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Artificial intelligence inferred 
microstructural properties 
from voltage–capacity curves
Yixuan Sun1, Surya Mitra Ayalasomayajula2, Abhas Deva2, Guang Lin3* & R. Edwin García2*

The quantification of microstructural properties to optimize battery design and performance, to 
maintain product quality, or to track the degradation of LIBs remains expensive and slow when 
performed through currently used characterization approaches. In this paper, a convolution neural 
network-based deep learning approach (CNN) is reported to infer electrode microstructural properties 
from the inexpensive, easy to measure cell voltage versus capacity data. The developed framework 
combines two CNN models to balance the bias and variance of the overall predictions. As an example 
application, the method was demonstrated against porous electrode theory-generated voltage 
versus capacity plots. For the graphite|LiMn

2
O
4
 chemistry, each voltage curve was parameterized as 

a function of the cathode microstructure tortuosity and area density, delivering CNN predictions of 
Bruggeman’s exponent and shape factor with 0.97 R2 score within 2 s each, enabling to distinguish 
between different types of particle morphologies, anisotropies, and particle alignments. The 
developed neural network model can readily accelerate the processing-properties-performance and 
degradation characteristics of the existing and emerging LIB chemistries.

Lithium-ion batteries, LIBs, are a well-established energy storage technology, powering a wide range of small scale 
applications, including smartphones and laptops, as well as large scale applications, such as electric vehicles and 
grid storage. The LIB market is continuously growing due to the increase in global demand for renewable energy 
storage and elimination of greenhouse gases1,2. In the last two decades, LIB technology has greatly evolved3, 
creating new chemistries and architectures that have been optimized for many applications in cost effective ways.

A key design factor to develop reliable, optimal LIBs is the fabrication of new electrode microstructures4–9. 
Specifically, microstructural features such as active material particle size, shape, alignment and distribution have 
a direct impact on the battery performance10,11. These microstructural features are traditionally quantified as a 
function of volume fraction left by the solid electrode material phase referred to as the porosity, ε , which in turn 
controls the reactive area density, A , defined as:

where rp = (3Vp/4π)
1/3 , is the size of a characteristic particle of volume, Vp . S is the shape factor of the electrode 

particles and a function of the electrode particle morphology, distribution, and alignment7,11.
Another key microstructural parameter associated to battery performance is the tortuosity, τ , which is related 

to the electrical conductivity and chemical diffusivity of porous electrodes through the expression D = D◦ε/τ , 
where τ is given by the Bruggeman relation7,12,13:

Here, α , is the Bruggeman exponent and captures the coarse-grained contributions of the particle size distribu-
tion, particle morphology, distribution, and alignment11,12,14–16.

In spite of the importance of the microstructural properties of LIBs and their impact on the associated per-
formance, degradation, and cost, to the best of the authors’ knowledge, the quantitative estimation of battery 
properties remains expensive, slow, and difficult to measure. Experimentally, battery microstructural parameters 
are currently inferred from reconstructing tomographic images5,7,10,14,15,17–25. For example, Shearing et al.17 high-
lighted microstructural heterogeneities through X-ray tomographic imaging, by considering different volume 
sizes of an electrode sample and found that larger volumes are more representative of the entire sample. Ebner 

(1)A = S(1− ε)/rp

(2)τ = 1/εα
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et al.5 determined the particle size distribution in LiNi1/3Mn1/3Co1/3O2 , NMC, electrodes and quantified porosity 
due to composition of additives and compaction pressure during manufacturing and found that the discharge 
capacity at high C-rates was unaffected by the compaction pressure but increased with additives. Chung et al.10 
calculated tortuosity using tomographic experimental data5, and computer generated electrodes to show the 
particle size distribution and packing affect on the tortuosity and area density. In that study, experimental elec-
trodes displayed a 15% higher tortuosity than computer generated electrodes, demonstrating the importance of 
establishing processing-microstructural properties correlations of LIB electrodes.

