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Discovery of G protein coupled receptors for long chain free fatty acids (FFAs), FFA1
(GPR40) and GPR120, has expanded our understanding of these nutrients as signaling
molecules. These receptors have emerged as important sensors for FFA levels in the
circulation or the gut lumen, based on evidence from in vitro and rodent models, and
an increasing number of human studies. Here we consider their promise as therapeutic
targets for metabolic disease, including type 2 diabetes and obesity. FFA1 directly medi-
ates acute FFA-induced glucose-stimulated insulin secretion in pancreatic beta-cells, while
GPR120 and FFA1 trigger release of incretins from intestinal endocrine cells, and so indi-
rectly enhance insulin secretion and promote satiety. GPR120 signaling in adipocytes and
macrophages also results in insulin sensitizing and beneficial anti-inflammatory effects.
Drug discovery has focused on agonists to replicate acute benefits of FFA receptor signal-
ing, with promising early results for FFA1 agonists in man. Controversy surrounding chronic
effects of FFA1 on beta-cells illustrates that long term benefits of antagonists also need
exploring. It has proved challenging to generate highly selective potent ligands for FFA1 or
GPR120 subtypes, given that both receptors have hydrophobic orthosteric binding sites,
which are not completely defined and have modest ligand affinity. Structure activity rela-
tionships are also reliant on functional read outs, in the absence of robust binding assays
to provide direct affinity estimates. Nevertheless synthetic ligands have already helped
dissect specific contributions of FFA1 and GPR120 signaling from the many possible cel-
lular effects of FFAs. Approaches including use of fluorescent ligand binding assays, and
targeting allosteric receptor sites, may improve further pre-clinical ligand development at
these receptors, to exploit their unique potential to target multiple facets of diabetes.
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INTRODUCTION
Free fatty acids (FFAs) have traditionally been viewed as nutri-
ents and metabolic substrates (Yaney and Corkey, 2003). However
there is emerging evidence for direct signaling pathways activated
by FFAs with key roles in physiology and pathology, particu-
larly with respect to metabolic diseases such as type 2 diabetes.
In common with many other lipid mediators, long chain FFAs
are also ligands for the transcription factor family of peroxisome
proliferator-activated receptors (PPARs), which for example regu-
late expression of genes involved in lipid metabolism (Varga et al.,
2011). Within the last decade, deorphanization of several FFA
binding G protein coupled receptors (GPCRs) has enhanced the
spectrum of short and long term signaling pathways activated by
these molecules (Stoddart et al., 2008; Hudson et al., 2011; Taluk-
dar et al., 2011). As the largest family of cell surface receptors in
man, GPCRs have proved tractable drug targets in the past (Over-
ington et al., 2006). However it is perhaps less recognized that this
clinical exploitation is currently restricted to around 5% of the
known receptor proteins. The FFA GPCRs provide good illustra-
tive examples of receptors whose therapeutic targeting might yield
real benefits for patients, but for which there are also obstacles

to characterizing their pre-clinical pharmacology and develop-
ing selective high affinity synthetic ligands and translating these
findings through to the clinic. Chiefly these reside around the
lipophilicity of both the ligands and receptor binding sites, and
also understanding the complex interplay between the pleiotropic
effects of FFAs – encompassing influences on cell membrane
composition, metabolism, and actions on various receptors.

Here we illustrate these challenges by focusing on two GPCRs
responsive to saturated and unsaturated FFAs with long (C12–
C22) aliphatic chains (Figure 1). FFA1 (also known as GPR40)
is a receptor which is related in amino sequence to medium and
short chain FFA GPCRs FFA2 and FFA3 (Briscoe et al., 2003; Itoh
et al., 2003; Stoddart et al., 2008; Hudson et al., 2011). GPR120 is
a distant phylogenetic relative of FFA1 (Fredriksson et al., 2003;
Ichimura et al., 2009), but interestingly has co-evolved a simi-
lar specificity for endogenous FFA ligands (Hirasawa et al., 2005;
Talukdar et al., 2011). We review how the distribution and function
of these receptors highlights them as novel targets, particularly for
treatment of type 2 diabetes in which prevalence worldwide is set to
escalate to 366 million by 2030 (Wild et al., 2004; Rennie and Jebb,
2005; Ogden et al., 2006). With some caveats, significant progress
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FIGURE 1 | Amino acid sequences for human long chain FFA GPCRs.

Diagrams represent FFA1 (A), GenBank NM_005303) and the short isoform
of GPR120S [(B), BC101175] with the position of the 16 amino acid insert in
GPR120L (NM_181745) indicated in the inset. Putative glycosylation sites
are indicated on the extracellular Asn residues by white on black, while the
conserved disulfide bridge from extracellular loop 2, and two unproven
palmitoylation sites in GPR120, are also indicated by black on gray Cys
residues. Basic Arg residues (white on red) have been implicated in
recognizing the carboxylate anions of FFA and other agonists (Sum et al.,
2007; Suzuki et al., 2008). A number of other residues have been identified
as important for GW9508 binding to FFA1, some of which are indicated
here (black on blue; Sum et al., 2007); however the specificity with which
these mutations alter GW9508 binding, compared to more general effects
on FFA1 activation has since been questioned (Smith et al., 2009).

has been made in elucidating the signaling roles of these recep-
tors in pancreatic β-cells, adipocytes, intestinal enteroendocrine
cells, and elsewhere. In part this has been achieved by successful
development of synthetic agonists and antagonists, and there are
further opportunities for improved ligand development at these
receptors in the future.

