-N (mg/l) Ammonia-N (mg/l)

Average 6.85 76.17 2.19 1.34 0.11 6.89 22.7 12.53 7.32 1.96

Standard

Deviation

3.57 1.05 1.02 0.87 0.14 3.87 0.34 7.47 6.09 1.93

Skewness 0.43 -0.69 1.29 1.01 2.41 0.61 0.34 1.21 0.998 1.39

Maximum 16.70 77.41 7.66 5.30 0.64 18.75 23.8 40.60 29.5 8.4

Minimum 0.10 74.41 0.68 0.01 0.01 0.00 22.0 2.50 0.02 0.05

https://doi.org/10.1371/journal.pone.0239509.t001
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Hence, feed-forward ANN model was used, which proved to be more accurate in interpolating

the values. The interpolated monthly average data of nitrate-N and ammonia-N for stations

Lui and Kajang are presented in Fig 3, with the data points arranged chronologically. Fig 4 rep-

resents the chronological data points of rainfall, water level and discharge for stations Lui and

Kajang.

Statistical Analysis of the data (Table 1) reported that the average rainfall received at sta-

tions Lui and Kajang were approximately same (6.85 and 6.89 mm, respectively); with the

maximum rainfall received at both the station as 16.70 and 18.75 mm, respectively. Water level

and discharge differed at Lui and Kajang stations due to different geographical locations

(mountainous and almost plane, respectively).

Data division

For ANN multilayer modelling, input data has to be divided into three sets: training, validation

and testing set [50]. The training set is used for adoption of the weights of neural network [51,

52], whereas the validation set is used for minimizing the overfitting of the network. ANN

does not adjust its weights on the validation set. The testing set is used only for testing the final

solution in order to confirm the actual predictive power of the network.

Fig 3. Plot of monthly average interpolated data of nitrate-N and ammonia-N.

https://doi.org/10.1371/journal.pone.0239509.g003
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By default, ANN modeling system divides the input data as: 70% for training set, 15% for

validation set and remaining 15% for testing set; by selecting randomly from the input set. Set-

ting the division function as random, the network will randomly select different training, vali-

dation and testing set every time the network is trained. Hence, any conclusion cannot be

drawn on the basis of accuracy by changing any internal parameter because training, valida-

tion and testing set keeps on changing every time the network is trained. Hence, for this study,

the division function was selected as division index; in which the separate index numbers were

provided for the three sets. These index numbers were selected from the input list such that all

the three sets were statistically identical. These indices were selected randomly such that the

mean values of all the three sets were close to each other. As suggested by Lagos-Avid and

Bonilla [53] and Lu, Li [54], while selecting, it was ensured that the maximum and minimum

output values were lying in the training set, so that network is trained for all patterns of the

data available. After selecting the best set, it was stored and then used for all the network train-

ing for particular pollutant and station. Selection of indices was done separately and before

training the neural network. Four set of data division were created which had the following

percentage division:

1. Training = 75%, Validation = 12.5% and Testing = 12.5%

2. Training = 80%, Validation = 10% and Testing = 10%

3. Training = 85%, Validation = 7.5% and Testing = 7.5%

4. Training = 90%, Validation = 5% and Testing = 5%

ANN training and parameter selection

GRNN, multilayer and RBFNN models were trained at different set of internal parameters.

Separate training was carried out for nitrate-N and ammonia-N for stations Lui and Kajang.

After training and testing the models on all combinations of the internal parameters, the opti-

mum model was selected based on the regression values, mean square error and mean absolute

Fig 4. Plot of monthly average data of rainfall, water level and discharge.

https://doi.org/10.1371/journal.pone.0239509.g004
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error. Table 2 represents different values of internal parameters that were tested for ANN to

get the most accurate model. Monthly average rainfall, water level and discharge were three

inputs used in the model and also three different combinations of two inputs were used for

training. Manually selected spread values were used for GRNN and RBFNN models. In multi-

layer, different models were developed having hidden layers 1, 2 and 3; having nodes in each

hidden layer ranging from 2 to 10. Multilayer models were trained with epochs ranging from

100 to 1000. Training was done on Matlab platform; in which certain set of codes made it pos-

sible to train thousands of ANN models with each possible combination of different input vari-

ables and internal parameters.