Ebner et al.7 used NMC, graphite, and LiCoO2 , LCO, electrodes with different particle shapes to demonstrate 
for the first time the critical effect that morphological anisotropy has on tortuosity. A factor of three increase was 
found for through-thickness versus in-plane tortuosity for the electrodes. Müller et al.24 analyzed porosity, parti-
cle size distribution, tortuosity, and area density of four commercial graphite electrodes and found that the local 
ratio of porosity and tortuosity induced localized voltage drops in the electrode potential during charging. Pietsch 
et al.25 estimated the uncertainty in determining microstructural parameters and found variabilities as high as 
200% for low porosity electrodes, demonstrating their importance in defining a high quality electrode layer.

Although tomography experiments are effective in determining the microstructural parameters, they require 
an immense economic and computational effort to process and prepare the electrode layers, image the resultant 
samples, and post process the resultant images14,19,21,26. In particular, tortuosity estimation requires additional 
lengthy calculations on the reconstructed images10,14,22,27,28. Other experimental techniques to infer tortuosity 
include AC impedance-based methods, the polarization interrupt method, e.g., see Thorat et al.29, where the 
tortuosity is determined from the effective chemical diffusivity, and the blocking electrolyte method, e.g., see 
Landesfeind et al.30, where the tortuosity is determined from the effective electrical conductivity. Pouraghajan 
et al.26 compared these methods and proposed a generalized impedance based model. These methods require 
experimental processing of the electrode sample under investigation and some of them require further fitting of 
electrochemical models to data31. Overall, existing non-destructive microstructural quality battery characteriza-
tion approaches seem impractical to be run jointly and on-the-fly with the production line.

In contrast, machine learning, ML, techniques have been applied to infer multiple aspects of battery 
technology32, including the state of health, SOH, where the aim is to estimate the remaining useful life of the 
battery, RUL, and optimize battery operating conditions33,34. ML models for batteries include regression based 
methods35,36, support vector machines, SVMs37, Markov chain and Monte Carlo methods33,34,38–42. Recently, 
neural network based approaches have been gaining importance to monitor SOH and RUL in real time34,42. 
Zhang et al.43 used long short-term memory recurrent neural networks, RNN, to predict the RUL by learning the 
long term dependencies in degradation data. Typically, RNN and their variants have been used to predict SOH 
and RUL43–48, wherein they are trained against cell voltage, current, and temperature34,34,35,37,43,44. In addition, 
charge capacity has been estimated through regression models49,50. Specifically, the state of charge, SOC, has been 
estimated by using deep learning methods and establishing correlations between voltage, current, temperature, 
power, and energy of the LIB during voltage discharge51–58.

ML techniques have also been employed in battery materials discovery59–62. Techniques such as regression 
and neural networks are used to predict material properties such as electrical conductivity and reaction rates63–65. 
Sendek et al.60,66, implemented a regression model to screen potential lithium ion conducting solid state electro-
lyte materials, while Jalem et al.67, implemented a neural network. Ahmad et al.68, trained a graph convolutional 
neural network, CNN, to screen for electrolyte materials that suppress lithium dendrite growth. Joshi et al.69, 
used a neural network, SVM, and regression analysis to predict the open circuit voltage of electrode materials. 
Jiang et al.70, developed a ML model to determine the statistics of NMC electrode particle and binder detachment 
based on the X-ray tomography data. Badmos et al.71, implemented deep learning and CNN to detect defects 
in LIBs for quality assessment. In all these cases, data generation and availability are among some of the major 
concerns for ML modeling in LIB technology32,72.

Currently, the emergence of ML-based tools has focused on estimating the electrochemical state, the degree 
of degradation, or the prediction of new materials. In contrast, in this paper, a convolutional-dense hybrid 
neural network-based model has been developed to infer from experimental voltage versus capacity data, the 
microstructural properties that determine battery performance characteristics within a few seconds, instead of 
hours or days, by using what would currently be considered expensive, destructive, and slow characterization 
techniques. This sets the stage to accelerate the processing-properties-performance and degradation character-
istics, of the existing and emerging chemistries.