LONG CHAIN FFA GPCRs AS THERAPEUTIC TARGETS
FFA1 – A FFA SENSING RECEPTOR IN THE PANCREATIC β-CELL
FFA1 was the first long FFA receptor cloned and described in
2003, as a predominantly Gq/11 coupled receptor which responds
to both saturated (e.g., palmitic acid, C16:0), mono-unsaturated

(e.g., oleic acid, C18:1) and poly unsaturated long chain FFAs
(e.g., docosahexaenoic acid, DHA), C22:6; Briscoe et al., 2003;
Itoh et al., 2003; Kotarsky et al., 2003). It is also the FFA receptor
for which the widest range of synthetic ligands are now available
(Table 1; Figure 2), including both agonists (such as GW9508)
and antagonists (e.g., GW1100, pK b 6.0; Briscoe et al., 2006; Gar-
rido et al., 2006; Pfizer compound 15i; Humphries et al., 2009).
In part the screening for novel FFA1 compounds was aided by
the early discovery that certain thiazolidinedione (TZD) PPARγ

ligands, such as rosiglitazone, were also agonists at FFA GPCRs
(Kotarsky et al., 2003; Tan et al., 2008; Smith et al., 2009). Some of
the novel FFA1 agonists (e.g., Tan et al., 2008; Zhou et al., 2010)
are thus structurally based on the TZD backbone, while others
arose from conformational restriction of the aliphatic FFA car-
bon backbone (e.g., Christiansen et al., 2008). Recent studies have
also explored ways to improve the pharmacokinetic properties of
both FFA1 agonist (Christiansen et al., 2011) and antagonist series
(Humphries et al., 2009).

The predominant (though not exclusive) expression of FFA1
is in the pancreas and in particular β-cells (Briscoe et al., 2003;
Itoh et al., 2003; Tomita et al., 2005, 2006). Several investiga-
tions have confirmed that FFA1 plays a crucial role in the short
term stimulation of insulin secretion from the β-cell, including
pharmacological, genetic knockout, or RNA interference knock-
down approaches (Itoh et al., 2003; Steneberg et al., 2005; Briscoe
et al., 2006; Latour et al., 2007; Tan et al., 2008; Alquier et al.,
2009; Wu et al., 2010). Thus development of FFA1 agonists might
be expected to be beneficial in type 2 diabetes treatment. How-
ever this contrasts with the well known relationship between long
term circulating FFA levels and β-cell dysfunction (Yaney and
Corkey, 2003). Elevated plasma FFA are common in type 2 dia-
betes and are linked with the onset of peripheral and hepatic
insulin resistance and are also suggested to represent a critical
link between insulin resistance and β-cell dysfunction (Boden and
Shulman, 2002). The contribution of FFA1 to such chronic dele-
terious effects of long chain FFAs has largely been addressed by
knockout and transgenic animal models, and has proved some-
what controversial. Using FFA1 knockout mice, Steneberg et al.
(2005) demonstrated the importance of FFA1 for acute insulin
secretion, but also showed that the absence of FFA1 protected
mice on a high fat diet (HFD) from a number of characteristics
associated with type 2 diabetic phenotype, such as obesity-induced
hyperinsulinemia, glucose intolerance, and hypertriglyceridemia.
Conversely islet cell specific transgene expression of FFA1 led to a
number of indicators of β-cell dysfunction (Steneberg et al., 2005).
Recent in vivo data using a small molecule antagonist DC260126
at least in part supports these observations, and makes the case
for FFA1 antagonists, rather than agonists, as clinically relevant
ligands for type 2 diabetes treatment (Hu et al., 2009; Zhang et al.,
2010). However, other studies on FFA1 knockout mice have failed
to replicate the original findings, suggesting that these animals are
as susceptible as wild type littermates to the adverse consequences
of a HFD (Latour et al., 2007; Kebede et al., 2008; Lan et al., 2008;
Tan et al., 2008). Indeed one investigation reported a beneficial
result of transgenic FFA1 overexpression in improved glucose tol-
erance (Nagasumi et al., 2009). Some of the discrepancies in these
results may be down to the precise experimental conditions used,
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Table 1 | Summary of long chain FFA GPCR agonist pharmacology.

Agonist FFA1 pEC50 GPR120 pEC50 Selectivity and comments Reference

EXAMPLE FFAs

Palmitic acid (C16:0) 5.2–5.3 4.3 Several actions as nutrients and signaling molecules.

Potency observed highly dependent on assay

constituents (e.g., BSA)

Briscoe et al. (2003), Itoh

et al. (2003), Hirasawa

et al. (2005)

Oleic acid (C18:1) 4.4–5.7 4.5

DHA (C22:6) 5.4–6.0 5.4

PPARγ AGONISTS

Rosiglitazone 5.0–5.6a N.D. GPR40 activity shared by related TZDs such as

troglitazone, ciglitazone, and pioglitazone. Low

potency GPR120 agonism for rosiglitazone (at

100 μM; Watson et al., unpublished)

Kotarsky et al. (2003),

Hara et al. (2009a), Smith

et al. (2009)

FFAR1 AGONISTS

MEDICA16 5.5–5.9a <5.0 Kotarsky et al. (2003),

Hara et al. (2009b)

GW9508 6.6–7.3 5.5 GPR40 activity 100-fold selective over a panel of 360

other targets. pEC50 values for PPARα, δ, and γ were

4.0, 4.0, and 4.9 respectively

Briscoe et al. (2006),

Smith et al. (2009), Sum

et al. (2007)

Cpd B 7.1 N.D. Lead compound of series inactive at PPARs

(<10 μM). GPR40 knockout abolished effects of Cpd

B and C on insulin secretion in vivo

Tan et al. (2008), Zhou

et al. (2010)Cpd C 6.8

TUG424 7.5b N.D. No activity at FFA2 and FFA3 reported (TUG424).