In comparison to the problems associated with the selection of the size of the input and out-

put layers the issues associated with the size and number of the hidden layer are significantly

more difficult to resolve. There are no strict guidelines available to select the correct number of

hidden layers required or the needed number of hidden neurons as well. The exact require-

ments for each layer remain very application-specific despite the development of rule-o-

thumb guidelines derived from the experience. This situation is in direct contrast to the pro-

cess of defining the number of neurons in the input and output layer, where the stimulus and

the desired response provide considerable guidance as to the number of input and output neu-

rons required to perform a specified task.

The size of the hidden layer including the hidden neurons, more specifically the number of

neurons (hidden) require a specified task that is intimately linked to the role of hidden neu-

rons. In fact, the size of the hidden neurons affects not only how well the network is able to

detect important features of the risk curves, but also its ability to generalize and make decisions

based on curves which are not encountered during training. An indication of the importance

of the architecture of the hidden layers is that hidden layers intermediately form the first

response of the input data patterns. In case that there is an extra number of hidden neurons

Table 2. Different input and internal parameters for different ANN models.

GRNN Input: Spread Values: Data Division:

1. Three Input (RF, WL,

Q)

2. Two Input (RF, WL)

3. Two Input (RF, Q)

4. Two Input (WL, Q)

0.001; 0.002; 0.004; 0.005; 0.006; 0.007; 0.008; 0.009; 0.01; 0.02; 0.04; 0.06; 0.08; 0.09; 0.1; 0.2; 0.4; 0.6; 0.8; 1;

2; 3; 4; 5

1.

Training = 75%

2.

Training = 80%

3.

Training = 85%

4.

Training = 90%

Multilayer Input:

1. Three Input (RF, WL,

Q)

2. Two Input (RF, WL)

3. Two Input (RF, Q)

4. Two Input (WL, Q)

Hidden Layers: 1, 2, 3

Nodes: 2, 3Δ.10

Epochs: 100, 200, 300. . .1000

Data Division:

1.

Training = 75%

2.

Training = 80%

3.

Training = 85%

4.

Training = 90%

RBFNN Input:

1. Three Input (RF, WL,

Q)

2. Two Input (RF, WL)

3. Two Input (RF, Q)

4. Two Input (WL, Q)

Spread Values:

0.01; 0.02; 0.04; 0.06; 0.08; 0.09; 0.1; 0.2; 0.4; 0.6; 0.8; 1; 2; 3; 4; 5

Data Division:

1.

Training = 75%

2.

Training = 80%

3.

Training = 85%

4.

Training = 90%

https://doi.org/10.1371/journal.pone.0239509.t002
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available within the layer, the final architecture might not be able to achieve generalization. On

the other hand, a few numbers of neurons might lead to the inability to custom satisfactory

and tolerate middle representations to be able to encode the final architecture to perceive and

sense the important characteristics and attributes of the input pattern.

In the extreme, the loss of generalization due to too many hidden neurons can result in the

grand-mothering effect. The grand-mothering effect refers to the condition where, if the num-

ber of hidden neurons is equal to the number of stimulus patterns employed during training,

the network is capable in theory of perfectly memorizing these input patterns. However, in

this situation, the network does not learn to detect patterns in the stimulus, but rather uses

each neuron in the hidden layer to memorize the desired response of one of the training sti-

muli. Without the ability to detect important features of a stimulus, the network is unable to

generalize.

Currently, the most common approach available to identify the appropriate number of hid-

den neurons in the hidden layer is the trial-and-error approach. Using the trial-and-error

approach is mainly to try a training process with a different number of neurons in the hidden

layer and evaluate the model’s outputs compared with the desired actual outputs since the fea-

ture of the input data and the aptitude to generalize these results. The optimal architecture of

the network is the network that could achieve good results and sense the important character-

istics of the input pattern with a minimal number of hidden neurons.