Methodology
Figure 1 shows the proposed neural network combined with a convolutional and dense layers approach. Here, 
an image containing color-coded normalized voltage curves, each color corresponding to a different current 
density, and the associated energy density, E, and power density, P, are used as inputs. At the input layer, the 
convolutional kernels extract higher level representations. A down-sampling max-pooling layer follows each 
convolutional block, reducing the input size for the next layer, achieving translation invariance and preserving 
the important information, see Table 1.

Because the aim is to predict α and S with the same neural network, two challenges are noted: (1) the need 
to minimize the bias towards S during training, where target ranges are drastically different (α : 0–5; S: 0–40); 
and (2) the tendency of neural network to favor higher S-values for mean squared error (L2 loss). Therefore, two 
identical CNN models with customized loss functions were combined.

Two CNN models were developed, the first one is referred herein as the Lw-model, and uses a weighed mean 
squared error, Lw , which is the loss function:



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13421  | https://doi.org/10.1038/s41598-022-16942-5

www.nature.com/scientificreports/

yi is the true value and ŷi is the model prediction for the ith voltage versus capacity curve and n is the total number 
of data points. Wα and WS control the importance of each quantity during model prediction.

(3)Lw =

n∑

i=1

Wα(yi − ŷi)
2
α +WS(yi − ŷi)

2
S

n

Figure 1.   Convolutional neural network architecture to infer microstructural battery parameters. The CNN is 
comprised of convolution blocks and fully connected layers, which takes two types of input at different stages. 
The model takes the color-encoded voltage versus capacity curves as the main input (each color corresponding 
to a current density), energy density, E, and power density, P, as the second input. Each convolution block 
has two convolutional layers, followed by a pooling layer. A ReLU activation function is placed after each 
convolutional layer and hidden dense layer. For each data point, the image with voltage curves are fed into the 
network. For each curve, E and P are taken into the following fully connected layers, along with the higher-level 
representation of the input image. The output of this network has two components, the Bruggeman exponent, α , 
and the area density shape factor, S. See text for details.

Table 1.   Network architecture description.

Operation layers Number of filters Kernel size Stride Padding Output size

Input voltage curves – – – – – 48× 64× 3

Convolution layer ReLU 64 3× 3 1× 1 Same 48× 64× 64

Convolution layer ReLU 64 3× 3 1× 1 Same 48× 64× 64

Pooling max pooling – 2× 2 2× 2 Same 24× 32× 64

Convolution layer ReLU 32 3× 3 1× 1 Same 24× 32× 32

Convolution layer ReLU 32 3× 3 1× 1 Same 24× 32× 32

Pooling max pooling – 2× 2 2× 2 Same 12× 16× 32

Convolution layer ReLU 16 3× 3 1× 1 Same 12× 16× 16

Convolution layer ReLU 16 3× 3 1× 1 Same 12× 16× 16

Pooling max pooling – 2× 2 2× 2 Same 6× 8× 16

Extra input (E, P) and flattening ReLU – 3× 3 2× 2 Same 18+ 768

Dense layer ReLU – – – – 512

Dense layer ReLU – – – – 128

Output α – – – – – 1

Output S – – – – – 1
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The second network corresponds to the same architecture trained with another loss function, defined herein 
as the LM-model, to reach a uniform relative error for the entire target span and to emphasize the lower α and 
S values, where:

To evaluate the performance of the models, the coefficient of determination, R2 , was used to account for the 
proportion of the true target variance:

where Vres =
∑n

i=1(fi − yi)
2 and Vtot =

∑n
i=1(yi − ȳ)2 . Here, fi represents the predicted values from trained 

neural network, yi , represents the true values in the pre-processed dataset, and ȳ is the sample mean of yi.
Ls measures the averaged relative error and is defined as:

to represent the percentage deviation between the predicted and the true values. The residuals were normal-
ized against their mean and standard deviation to fairly compare the model performance to predict α and S. A 
combination of these two models was implemented to balance the bias and variance.