Cpd 37 has 100-fold selectivity for FFA1 over FFA2,

FFA3, and PPARs, with improved pharmacokinetic

properties owing to reduced lipophilicity

Christiansen et al. (2008),

Christiansen et al. (2011)Cpd 37 7.1b

TAK-875 7.1c N.D. Sasaki et al. (2011), Tsuji-

hata et al. (2011)

GPR120 AGONISTS

Grifolic acid N.D. N.D. Weak GPR120 partial agonist without GPR40 activity

(at 100 μM)

Hara et al. (2009b)

NCG21 (Cpd 12) 4.7 5.9 Lacks PPARα, γ, δ agonist activity (at 100 μM) Suzuki et al. (2008), Sun

et al. (2010)

Isoindolin-1-one series (Cpd 2) N.D. 6.7 Banyu patent Arakawa et al. (2010)

Phenyl-isoxazol-3-ol series (Cpd 15) N.D. 7.2 Banyu patent Hashimoto et al. (2010)

Metabolex (Cpd 36) N.D. >6.0 Cpd 36 (100 mg/kg) reduced glucose excursion by

45% after an oral glucose tolerance test in lean

C57Bl/6J mice

Ma et al. (2010)

Agonist pEC50 values quoted were obtained from fluorescent indicator measurements of Ca2+ mobilization, except aSmith et al. (2009) compared TZD agonism for

FFA1 ERK activation, while Kotarsky et al. (2003) measured FFA1 Ca2+ signaling using an aequorin reporter gene; bmeasurement of insulin secretion/DMR assay;
cmeasurement of inositol phosphate accumulation. N.D. – not determined; pEC50 values have not been published.

but they are also indicative of the complex multiple mechanisms,
even at the cellular level, which generate FFA responses. Given
our current understanding of FFA1 signaling, in which many dif-
ferent FFAs appear equi-effective agonists (Briscoe et al., 2003;
Itoh et al., 2003), it is unlikely that this receptor can be solely
responsible for long term mechanisms which differ substantially
between pro-apoptotic effects of saturated FFAs and protective
actions of unsaturated FFAs (Dhayal et al., 2008). Moreover con-
stitutive knockout and transgenic mouse studies cannot report the
effects of FFA1 in complete isolation from other FFA metabolic
and nuclear receptor signaling cascades. For example, cross talk
between FFA1 and other receptor pathways is clearly evident from
the changes in PPAR and lipid handling gene transcription result-
ing from FFA1 overexpression (Steneberg et al., 2005). Knockout

studies also involve wider loss of FFA1 from other tissues, where
its physiological functions are currently less clear – for example in
glucagon producing pancreatic cells (Flodgren et al., 2007), intesti-
nal enteroendocrine cells (Edfalk et al., 2008), taste buds (Cartoni
et al., 2010), and neurons (Briscoe et al., 2003; Ma et al., 2007;
see GPR120 agonists – a multi pronged attack on type 2 diabetes?
below).

The vast majority of FFA1 studies have used in vitro or in vivo
animal models, but its expression and function in human iso-
lated islets suggests applicability of these findings to man (Tomita
et al., 2005, 2006; Vettor et al., 2008). There are also interesting
links between the prevalence of FFA1 coding polymorphisms with
insulin secretory capacity in a male cohort (R211H; Ogawa et al.,
2005), or with obese individuals at risk from diabetes (G180S;
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FIGURE 2 | Chemical structures of example FFA GPCR agonists (A) and

three reported FFA1 antagonists (B). Information on agonist pharmacology,
with references, is provided inTable 1. The structure of Metabolex example
36 is reproduced from the relevant GPR120 agonist patent (Ma et al., 2010)
and two Banyu compounds are shown from isoindolin-1-one derivativesa (cpd

2; Arakawa et al., 2010) and the phenyl-isoxazol-3-ol seriesb (cpd 15;
Hashimoto et al., 2010). Both GW1100 (Briscoe et al., 2006), Pfizer compound
15i (Humphries et al., 2009), and DC260126 (Hu et al., 2009) inhibited agonist
stimulated FFA1 receptor calcium responses in transfected cells with
respective pIC50 values of 6.0, 7.7, and 6.0.

Vettor et al., 2008). However thus far there is little published
information on GPR40 ligands from clinical trials. Pre-clinically
a number of pharmaceutical companies have reported effective
compounds in various models of T2DM (Negoro et al., 2010; Her-
ling et al., 2011; Jagannath et al., 2011; Sasaki et al., 2011; Tsujihata
et al., 2011). Clinically the most advanced GPR40 agonists are
developed by Takeda. Initial PK data in healthy volunteers on the
Takeda pharmaceuticals agonist TAK-875 demonstrated good tol-
erability and pharmacokinetic properties suitable for a once-daily