While the experimental approach to find the optimal number of hidden neurons can be

implemented successfully, it is very time consuming and requires the investigation of a large

number of neural networks. An alternative procedure for finding the optimal number of neu-

rons could be adjusted. This procedure, referred to as the dynamic-node-creation method,

progressively adds neuron to the hidden layer whenever the network can no longer be

improved using the current number of hidden neurons. A practical metric to determine how

close the network’s output is to the desired response is the sum of the squared differences (Dt).

This progressive addition to neurons is accomplished by adding a new neuron when any

improvement to the training metric Dt, is insignificant. Letting Dt denotes the value of the

training metrics at iteration t, the following equation shows the process for adding new neu-

ron:

bDt � Dt� εc

Dto

< DT; t � to þ εð Þ ð1Þ

Where to is iteration index at the prior neurons number, ε represents the number of iterations

through the error curve searching slope Dt could be computed, and ΔT denotes the slope of

the trigger. The optimal final condition as presented in Eq (1) guarantees that at best training

iterations ε have been carried out before any further new additional neuron is appended. The

stopping criteria for this procedure are achieved when Dt is adequately small or the perfor-

mance goal of convergence is attained.

The convergence of the neural network (when the number of neurons in the hidden layer is

at its optimum) is best assessed using the maximum squared difference (errors) at any time t.

Mathematically, the largest squared error is:

Dmax ¼ max
m;i
½ðSmLi � z

m

i Þ
2
�; ð2Þ

When the largest squared error experiences a drastic drop, the optimal number of neurons has

been identified. The objective of the training session is to obtain an output response SmLi , i = 1,

Δ, NL, that is ideally the same as the desired response z
m

i , i = 1,Δ, NL, where NL is the number

of neurons required to define the response.
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Performance criteria

For a neural network, to produce accurate result, the selection of hidden layers and its neurons

and number of inputs are essential. Analysis was based on the regression values (Eq 3) of train-

ing, validation and testing. Accuracy of the model cannot be decided based on the regression

values alone [55]. The regression values give the statistical measure of the data fitting to the

best fit line but cannot indicate the deviation of the predicted data from the observed data.

Hence, mean absolute error (MAE) (Eq 4), mean square error (MSE) (Eq 5), plot of the

observed and the predicted values, plot of relative error percentage values (Eq 6) and plot of

models on Taylor diagram were also considered in the process of optimum model selection.

Taylor diagrams were drawn on the basis of the testing standard deviation, testing mean

square error and testing correlation. In Taylor diagram, the model that is close to the actual

point is the optimum model. The actual point is the observed value of the pollutants (nitrate-N

or ammonia-N), which has a definite standard deviation, a correlation value of 1 and a mean

square error of zero. The closest model to the actual point has the standard deviation near to

the observed values and correlation, with the observed values, close to 1 and least mean square

error; making the model best fit for predicting the actual values. Equations for the performance

criteria are given hereafter:

• Regression Values:

r ¼
nð
P

xyÞ � ð
P

xÞð
P

yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½n
P

x2 � ð
P

xÞ2�½n
P

y2 � ð
P

yÞ2�
q ð3Þ

• Mean Absolute Error:

MAE ¼
1

n

Xn

i¼1

jx � yj ð4Þ

• Mean Square Error:

MSE ¼
1

n

Xn

i¼1

ðx � yÞ2 ð5Þ

• Relative Error Percentage:

RE ¼
jx � yj

x
� 100 ð6Þ

Where, in this study, n = number of data points, x = observed data points, and

y = predicted data points

Results

Training of GRNN, multilayer and RBFNN models with different set of parameters and input

variables resulted in tens of thousands of networks, each with different combinations of

parameters and different results. These models were analyzed based on the performance
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criteria, sequentially, to bring out the optimum model. Initially, the regression values were

used to filter out thousands of low regression valued model, followed by examining high

regression valued models on other analysis parameters to sort out the optimum one. The main

aim of the analysis was to bring out four optimum neural network models for nitrate-N and

ammonia-N each for the stations Lui and Kajang. Fig 5 represents the flow chart for the selec-

tion procedure of the optimum model for nitrate-N at Lui station. Same procedure was fol-

lowed for the selection of optimum ANN model for ammonia-N at Lui station, and nitrate-N

and ammonia-N at Kajang station.