Numerical implementation
Voltage vs. capacity curves were generated using dualfoil.py, an open source python software, developed by 
Robinson and García73, which python-wraps the dualfoil legacy fortran code made publically available by Doyle 
et al.74. Different combinations of the Bruggeman exponents and shape factors of the cathode were sampled while 
the values corresponding to other design adjustable and material parameters were kept constant. The Brugge-
man exponent was discretized into intervals of 0.1, ranging from 0 to 10, which correspond to experimentally 
observed ranges10,11. The shape factor was discretized into intervals of 1, ranging from 0 to 40, also in agreement 
with experimentally observed particle morphologies6,10,16. The discharge currents were varied from 1.75 A m −2 
to 122.5 A m −2 , for each combination of shape factor and Bruggeman exponent, resulting in a total of 15,600 
simulations. 1500 simulations that did not converge were discarded without affecting the resolution of the dataset, 
see Deva and coworkers for details16. A 2.0 V cutoff voltage was set, and the energy and power density values 
were extracted for each voltage curve as additional input parameters.

Dualfoil.py can currently model without any modifications, electrode materials such as LiMn2O4 , LiCoO2 , 
graphite, and TiO2 but it could include new electrode chemistries, if needed73. For the LiMn2O4 and graphite 
chemistry pair, the dualfoil code simulates experimental current densities as high as 105 A m −274. The dualfoil 
code employs a homogenization approximation for upscaling microscopic equations74,75 thus, its veracity would 
be limited at higher current densities for all cell chemistries76. During data generation, dualfoil.py simulation 
time was ∼20s−300 s per current density curve for a given combination of Bruggeman exponent and shape factor.

The proposed neural network architecture was implemented in Tensorflow, trained on a Tesla P100 
GPU on 12 hours of wall time. Tenfold cross validation was used to report the model performance where, in 
each fold, the entire dataset was split randomly into ten equal parts: the network was trained on nine parts and 
evaluated on the remaining part. In order to assess the validity of the predicted α and S, these values were used 
as input into dualfoil.py , to predict the associated voltage versus capacity curves. The final compound neural 
network combined both the Lw-model and LM-model by reporting the predicted values of greater performance 
for each model, given their range of validity.

Results and discussion
As an example application, a LiMn2O4 , and graphite electrode cell was used to train the CNN. In general, the 
analysis and data curation process requires the sampling of a statistically representative section of the microstruc-
tural parameter space and the corresponding voltage vs capacity response, given an imposed set of current densi-
ties. This process can be readily performed by carefully fabricating porous electrode microstructures of tailored 
tortuosity and area density7,16,17,20, and by filling the microstructural parameter gaps by using well developed 
physics-based microstructural models. In the case of LIBs based on porous electrode layers, the microstructural 
response has been well described in terms of the well established porous electrode theory model, as pioneered by 
Newman et al.77, Doyle et al.74,75, and developed by a well-established community, e.g.,78–81. Specifically, through 
the use of dualfoil.py, the space of microstructural parameters can be readily explored, e.g., see Deva et al.16.

Figure 2 directly compares the expected or true α and S values against the neural network predictions, show-
ing a 99% model explained variance. The LM-model delivers a 2.95% error for α and R2 > 0.99 . The Lw-model 
resulted in higher Ls values because the Lw-model is sensitive to large errors from high S and α values. Figure 2a, 
b shows that for large α values, the points lie more close around the identity line, while for low α and S values, 
the points deviate from the line. Similarly, Fig. 2c, d show that there is at least 97% of the variance the trained 
model can explain in the true distribution.

In Fig. 3, each inset shows the normalized residual, its density, and the corresponding normal quantile–quan-
tile (Q–Q) plot for α and S of the aggregated values of the tenfold cross-validation for both Lw - and LM-models. 
The models deliver residuals with a Gaussian distribution supporting an unbiased ML model. The Q–Q plots 

(4)LM =
1

n

n∑

i=1

|yi − ŷi|

|yi|

(5)R2 = 1−
Vres

Vtot

(6)Ls =

n∑

i=1

|yi − ŷi|

0.5(yi + ŷi)
× 100%
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for the Lw-model suggest the residuals display near symmetric Gaussian distributions with a slight skew to the 
right for predicting α and S. In contrast, the mean of residuals from the LM-model for both α and S was closer 
to zero and their Q–Q plots indicate heavy tails compared to the Gaussian distributions with the same mean 
and variance.