regimen (Naik et al., 2011). Excitingly recent data presented at the
American Diabetes Association conference demonstrated a dose-
dependent decrease in HbA1c in patients treated with TAK-875 for
12 weeks with an efficacy similar to glimepiride but a significantly
reduced incidence of hypoglycemia (Viswanathan et al., 2011).
Therefore whilst a requirement for antagonists to block the pan-
creatic effects of chronically elevated FFAs still remains an untested
hypothesis, there is mounting evidence that an FFA1 agonist will
produce significant benefits to type 2 diabetes patients.
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GPR120 AGONISTS – A MULTI PRONGED ATTACK ON TYPE 2 DIABETES?
The second long chain FFA receptor, GPR120, demonstrates a
similar ligand specificity to FFA1 in its activation by C12–C22
saturated and unsaturated FFAs (Hirasawa et al., 2005) – though
ω3 polyunsaturated FFAs, such as DHA, have often been the
focus as endogenous ligands (Oh et al., 2010; Talukdar et al.,
2011). GPR120 is activated by some synthetic agonists (Table 1;
Figure 2) designed for PPAR or FFA1 receptors, but with lower
potency, such as GW9508 (Briscoe et al., 2006) or MEDICA16
(Kotarsky et al., 2003; Hara et al., 2009b). GW1100 is relatively
selective as an antagonist for FFA1 over GPR120 (Briscoe et al.,
2006). Conversely members of the compound series from a TZD
derivative reported by Suzuki et al. (2008) are ∼10-fold more
potent at GPR120 than FFA1 and display little PPAR activity (e.g.,
NCG21; Table 1); other compounds from the same group have
yet to be fully characterized (Sun et al., 2010). Grifolic acid has
also been suggested as a low potency, and relatively low efficacy,
GPR120 partial agonist (Hara et al., 2009b). Finally, the structures
of additional GPR120 agonists, without a full description of their
pharmacology, have entered the public domain through patent
applications (Arakawa et al., 2010; Hashimoto et al., 2010; Ma
et al., 2010; Figure 2; Table 1). Interestingly both compound series
revealed in the Banyu patents indicate that a carboxylic acid group
is dispensable for generating GPR120 agonists with sub micro-
molar potency (Table 1; Arakawa et al., 2010; Hashimoto et al.,
2010).

Like FFA1, GPR120 appears mainly coupled to Gq/11 pro-
teins leading to intracellular Ca2+ mobilization, and also stim-
ulates protein kinases such as extracellular signal related kinase
(ERK) and Akt (Hirasawa et al., 2005; Katsuma et al., 2005; Oh
et al., 2010). However GPR120 is also phosphorylated after ago-
nist stimulation, and recruits β-arrestin adaptors responsible for
desensitization, internalization, and G protein independent sig-
naling pathways (Hirasawa et al., 2005; Burns and Moniri, 2010;
Oh et al., 2010). A further complication, compared to FFA1, is
that human GPR120 has two splice variants which differ in their
coding regions (Fredriksson et al., 2003) – the “short” isoform
(GPR120S; GenBank accession number BC101175) contains 361
residues, whilst the “long” isoform (GPR120L; NM_181745) con-
tains 16 additional amino acid residues between positions 231 and
247 in intracellular loop 3 (ICL3; Figure 1). Early studies cloned
and examined the pharmacology of GPR120L (Hirasawa et al.,
2005; Briscoe et al., 2006), but more recent investigations sug-
gest that the short isoform homolog may predominate in other
primate and rodent species (Tanaka et al., 2008b; Moore et al.,
2009). Data from our laboratories (Watson et al., in preparation)
suggest clear differences in the intracellular signaling proper-
ties of the two isoforms, with human GPR120L impaired in G
protein dependent but not arrestin dependent signaling. Thus
it will be important in future to confirm the GPR120 splice
variant involved in the cell type specific responses described
below.

In common with FFA1, GPR120 is an anti-diabetic drug tar-
get but the focus has been on its indirect effects – on insulin
secretion and insulin resistance – through its expression in
enteroendocrine cells, adipocytes, and immune cells (Miyauchi
et al., 2009; Talukdar et al., 2011). GPR120 is localized to intestinal

enteroendocrine cells, such as colonic L cells, and its stimulation
releases incretin hormones such as glucagon like peptide 1 (GLP1)
and cholecystokinin (CCK) into the circulation (Hirasawa et al.,
2005; Tanaka et al., 2008a). These peptides have beneficial actions
in stimulating insulin secretion, and in the context of obesity
related diabetes, they also promote satiety. From a drug discov-
ery point of view, targeting colonic endocrine cells with GPR120
agonist may have practical advantages, in that the receptors in
these cells sense luminal, rather than circulating FFAs. Thus the-
oretically, orally administered GPR120 drugs would not require
absorption into the systemic circulation for this therapeutic action
although this does depend on the luminal/apical distribution of
the receptors.

Although incretin hormone secretion was originally described
as a GPR120 specific effect (Hirasawa et al., 2005), it is clear that
FFA1 is also co-expressed in several types of insulin endocrine cell
and can exert similar actions in vitro and in vivo (Edfalk et al., 2008;
Liou et al., 2011). RT-PCR studies have identified both GPR120
and FFA1 mRNAs in intestinal endocrine cell lines such as STC-1
(Hirasawa et al., 2005). While not demonstrating co-localization
of the receptors at the single cell level, this complicates the assign-
ment of a particular effect to one FFA receptor in the absence of
highly selective tool compounds. Notably the majority of studies
that have indicated the significance of FFA1 in β-cells, or GPR120
in colonic L cells, do so by genetic or knockdown approaches
which manipulate receptor expression – in general such evidence
suggests the target receptor is necessary, rather than sufficient, for
a particular response. This evidence leaves open the possibility
that both receptors act in concert to produce their physiological
effects in these cell types, through signaling cross talk or perhaps
closer association as a GPCR heterodimer (Pin et al., 2007). FFA1
and GPR120 are also both detected by RT-PCR in taste buds, and
may act thus act as “preference” sensors for dietary FFAs (Mat-
sumura et al., 2009; Cartoni et al., 2010). Though yet to be fully
tested, this raises a possibility of anti-obesity drugs which tar-
get such chemosensors to modulate appetite for fat containing
diets (Dramane et al., 2011). This is of course an area that could
be further exploited by the food industry and if this hypothe-
sis is proved correct one could envisage a future application for
FFA receptor ligands as a satiety factor in food with limited fat
content.