Fig 6 represents the Taylor diagram of models for nitrate-N for at Lui station; which clearly

displays that the multilayer model with three input and general regression model with input as

RF and WL, are close to the actual point but the relative error percentage plot, and the plot of

observed vs predicted values for multilayer model were acceptable over general regression

model. Hence, the multilayer model with three inputs is considered to be the optimum in com-

parison with other models. Fig 7 represents the Taylor diagram of models for ammonia-N at

Kajang station. It represents that multilayer models with three inputs, with input as RF and

WL and with input as WL and Q are close to the actual point. On analyzing the relative error

percentage plots and plot of observed vs predicted values, it was found that the multilayer

model with three inputs has the promising results over other models. Hence, this model was

considered as the optimum in comparison with others. Similar procedures were followed for

the other two models i.e., for ammonia-N for station Lui and for nitrate-N for station Kajang.

It is evident that there cannot be one universal model which predicts the desired hydrologi-

cal parameters for different geographical locations. Model trained on the data of one particular

location cannot predict the desired variable of other locations, as all locations differ hydrologi-

cally, and historical data have different patterns which the model trained at different location

may have not seen. Hence, four different models have been selected, two for each location cor-

responding to nitrate-N and ammonia-N. Table 3 represents the configuration and regression

values of final selected models for Lui and Kajang stations for nitrate-N and ammonia-N. All

the selected models are multilayer ANN with overall regression value more than 0.90 and

input data division as 90% for training, 5% for validation and 5% for testing. Nash-Sutcliffe

Efficiency for all the four optimum models are close to 1; which indicates that models have effi-

ciently predicted the actual values.

Models were tested for different combination of input vectors and internal parameters, as

given in Table 2. Model performance, measured with mean square error, varied with variations

in different internal parameter and input vectors. Analyzing the model performance by vary-

ing number of inputs, it is observed that model has least mean square error when all the three

input vectors are used. Hence, three inputs (RF, WL, Q) are selected for optimum models.

One of the comparisons between the four set of input vectors on the basis of mean square

error of the model for nitrate-N at station Lui, is shown in Fig 8. Variation of performance of

the model on the basis of percentage data division seems to follow a pattern of training a

model with more percentage of data will lead to better results. Hence, the model with 90%

training data has least mean square error and is used for optimum models. The comparison

between the percentage data divisions on the basis of mean square error of the model for

nitrate-N at the station Lui, is shown in Fig 9. Variation of performance of the models on the

basis of number of nodes in hidden layers is presented in Fig 10 and the variation of the perfor-

mance of the models on the basis of number of hidden layers is shown in Fig 11. The concept

of increasing the number of hidden layers and number of nodes in the model, as explained ear-

lier, is to increase the complexity of the network which helps the model to learn different pat-

terns in the target data. Beyond a certain number of hidden layer and nodes in it, network

becomes over complexed leading to the decrease in the performance of the model. Within the
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selected range of number of nodes, for this study, it is observed that the mean square error is

decreasing with increase in the nodes. And for the hidden layers, the minimum mean square

error is obtained at two hidden layers, beyond which network seems to have become over

complexed as the mean square error increased for three hidden layers.

Variation of performance of models on the basis of spread values for general regression and

RBFNN models are shown in Figs 12 and 13, respectively. As shown in the Figs 12 and 13, the

testing mean square error for these models are decreasing with increase in the spread values

and after a certain point it increases with further increase in spread values, leading to the iden-

tification of a spread value having better accuracy and suitable for optimum model. Fig 14

shows the plot of the variation of mean square error against the number of epochs. The con-

cept of changing training epochs is to allow the model to train sufficient number of iterations

and also to stop before the model begins overtraining. For the model predicting nitrate-N at

station Lui, the optimum epochs obtained from Fig 14 is 300, as the model delivers least mean

Fig 5. Flow chart for the model selection for nitrate-N at Lui station.

https://doi.org/10.1371/journal.pone.0239509.g005

Fig 6. Taylor diagram for nitrate-N (Lui).

https://doi.org/10.1371/journal.pone.0239509.g006
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square error indicating that model is trained with sufficient number of iterations without

being over-trained. The number of epochs beyond which model starts overtraining depends

on the complexity of the network.