Figure 4 shows the performance of both Lw - and LM-models for different output ranges. Figure 4a shows that 
the LM-model delivers a better prediction for α < 6 , the physically realistic range of values for porous electrode 
LIBs. For α > 6 , both models deliver a similar performance with the Lw-model returning a lower Ls value.

In contrast, Fig. 4b shows that the Lw-model delivered a lower Ls value across the entirety of the trained 
ranges, and thus was chosen as the model to make predictions for S. Both Lw - and LM-models perform well on 
predicting α (see Eq. 2) and S (see Eq. 1), but the Lw-model under-predicts, suggesting it has a higher bias com-
pared to the LM-model. However, the LM-model delivered larger residuals, indicating higher variance. Therefore, 
a combined model that returns the best output from each Lw - or LM - model, as they sample different bins and 
different accuracies will enable a better prediction and a larger winning margin.

Figure 5 compares the cell potential versus capacity electrochemical behavior that results from different 
battery microstructures against the combined model. Specifically, inset (a) compares the experimental behav-
ior, as reported by Doyle and Newman74, against their dualfoil prediction using the traditional spherical limit 
approximation, i.e., α = 1/2 and S = 3 , and the values predicted by the CNN by using the experimental volt-
age response as input. Not only the CNN-generated microstructural parameters provide a better match to the 
experimental response ( ∼2.2% error of the spherical limit versus ∼0.8% for the CNN-base prediction at low 
current densities), but the graphically-inferred values, α = 2.37 and S = 11.12 , demonstrate that the shape of 
the particles are morphologically anisotropic and display a great degree of surface area, as one would expect in a 
real microstructure. Further, while the CNN prediction is highly accurate, particularly for low current densities, 
the simulation demonstrates that at high current densities, polarization losses dominate the response of the cell, 
regardless of the particle morphology. The deviations between model and experiment are a result of model limita-
tions unable to capture the particle-particle effects that result at high current densities, e.g., see Battiato et al.76.

For dual porous battery architectures, e.g.,82, Fig. 5b, c highlight the effect of area density on the predicted 
electrochemical response, showing that the CNN can easily distinguish between high and low quality designs. 
In particular, inset (b) shows that the low power density design is result of a subpar area density delivered by the 
dual porous microstructure. In contrast, inset (c) shows that a dual porous, bicontinuous architecture cannot 
deliver very high power densities, but can out perform the traditional layered porous design.

For traditional single porosity, electrode designs conformed of highly aligned (textured) platelets (MRD 
> 20), with morphological anisotropy, c/a ∼ 1/10, but poor area density, inset (d) shows that even though the 
CNN captures the relevant features controlling the microstructural electrochemical behavior, there are some 
instances where differences between the expected and predicted ( α, S ) pairs can lead to a 25% difference in the 
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Figure 2.   Aggregated true and predicted scatter plots from tenfold cross validation for (a) Bruggeman’s 
exponent α from Lw-model with Ls = 5.59% and R2 = 0.99 , (b) α from LM-model with Ls = 2.95% and 
R
2 = 0.99 , (c) shape factor S from Lw-model with Ls = 0.89% and R2 = 1.0 , and (d) S from LM-model with 