More recently independent roles for GPR120, not shared by
FFA1, have been proposed due to its expression in differentiated
adipocytes and macrophages (Gotoh et al., 2007; Oh et al., 2010).
In adipocytes, GPR120 activation increased glucose uptake and
adipogenesis, for example in response to circulating ω3 polyunsat-
urated fatty acids, and GPR120 signaling in macrophages exerted
anti-inflammatory actions (Gotoh et al., 2007; Oh et al., 2010;
Talukdar et al., 2011). Similar in vivo dual effects of ω3 FFAs, act-
ing via GPR120, were confirmed through comparison of wild type
and GPR120 knockout mice (Oh et al., 2010). Thus as novel treat-
ments for type 2 diabetes, GPR120 agonists might be unique in
improving insulin sensitivity while also reducing the “metabolic”
inflammation implicated in the disease pathogenesis (Talukdar
et al., 2011). Oh et al. (2010) also revealed that GPR120 responses
in adipocytes and macrophages relied on distinct cell signaling
mechanisms. In adipocytes, its enhancement of glucose uptake
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was wholly dependent on Gq/11 protein activation, while its anti-
inflammatory effect required β-arrestin adaptor proteins. This
requirement for different GPR120 signaling cascades raises inter-
esting questions about whether such pathways can be activated
selectively by agonist-GPR120 complexes in different cell types –
through selective expression of different receptor splice variants, or
therapeutically, through the use of functionally “biased” GPR120
ligands (Rajagopal et al., 2010).

Our knowledge of GPR120 pharmacology, and availability of
tool compounds to dissect it, is thus less advanced compared
to FFA1, particularly given the lack of reported antagonists for
GPR120. However the expression pattern and known functions
of this receptor suggest that GPR120 agonists may have distinct
synergistic actions in different tissues that offer a multi faceted
approach to mitigate the causes and symptoms of type 2 diabetes.
Indeed it can be argued that such agonists are already marketed as
nutritional supplements. For example the case has been made for
orally administered fish oil poly unsaturated fatty acids (PUFAs),
such as DHA, acting physiologically at GPR120 (Oh et al., 2010;
Talukdar et al., 2011). Other beneficial dietary FFAs, such as con-
jugated linoleic acid, are also FFA GPCR agonists (Schmidt et al.,
2011). Given the apparent lack of selectivity of FFA GPCRs for
a range of “good” and “bad” long chain FFAs, it will be neces-
sary to test the extent to which the specific benefits of PUFAs
derive from binding FFA1 or GPR120 receptors. As an alterna-
tive, the possibility of targeting GPR120 with synthetic ligands is
now supported by emerging data from patents filed by Banyu and
Metabolex (Arakawa et al., 2010; Hashimoto et al., 2010; Ma et al.,
2010). These companies have described potent small molecule
GPR120 agonists (Table 1; Figure 2) with good oral bioavail-
ability, which increased glucose-stimulated insulin secretion in
mouse models representing both lean and disease model states
(Hashimoto et al., 2010; Ma et al., 2010). A more thorough char-
acterization of GPR120 function elsewhere – in taste buds, lung
tissue (Miyauchi et al., 2009), and bone osteoblasts and osteo-
clasts (Cornish et al., 2008) – may also lead to new therapeutic
avenues, together with an increased awareness of potential side
effects.

EXPERIMENTAL CHALLENGES IN UNDERSTANDING LONG
CHAIN FFA RECEPTOR PHARMACOLOGY
PLEIOTROPIC ACTIONS OF FFAs
As illustrated in the previous sections, one of the key controls for
FFA1 or GPR120 investigations is to demonstrate that the response
is specific for that receptor. There is potential for the involve-
ment of additional FFA GPCRs, other fatty acid binding proteins
and PPAR nuclear receptors, and effects as metabolism substrates
(Yaney and Corkey, 2003; Hudson et al., 2011; Varga et al., 2011).
As their rapid metabolism by β-oxidation indicates, the lifespan
of endogenous FFA ligands during incubations is relatively short,
and their metabolites may have their own independent actions. In
addition chronic changes in the quality and quantity of FFAs in the
plasma lead to changes plasma membrane composition and fluid-
ity. This has the capacity to influence several membrane signaling
pathways indirectly (Calder, 2008; Gawrisch et al., 2008), includ-
ing those of other GPCRs such as the ghrelin receptor (Delhanty
et al., 2010). Polyunsaturated FFAs in particular (e.g., arachidonic

acid, DHA) are themselves converted into new signaling media-
tors such as the prostaglandins and the resolvins, with their own
receptors (Serhan et al., 2011).

The increased pharmacological toolbox of synthetic ligands,
which lack some of the endogenous FFA effects, can now help in
isolating FFA GPCR actions. Limited specificity (e.g., GW9508
for FFA1 versus GPR120), relatively low affinity, and possible
unknown pharmacological actions (e.g., at PPARs; Table 1) of
these compounds must still be borne in mind when assessing their
effects. Isolating responses mediated by FFA GPCRs might also
be aided by consideration that rapid signaling events are expected
from these cell surface receptors (e.g., intracellular calcium mobi-
lization), though fast non-genomic actions of PPARs have also
been reported, prior to real recognition of the possible existence of
FFA GPCRs (Gardner et al., 2005). In recombinant cell lines, clean
systems for assessing FFA receptor pharmacology can be demon-
strated by comparison with non-transfected cells, or by receptor
expression through an inducible promoter system such as that
controlled by the tetracycline repressor protein (Stoddart et al.,
2007; Smith et al., 2009). In endogenously expressing cell lines or
primary cells siRNA or shRNA transfection can perform a similar
function, with careful controls to demonstrate the specificity and
magnitude of the receptor knockdown achieved (Itoh et al., 2003;
Hirasawa et al., 2005; Tanaka et al., 2008a; Wu et al., 2010). In future
the delineation of FFA1 and GPR120 effects in vivo using receptor
knockout mice (Katsuma et al., 2005; Steneberg et al., 2005; Latour
et al., 2007; Lan et al., 2008; Oh et al., 2010), might be improved
by conditional or tissue-specific gene deletions – for example to
avoid developmental compensation through alternative signaling
pathways.