Discussion

While filtering out thousands of models, it was observed that some models of GRNN and

RBFNN performed well with training regression of more than 0.98 but did not perform

Fig 7. Taylor diagram for ammonia-N (Kajang).

https://doi.org/10.1371/journal.pone.0239509.g007

Table 3. Optimum ANN models for Lui and Kajang stations.

Station Lui Kajang

Nitrogen Compound Nitrate-N Ammonia-N Nitrate-N Ammonia-N

Parameters Type Multilayer Multilayer Multilayer Multilayer

Inputs Three Input (RF, WL, Q) Three Input (RF, WL, Q) Three Input (RF, WL, Q) Three Input (RF, WL, Q)

Hidden Layer 2 3 3 2

No. of Nodes 10 7 8 9

Epochs 300 200 1000 1000

Training data 90% 90% 90% 90%

Accuracy Overall Regression 0.98 0.968 0.92 0.98

Training Regression 0.99 0.988 0.99 0.99

Validation Regression 0.95 0.704 0.92 0.95

Testing Regression 0.90 0.65 0.61 0.92

Mean Absolute Error 0.0978 0.017 0.771 0.173

Mean Square Error 0.027 0.0013 7.09 0.121

Nash-Sutcliffe Efficiency 0.9666 0.9457 0.9588 0.9715

https://doi.org/10.1371/journal.pone.0239509.t003
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satisfactorily in testing when new input data was fed into the model, which the model was not

exposed to in the training process. This led to low regression values for testing and high mean

square error values. In the selection process, the main focus was on the testing results of the

model, which represents the exact ability of the model to predict the actual values. The possible

explanation of the low testing regression and high mean square error of those GRNN and

RBFNN models is overfitting, which generally lead to high training regression values and low

testing regression values.

As shown in Table 3, the testing regression values for ammonia-N for the Lui station and

for nitrate-N for the Kajang station were 0.65 and 0.61, respectively, which are considerably

low in comparison with testing regression values for other models. The reason for the low test-

ing regression values lies in the correlation of the input variables mainly with the output vari-

ables. The data obtained for the study showed good correlation for nitrate-N for the Lui

station and satisfactory correlation for ammonia-N for the Kajang station but low values for

the nitrate-N for the Kajang station and for ammonia-N for the Lui station. The correlation

for the Lui station for RF, WL and Q with ammonia-N were 0.57, 0.61 and 0.61 respectively

Fig 8. Comparison of mean square error for different input vectors for nitrate-N at station Lui.

https://doi.org/10.1371/journal.pone.0239509.g008

Fig 9. Comparison of mean square error for different training data division percentage for nitrate-N at station

Lui.

https://doi.org/10.1371/journal.pone.0239509.g009
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and for the Kajang station for RF, WL and Q with nitrate-N were 0.69, 0.75 and 0.67 respec-

tively. Corresponding to the low values of the correlation and other unaccountable natural

parameters, upon which concentration of these compound depends, the model failed to estab-

lish the relation between the input variables and the output variables, leading to low testing

regression.

Fig 15 represents the percentage relative error of the four optimum models selected for sta-

tions Lui and Kajang for nitrate-N and ammonia-N. Data points in these figures are arranged

chronologically. Relative error figures represent that the model generated more error for the

data recorded in earlier days i.e. in 1980s. Some of these errors reached near 100%, but the

maximum number of errors were close to zero-percentage line. High error values could be

brought close to the zero-percentage line using deep learning methods.

Fig 16 represents the plot of the observed vs predicted values for the optimum selected

models. The trend line formed approximately 45˚ for all the selected models and also, nearly

all the points lied near to the trend line. This indicated that the predicted values were very

close to the observed values. Hence, making these models optimum for predicting the monthly

average nitrate-N and monthly average ammonia-N for the Langat River.