Ls = 2.59% and R2 = 0.97 . Overall, the trained model accurately predicts both α and S. Specifically, the Lw
-model performed better at predicting S with 1.70% less error throughout the range of S values, while the LM-
model was better at predicting α < 3.0 by over 5% in comparison to the Lw-model. A combination of the model 
predictions was adopted for the final prediction.
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overall predicted charge capacity. In this specific case, the difference is a result of a 48% difference in the S-value. 
However, for the same microstructural properties, an increase in area density of 20× delivers a match by the 
CNN-model that is virtually indistinguishable from the expected behavior, see inset (e). Further, insets (d) and 
(e) demonstrate the possibility of inferring from voltage measurements in porous electrodes the same particle 
morphology-induced tortuosity but a widely different electrochemically active area density, enabling the possibil-
ity of tracking the area density losses that result from degradation, such as those resulting from decrepitation83 or 
SEI growth84. Further, the effects of different powder qualities, e.g., different particle morphological anisotropies 
and their processing-induced alignment7, and the corresponding area densities, can be easily inferred through 
the proposed CNN-model, enabling the possibility to distinguish even subtle differences, compare insets (e) and 
(f), whose quantification is critical for the advanced fabrication of energy storage technology.

Conclusion
A convolution neural network-based deep learning model was presented to infer porous electrode microstructure 
properties from the macroscopic voltage behavior, specifically, Bruggeman’s exponent, α , and shape factor, S, by 
starting from six voltage versus charge capacity response curves, each for a different current density as well as 
the corresponding power and energy density. Two models were trained using adjusted Lw and LM loss functions, 
and were combined to produce a combined model that accurately predicts microstructure properties.

The developed CNN-framework allows to distinguish between different types of particle morphologies, 
anisotropies, and particle alignments, as well as the effects on the area density. All of these microstructural 
characteristics are a result of processing, including powder selection, layer compaction, and calendaring, and are 

Figure 3.   Residual analysis of the proposed models, showing the normalized residual plots, their densities, 
and the corresponding Q–Q plots. (a) α residuals from the Lw-model as given by Eq. (3). Results show that Lw
-model underpredicts by ∼ 3% for 3 < α < 12 and overpredicts by 5.0% otherwise. The mean of the residuals 
is greater than zero, i.e., overall the model underpredicted α . The corresponding Q–Q plot suggests a near 
symmetric Gaussian distribution of residuals with a slight right-skew. (b) α residuals from the LM-model shows 
the residuals are more centered around zero with larger values than the Lw-model. The corresponding Q–Q plot 
indicates a near symmetric Gaussian distribution of residuals with heavy tails. (c) S residuals from the Lw-model 
shows an overall underprediction. The associated Q–Q plot shows Gaussian distribution of residuals with a 
slight right-skew. (d) Shows the residuals of S from the LM-model are centered around zero. The corresponding 
Q–Q plot suggests a near symmetric Gaussian distribution of residuals with heavy tails.
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key to specify the quality of the processing operation. As presented, the developed methodology can be readily 
incorporated into the battery production process as a step to track the microstructural quality of the developed 
product and assert control on the developed energy storage technology. Further, the developed CNN-model can 
be readily used as a way to estimate the amount of active material left as a result of the multiple cycle-induced 
microstructural changes on the voltage versus charge capacity response as a result of the electrochemically active 
area density loss and increase of the electrode impedance.

Finally, while we used computer-generated data to demonstrate the ability of the CNN model to predict 
battery microstructural parameters from voltage versus charge capacity curves, the methodology can be easily 
implemented by using a statistically representative, carefully fabricated set of battery architectures that span a 
physically realistic range of processing parameters, and can be readily extended to infer other relevant battery 
design parameters, such as layer thickness, particle size, lithium diffusivities, electrical conductivities, etc. The 
availability of curated, public databases that have carefully labeled the microstructural parameters, as well as 
voltage and capacity response will be key to apply this formulation to the generality of battery chemistries and 
designs. The Jupyter notebook associated to the model can be accessed on Google Colab. The source code can 
be accessed at microbattAI.
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Figure 4.   Ls as computed from the tenfold cross-validation from the Lw-model (green) and LM-model (blue) 
performance. (a) Shows the effect of α . (b) Shows the effect of S. A lower Ls value means the model prediction is 
better in that range of values.
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galvanostatic behavior of the CNN-model prediction with respect to the expected values, show a value of 1.5%. 
Inset (c) corresponds to dual porous structure with low porosity, with expected values of, α = 0.05 and S = 40 , 
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