LIPOPHILICITY AND ENDOGENOUS FFAs
Poor aqueous solubility of FFAs, together with the requirement
for relatively high concentrations (μM) to fully define FFA1 and
GPR120 concentration response relationships(Briscoe et al., 2003;
Itoh et al., 2003; Hirasawa et al., 2005), presents practical problems
in in vitro signaling assays. Solubility can be aided by inclusion of
solvents such as DMSO, but the solvent concentration required
often leads to non-specific effects and cellular toxicity. Alterna-
tively fatty acid free bovine serum albumin (BSA) can be included
in the assay buffer, which replicates its role as a fatty acid carrier
protein in plasma. While improving solubility, this has a disad-
vantage in reducing the availability of FFAs and thus the observed
potency in stimulating FFA1 or GPR120 signaling (Itoh et al., 2003;
Hirasawa et al., 2005; Stoddart et al., 2007). The affinity of BSA for
saturated and unsaturated FFAs differs, which may also generate
indirect differences in FFA GPCR activity. Consequently apparent
changes in potency for FFA at their cognate receptors could be
due to a complex relationship between affinity differences for BSA
and the receptor. If BSA is included its potential ability to bind
synthetic ligands under investigation must also be considered.
More widely, the high lipophilicity of most current FFA GPCR
drugs can lead to problematic pharmacokinetic properties when
taking these compounds forward in vivo. However a recent inves-
tigation has shown for one FFA1 agonist series, this issue can be
addressed by reducing lipophilicity whilst retaining in vitro activity
(Christiansen et al., 2011).
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A second consideration for in vitro assays is the likelihood that
long chain FFAs are present in most standard serum-containing
cell culture media, and may also be produced endogenously by the
cell lines themselves. This tone may influence FFA GPCR expres-
sion (e.g., in transfected cells) and signaling behavior in the long
term, and potentially the assay activity of “competing”exogenously
added ligands. The demonstration that“constitutive”(i.e., agonist-
independent) activity of FFA1 in fact derives from endogenous
FFA stimulation provides a notable illustration of this problem
(Stoddart et al., 2007). Such effects can be minimized by the use of
inducible expressing cell lines, the addition of fatty acid free BSA
as a sink for endogenous FFAs (Stoddart et al., 2007) or dialysis of
cell culture serum.

HYDROPHOBIC FFA RECEPTOR BINDING SITES
The FFA carboxylate anion is essential for endogenous agonist
activity at FFA1 and GPR120, with corresponding FFA esters being
inactive (Itoh et al., 2003; Hirasawa et al., 2005). This negative
charge is a shared characteristic of most synthetic agonists, and
may be substituted in TZD derivatives by the 2,4-dione moiety
(Figure 2). Mutagenesis studies have identified co-ordinating basic
residues at the top of transmembrane domains V (Arg 183) and
VII (Arg 258) essential for FFA1 activation by FFAs, GW9508, and
TZDs (Sum et al., 2007; Smith et al., 2009). An equivalent amino
acid in upper transmembrane domain II of GPR120 (Arg 99) has
also been suggested (Suzuki et al., 2008; Figure 1). The location
of these residues suggests that for both receptors, the lipophilic
portions of endogenous FFAs and synthetic agonists extend into a
hydrophobic binding pocket within the transmembrane domain
bundle (see modeling studies Sum et al., 2007 and Sun et al., 2010).
Some additional contacts (His98, His137, Asn244), present only
in FFA1 (Figure 1), have been suggested to contribute to GW9508
binding (Sum et al., 2007; Tikhonova et al., 2007), and this may
provide one explanation for its selectivity over GPR120 (∼100-
fold) as an agonist. However a more recent investigation questions
whether His137 and Asn244 mutations are specific for particular
FFA agonists (Smith et al., 2009). Such discrepancies highlight the
problems of interpreting the effects of binding mutations from
FFA1 functional assays (see Determining Ligand Affinity at FFA1
and GPR120 and Functional Assessment of FFA1 and GPR120
Pharmacology below), which may represent convolved influences
on ligand affinity, efficacy, or indeed a general ability of receptors to
undergo conformational change to an active state. Thus the over-
all agonist binding pocket is rather ill defined for both receptors
in molecular terms, other than knowledge of the ligand size (e.g.,
chain length) required to occupy it. Its reliance on hydrophobic
contacts presents potential challenges for generating high affinity
selective ligands that distinguish FFA1 from GPR120, or indeed as
the dual activity of TZDs demonstrates, from similar binding sites
in PPAR receptors.

As an alternative it may be preferable to consider the devel-
opment of allosteric modulators for these receptors as a strategy.
Such compounds use alternative binding sites to influence recep-
tor activity in the presence or absence of the endogenous ligand.
They are released from the structural constraints imposed by the
orthosteric site, and because allosteric binding pockets are recep-
tor specific, they may also offer improved selectivity (May et al.,

2007; Smith and Milligan, 2010). Such compounds have been
already identified for short chain FFA receptor FFA2 (Lee et al.,
2008; Smith and Milligan, 2010; Smith et al., 2011). A recent
US patent filed by Amgen Inc (Brown et al., 2010) suggests that
similar allosteric ligands may also have the potential to impact
the biology and future drug development possibilities for FFA1
receptors.