Fig 10. Plot of variation of mean square error against number of nodes in hidden layers for nitrate-N at station

Lui.

https://doi.org/10.1371/journal.pone.0239509.g010

Fig 11. Plot of variation of mean square error against number hidden layers for nitrate-N at station Lui.

https://doi.org/10.1371/journal.pone.0239509.g011
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According to Chitsazan, Nadiri [39], the sources of uncertainty in model prediction lies in

the uncertainty in model inputs, model structure, weights and biases. However, most impor-

tant source is the uncertainty in the model inputs. In the current study, model inputs had few

time gaps. Some of those minor time gaps were covered with interpolated values, thus intro-

ducing some amount of uncertainty in model inputs. Average uncertainty in the prediction

can be calculated using the following equation [56]:

s ¼
1

n
Pn

i¼1

jx � yj
x

� �

� 100 ð7Þ

where: σ = average uncertainty percentage, n = number of data points, x = observed data

points, and y = predicted data points

Uncertainty increases at every level of calculation or prediction performed using the data

already having some amount of uncertainty. Interpolation of the data, used in this study, for

obtaining the missing values had introduced some amount of uncertainty in the input data,

which may have multiplied in the output values after prediction. To reduce the amount

Fig 12. Plot of variation of testing mean square error against spread values for general regression model for

nitrate-N at station Lui.

https://doi.org/10.1371/journal.pone.0239509.g012

Fig 13. Plot of variation of testing mean square error against spread values for RBFNN model for nitrate-N at

station Lui.

https://doi.org/10.1371/journal.pone.0239509.g013
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Fig 14. Plot of variation of mean square error against epochs for nitrate-N at station Lui.

https://doi.org/10.1371/journal.pone.0239509.g014

Fig 15. Relative error percentage plot for optimum selected model.

https://doi.org/10.1371/journal.pone.0239509.g015
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uncertainty in the output values it is advised to try to minimize it from the initial stage of pro-

cessing the raw data obtained for the study.

Average uncertainty of all the four selected optimum models, calculated by Eq (7), are

shown in Fig 17. Model predicting nitrate-N for both the stations, Lui and Kajang, show less

uncertainty of 9.5%. Ammonia-N model at station Lui shows highest uncertainty of 23.9%.

These models seem appropriate for nitrate-N and ammonia-N prediction at station Lui and

Kajang.

Selected models provide improved results when compared with the existing models

available in literature. Analyzing the accuracy of the nitrate-N-predicting models (Table 4),

existing in literature, it can be observed that current study models provide results with bet-

ter regression values. Anctil, Filion [24] used stacked multilayer perceptron to model

nitrate-nitrogen flux in streams and had the efficiency index of 0.888. Suen and Eheart [15]

implemented back-propagation and radial basis function neural network for predicting

nitrate-N concentration in streams. Sharma, Negi [23] predicted nitrate-N concentration in

drainage water. Markus, Hejazi [25] predicted weekly nitrate nitrogen, in streams, using

evolutionary polynomial regression, Naïve Bayes model and back-propagation neural

network.

Fig 16. Observed versus predicted plot for optimum selected models.

https://doi.org/10.1371/journal.pone.0239509.g016
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Conclusion

Selection of the appropriate internal parameters for the ANN models along with the relevant

input variables are essential to ensure accuracy. This paper discussed the selection procedure

of those internal parameters and input variables for the ANN model for predicting the

monthly average nitrate-N and monthly average ammonia-N levels in the Langat River in

Selangor, Malaysia. Also, the discussion about the variation of performance response of the

model against the variation of different internal parameters and input variables is also

included. Among the three model architectures (i.e. GRNN, multilayer and RBFNN), the

Fig 17. Average uncertainty of different models.

https://doi.org/10.1371/journal.pone.0239509.g017

Table 4. Comparison of current study results with literature.

Current Study Literature

Station/

Author

Lui Lui Kajang Kajang Anctil et al.

(2009)

Suen and Eheart

(2003)

Sharma et al.

(2003)

Markus et al. (2010)

Prediction

Variable

Monthly Average

Nitrate-N

Monthly Average

Ammonia-N

Monthly

Average Nitrate-

N

Monthly

Average

Ammonia-N

Nitrate-

nitrogen

flux

Nitrate

concentration

Nitrate

concentration

Weekly nitrate-

nitrogen

Accuracy Regression:

• Overall: 0.98

• Training:

0.99

• Validation:

0.95

• Testing: 0.90

MAE:

0.0978MSE:

0.027Nash-

Sutcliffe

Efficiency:

0.9666

Regression:

• Overall:

0.968

• Training:

0.988

• Validation:

0.704

• Testing: 0.65

MAE: 0.017MSE:

0.0013Nash-

Sutcliffe

Efficiency:

0.9457

Regression:

• Overall: 0.92

• Training:

0.99

• Validation:

0.92

• Testing:

0.61

MAE:

0.771MSE:

7.09Nash-

Sutcliffe

Efficiency:

0.9588

Regression:

• Overall: 0.98

• Training:

0.99

• Validation:

0.95

• Testing: 0.92

MAE:

0.173MSE:

0.121Nash-

Sutcliffe

Efficiency:

0.9715

Efficiency

index =

0.888

Overall accuracy:

• Method one:

• BPNN = 0.784

• RBFNN = 0.752

• Method two:

• BPNN = 0.832

• RBFNN = 0.832

• Boolean

output (Method

two)

• BPNN = 0.866

• RBFNN = 0.893

Correlation

coefficient

• RBFNN

• Tillage = 0.8079

• No

tillage = 0.6911

• BPNN

• Tillage = 0.8017

• No

Tillage = 0.6635

RMSE for ANN:

• Training = 0.787

mg/l

• Testing = 0.935

mg/l

RMSE for

evolutionary

polynomial

regression (EPR):

• Training = 0.991

mg/l

• Testing = 1.010

mg/l

Critical success

index for NBM:

• Training = 0.286

• Testing = 0.188

https://doi.org/10.1371/journal.pone.0239509.t004
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multilayer model performed very well for nitrogen and ammonia-N prediction. Among the

various sets of internal parameters and inputs, selected models have three input variables (RF,

WL, and Q) and the data division for training as 90%, validation as 5% and testing as the

remaining 5%. The minimum overall regression of the four selected optimum models is 0.92.

Nash-Sutcliffe Efficiency for the selected optimum models are very close to 1. Maximum rela-

tive error percentage points are close to zero-percentage line, with few data point approaching

more than 100%; which can be brought back to the zero-percentage line by using deep leaning

method. Based on the results and their comparison between different sets of training data divi-

sions, it can be stated that higher percentage of data for training will eventually lead to better

accuracy of the model.
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56. Zeleňáková M,Čarnogurská M, Šlezingr M, SłyśD. Model based on dimensional analysis for prediction

of nitrogen and phosphorus concentration in the River Laborec. Hydrology and Earth System Sciences

Discussions. 2012; 9(4):5611–34. https://doi.org/10.5194/hessd-9-5611-2012

PLOS ONE Nitrogen prediction using artificial neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0239509 September 28, 2020 23 / 23

https://doi.org/10.1111/sjtg.12234
https://doi.org/10.1371/journal.pone.0188489
http://www.ncbi.nlm.nih.gov/pubmed/29216200
https://doi.org/10.1007/s00521-014-1675-0
https://doi.org/10.5194/hess-15-2693-2011
https://doi.org/10.1016/j.scitotenv.2013.11.038
http://www.ncbi.nlm.nih.gov/pubmed/24300458
https://doi.org/10.1016/j.scitotenv.2017.01.020
https://doi.org/10.1016/j.scitotenv.2017.01.020
http://www.ncbi.nlm.nih.gov/pubmed/28089531
https://doi.org/10.1016/j.scitotenv.2019.133591
http://www.ncbi.nlm.nih.gov/pubmed/31386956
https://doi.org/10.1016/j.envsoft.2005.12.002
https://doi.org/10.5194/hessd-9-5611-2012
https://doi.org/10.1371/journal.pone.0239509