DETERMINING LIGAND AFFINITY AT FFA1 AND GPR120
The moderate (high nM–μM) perceived affinity of FFA recep-
tor ligands, their lipophilic nature, and potential lack of tar-
get selectivity, have all impeded the development of successful
probes for radioligand binding assays – the staple screening assay
for pharmacologists to estimate compound affinity, in terms of
its equilibrium dissociation constant K d, and thus build basic
structure activity relationships (SARs). There is one published
radioligand binding report (using a tritiated ligand from the TAK-
875 compound series; Negoro et al., 2010), which together with
Amgen patent information (Brown et al., 2010) indicates that
FFA1 binding assays may be achievable with the right probe. In
our hands the high level of non-specific binding present with
radiolabeled lipophilic ligands presents a key challenge (Brown et
al., unpublished observations). Two other binding techniques have
developed enhanced specificity for the ligand–receptor interaction
under study. Bartoschek et al. (2010) generated FFAR1 binding
data from saturation transfer difference 1H nuclear magnetic reso-
nance (NMR) measurements, in which NMR spectra are obtained
only when ligands bind a macromolecular complex, such as a
receptor protein. They showed that this method allowed estima-
tion of agonist IC50 values from competition binding experiments,
which displayed close correspondence with functional potencies.
Second a flow cytometry based assay used the fluorescent FFA
BODIPY-C12 as a binding probe to immunoprecipitated FFA1
(Hara et al., 2009a). TZDs and GW9508 (with lower than expected
affinity) were able to displace BODIPY-C12 binding specifically.
As a more widespread screening assay it is likely that this approach
would still require improvements in the ratio of specific to non-
specific binding, and confirmation that FFAs bound the inside,
rather than the exterior of the solubilized FFA1 protein. However
this study does highlight the opportunities for using fluorescent
FFA GPCR ligands in future, perhaps improving the specificity for
the detection of ligand–receptor interaction using techniques such
as TR-FRET (Zwier et al., 2010).

In the absence of robust binding techniques, an alternative
approach, employed for GPR120, has been to model binding inter-
actions in silico by molecular docking simulations (Sun et al.,
2010). The success of such homology modeling depends on the
structural match between the crystal template (in this case, of
bovine rhodopsin) and the receptor under study, in the confirma-
tion required (e.g., agonist active state). Differences between the
limited crystal structures available for closely related rhodopsin-
like GPCRs suggests that this relationship cannot always be guar-
anteed (Kobilka, 2011). Nevertheless, Sun et al. (2010) were able
to use homology modeling to predict the binding energies and
SAR of a novel compound series of GPR120 agonists – predic-
tions which were borne out by functional measurements of agonist
activity.
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FUNCTIONAL ASSESSMENT OF FFA1 AND GPR120 PHARMACOLOGY
Pharmacological analysis of FFA receptors must currently do with-
out direct assessments of ligand affinity, but a wide range of
functional signaling assays is possible in cells, as for other GPCRs
(see overview in Figure 3). Consideration should first be given to
the species variant of FFA receptor under investigation and the
impact this may have on ligand pharmacology. For example the
two splice variants of human GPR120 have already been discussed
above (GPR120 agonists – a multi pronged attack on type 2 dia-
betes?), and it is currently unknown whether the longer isoform is
present in other primates or rodents (Tanaka et al., 2008b; Moore
et al., 2009). Initial investigations derived similar agonist phar-
macology for human, rat, and mouse FFA1 receptors (Itoh et al.,
2003). However heterologous expression of mouse FFA1 in Xeno-
pus oocytes suggests that this species variant is also responsive to
short and medium chain FFAs (greater than C4; Stewart et al.,

2006). Potentially this might imply unique features for the mouse
FFA1 orthosteric binding site. Thus far, synthetic agonist phar-
macology derived from murine cell lines (e.g., insulin secreting
MIN-6 cells, incretin secreting STC-1 cells; Hirasawa et al., 2005;
Katsuma et al., 2005; Briscoe et al., 2006) or in vivo models has
provided broadly consistent with human receptor data.

Functional assays provide SAR data for agonists in terms of
their potency (e.g., pEC50 values) and maximal responses (Emax).
It should be noted that these are empirical parameters that depend
both on the affinity and efficacy of the agonist ligands, together
with assay dependent parameters such receptor density and the
extent of signal amplification at the endpoint measured. Null
methods (e.g., Schild analysis) do provide opportunities to esti-
mate antagonist dissociation constants, and determine whether
their mode of binding is competitive and reversible – for exam-
ple for GW1100 (Briscoe et al., 2006). However it is still more

FIGURE 3 | Summary of functional assays available to investigate FFA

G protein coupled receptor pharmacology in cell lines. The indirect
approaches to assessing ligand binding indicated here are discussed
further in Section “Determining Ligand Affinity at FFA1 and GPR120.”
Several signaling endpoints related to the G protein (FFA1, GPR120) or
β-arrestin pathways (GPR120) can be measured using the example assays
in italics (see text, Functional Assessment of FFA1 and GPR120

Pharmacology) culminating in assessment of function at the cellular level.
Example data from our own laboratory illustrates (i) calcium responses in
HEK293 cells expressing human GPR40 and stimulated with the C18:2
FFA linoleic acid, and (ii) internalization of human GPR120S–YFP receptors
(green), following vehicle or oleic acid treatment, also in transfected
HEK293 cells. In the image panels nuclei are counterstained with the dye
H33342 (blue).
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common to quote inhibitory IC50 values for antagonists, which
will also depend on the agonist concentration and the assay sys-
tem chosen (Briscoe et al., 2006; Hu et al., 2009; Humphries et al.,
2009).

GTPγ35S binding assays have been successfully employed to
investigate FFA1 pharmacology, with the proviso that receptor-
Gq/11α fusion proteins and immunoprecipitation of the GTPγ35S
bound complexes are required to enhance the signal (Stoddart
et al., 2007; Smith et al., 2009). This technique has two distinct
advantages for assessing pharmacology. Measurement is at the
first stage of the receptor signaling pathway (activation of the G
protein), resulting in less signal amplification and a better dis-
crimination, through changes in Rmax, of agonists with differing
efficacy. Second ligands are allowed to bind in a pre-incubation
before G protein activation is assessed by addition of GTPγ35S,
and ensures equilibrium conditions in competition experiments,
for example when assessing antagonist or allosteric modulator
function (Stoddart et al., 2007).

Both FFA1 and GPR120 couple to calcium mobilization, allow-
ing routine high throughput assessment of function through
fluorescence based measurements of intracellular calcium con-
centration (Briscoe et al., 2003, 2006; Itoh et al., 2003; Hirasawa
et al., 2005; Sun et al., 2010). It should be borne in mind that these
are non-equilibrium kinetic assays and thus they can be influ-
enced by the rates of ligand association and dissociation (which
can be slow for FFAs), as well as agonist affinity and efficacy. Early
investigations using human GPR120 reported that calcium mobi-
lization required fusion to a promiscuous G16α (Hirasawa et al.,
2005) or chimeric Gqi5α protein (Ma et al., 2010), or high efficiency
viral transfection (Briscoe et al., 2006), but in retrospect this may
be a particular consequence of reduced G protein coupling effi-
ciency of the long, compared to the short isoform (Tanaka et al.,
2008b; Moore et al., 2009; Watson et al., in preparation). Responses
assessed via ERK stimulation (Itoh et al., 2003; Hirasawa et al.,
2005; Smith et al., 2009) or reporter gene activation (Briscoe et al.,
2003,2006) should also be feasible given the current understanding
of effector coupling of these receptors.

Given the specific involvement of the β-arrestin signaling
pathway in GPR120 anti-inflammatory responses, inclusion of
related readouts may be advisable. Alternative β-arrestin recruit-
ment assays measure interaction between modified receptor and
arrestin proteins using bioluminescence resonance energy transfer
(BRET), protease based systems (Tango, Invitrogen Life Technolo-
gies, Grand Island, NY, USA) or β-galactosidase based comple-
mentation assay (DiscoverX, Fremont, CA, USA). Direct analy-
sis of β-arrestin-GFP translocation or downstream receptor-GFP
internalization is also possible (Hirasawa et al., 2005; Oh et al.,
2010). Increasingly it is recognized that dual assessment of both
G protein and β-arrestin dependent responses has the potential
to reveal functionally selective ligands that discriminate between
these pathways (Rajagopal et al., 2010). Our own data (Watson et
al., in preparation), based on quantitative imaging assessment of
arrestin recruitment and internalization (Kilpatrick et al., 2010),
indicates that both GPR120 isoforms, but not FFA1, engage this
pathway effectively.

Finally measurements of function in cells (e.g., insulin, or
incretin hormone secretion; Itoh et al., 2003; Hirasawa et al., 2005;

Briscoe et al., 2006) allow closer correspondence with the physio-
logical actions expected in subsequent in vivo assays, for particular
ligands. This is exemplified by recent patent data supporting a
role for GPR120 small molecule agonists in glucose-stimulated
insulin secretion in isolated rat islets (Ma et al., 2010). Within
this category label free technologies, such as dynamic mass redis-
tribution (DMR), also offer sensitive measurements that can be
applied to endogenous receptors in living cell lines or primary
cells, without modification by labeling reagents or reporter trans-
fections – and in a high throughput 384 well plate format. DMR
technology uses an optical biosensor that measures the perpen-
dicular movement of cellular constituents. It directs broadband
light into the bottom of the plate, and ligand induced movement
of cellular contents results in a shift in the wavelength of the light
that is directed back into the sensor (Fang et al., 2006). This shift
in wavelength is measured, and in the case of GPCRs, gives a read-
out that is thought to be dependent upon the G protein coupling
of the receptor in question (Schröder et al., 2010). Schröder et al.
(2010) demonstrated the use of DMR to determine agonist phar-
macology and Gq/11 coupling signature of FFA1, and other studies
have now characterized novel FFA1 agonists (TUG424, conjugated
linoleic acid isomers) by this technique (Christiansen et al., 2008;
Schmidt et al., 2011). We have shown that this system is also
applicable to study GPR120 activation (Watson et al., unpublished
observations).

CONCLUSION
FFA1 and GPR120 have emerged as receptors with key roles to
play in the sensing of circulating and intestinal long chain FFAs
in pancreatic β-cells, intestinal endocrine cells and elsewhere.
In vitro and animal model data highlight a unique potential
for co-ordinated benefits of synthetic ligands at these receptors,
by counteracting multiple inflammatory and metabolic factors
contributing to the development of type 2 diabetes. Promising
initial data suggests that FFA1 agonists may be effective in man,
and we await similar human studies, predicted from the recent
patent applications, which examine GPR120 agonists. There is
some uncertainty over the long term effects of FFA1 and GPR120
signaling, and this still leaves open the best choice of therapeu-
tic ligand – agonist or antagonist. As drug targets, the lipophilic
orthosteric binding sites of FFA1 and GPR120 present challenges
for developing high affinity, selective orthosteric ligands, using
the functional assays currently available. However future drug
discovery at these receptors will be aided by expanding knowl-
edge of receptor structure and the advent of novel fluorescent
ligand binding approaches. Perhaps there will also be possibilities
for improved ligand specificity at these receptors, using allosteric
modulators or“biased”ligands which functionally select particular
FFA signaling pathways.
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